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A B S T R A C T

This paper presents investigations on hard turning with variable edge design PcBN inserts. Turning of

hardened AISI 4340 steel with uniform and variable edge design PcBN inserts is conducted, forces and

tool wear are measured. 3D finite element modelling is utilized to predict chip formation, forces,

temperatures and tool wear on uniform and variable edge micro-geometry tools. Predicted forces and

tool wear contours are compared with experiments. The temperature distributions and tool wear

contours demonstrate the advantages of variable edge micro-geometry design.

� 2008 CIRP.
1. Introduction

Hard turning is a more flexible, more environmentally benign
and higher throughput alternative to grinding. However, process
reliability and surface quality is still behind grinding [1]. In hard
turning, polycrystalline cubic boron nitride (PcBN) cutting tools
with various edge preparation (chamfer, radius, oval or waterfall
edges, see Fig. 1) are preferred to protect the cutting edge from
chipping [1,2]. Edge preparation must be carefully selected for a
given application because it affects the surface integrity of the
machined workpiece [3]. Heat generated during hard turning is
also affected by edge preparation due to change in work material
flow around the cutting edge. For example, a chamfered face
provides excessive negative angle to the cutting action and
results in high heat generation. PcBN tools rapidly wear out
during hard turning at high cutting speeds mainly due to
attained temperatures [4]. While a constant uncut chip thickness
to edge radius ratio (l = tu/re) should be maintained along the
engagement area between PcBN insert and the workpiece, most
edge preparations are applied uniformly all around the corner
radius of the PcBN inserts. A uniform edge micro-geometry along
the corner radius of the insert creates a very low edge radius to
uncut chip thickness at the minor cutting edge. This causes more
ploughing than shearing at the minor cutting edge resulting in
excessive heat built-up and rapid wear. A variable edge micro-
geometry along the corner radius of the insert has the potential
to reduce this heat built-up at the cutting edge enabling hard
turning at higher cutting speeds and feeds with less tool wear [5]
(see Fig. 2).

This paper aims to investigate the influence of variable edge
micro-geometry insert edge design in hard turning both experi-
mentally and via finite element analysis (FEA).
* Corresponding author.
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2. Variable micro-geometry edge design

While uniform edge preparation strengthens tool cutting edge,
it makes cutting less efficient especially when the ratio of uncut
chip thickness to tool radius decreases. This is especially true when
friction factor increases with decreasing uncut chip thickness to
edge radius ratio. The work material is trapped near end of the
uncut chip geometry along the corner radius. Inefficient cutting
results in increased strains in the workpiece which in turn
increases mechanical and thermal loads and results in high
temperatures. Fig. 2 demonstrates the chip load of a uniform edge
insert during cutting. The thickness of the chip varies from a
maximum value, which is equal to feed ( f), to a minimum value on
the tool’s corner radius.

A CAD model of a variable edge design tool insert is given in Fig. 3.
It can be seen that edge radius at point A is greater than that of at
point B and C. The edge radii at point A, B and C are reA > reB > reC.

In Section A-A which is major (leading) cutting edge, uncut chip
thickness is greater than the edge radius which indicates regular
cutting. In Section B-B, at the end of the major (leading) edge, the
uncut chip thickness is equal to the edge radius where the rubbing
action becomes more dominant than shearing. In Section C-C, at
the minor (trailing) cutting edge, the edge radius is larger than the
thickness of the uncut chip and work material is rubbed against the
workpiece. This rubbing action which results in increased
temperatures on the tool and workpiece surfaces is believed to
hinder the performance of the tool.

3. Experimental procedure

In this study, turning of annealed and hardened AISI 4340 steel
(40 HRc) using PcBN inserts (50% CBN + 40% TiC + 6% WC) with four
different micro-geometries (uniform chamfer with 0.1 mm chamfer
height and 208 angle, uniform hone with 50 mm (and 40 mm) edge
radius, waterfall (WF) hone with re = 30:60 mm radii, variable hone
edge with reA = 50 mm, reB = 10 mm radii) were considered. Turning
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Fig. 1. Waterfall (re1:re2) and round (re) hone micro-geometry edge design.

Fig. 2. Uniform vs. variable micro-geometry design.

Fig. 4. Measured forces in turning of AISI 4340 steel.
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experiments were conducted using a cylindrical bar specimen with a
diameter of 71 mm and length of 305 mm. Solid top PcBN inserts
(TNG-423) were used with a MTGNR-123B right hand tool holder
that provided 08 lead, �58 side rake, and �58 back rake angles. The
cutting forces were measured with a force dynamometer (Type
9121) mounted on the turret disk of the CNC lathe. It must be noted
that the corner radius of the PcBN inserts (TNG-423) used in
experiments is R = 1.2 mm which means that the cutting has been
performed by the corner radius of the inserts (d < R). The averages of
the measured forces for each insert are shown in Fig. 4.

The effect of edge micro-geometry is apparent on measured
radial (thrust) forces (Ft). For the cutting condition of V = 125 m/
min, f = 0.15 mm/rev, d = 1 mm, waterfall hone edge with
30:60 mm edge radii yielded the lowest radial forces (Ft) followed
by variable hone 50 mm edge radius. The variable edge design
produced higher tangential (cutting) forces (Fc) than other edge
micro-geometry designs. Decreasing feed rate ( f = 0.1 mm/rev)
resulted in lower tangential forces. Largest radial (thrust) force was
measured when turning with the chamfered insert whereas
variable honed insert resulted in lowest radial force. These results
may imply that more efficient cutting has been performed due to
variable edge micro-geometry design that resulted in lower radial
forces but slightly higher tangential forces.

Measured forces are fitted in log-linear models as function of
cutting conditions and micro-geometry design parameters (re1 and
re2). Thrust, feed and cutting force expressions are given in
Eqs. (1)–(3) with R-sq = 96.1, 99.5, and 99.8%, respectively.

Ft ¼ 3789:5d0:258V�0:437 f 0:466re0:0829
1 re0:199

2 (1)

Fz ¼ 2670:4d1:14V�0:327 f 0:327re0:0478
1 re0:112

2 (2)

Fc ¼ 6568d0:895V�0:160 f 0:695re0:0145
1 re0:0053

2 (3)
Fig. 3. CAD model of the variable hone edge design.
4. Finite element modeling of 3D turning

Earlier finite element (FE) modelling studies have provided
essential information about the influence of edge preparation on the
process variables such as chip formation, forces, temperatures and
stresses [6,7]. However, FE studies on 3D hard turning are very
limited. Klocke and Kratz [4] utilized 3D FE modelling to investigate
chamfer edge design in wiper inserts particularly identifying high
temperature zones ‘‘hot-spots’’ on the tool face. More recently,
Aurich and Bil [8] introduced 3D finite element modelling for
segmented chip formation. In this study, a finite element modeling
software (Deform 3D) is used to study the effects of uniform and
variable micro-geometry edge design on process variables. This FEM
software is based on an implicit Lagrangian computational routine
with continuous adaptive remeshing. The workpiece is modeled as
rigid-perfectly plastic material where the material constitutive
model of this deformable body is represented with Johnson–Cook
material model (see Eq. (4)) where A = 1504 MPa, B = 569 MPa,
n = 0.22, C = 0.003, m = 0.9, Tmelt = 1426 8C are the parameters for
AISI 4340 steel as given by Gray et al. [9].

s̄ ¼ ½Aþ BðēÞn� 1þ C ln
˙̄e
˙̄e0

� �� �
1� T � T0

Tmelt � T0

� �m� �
(4)

The workpiece is represented by a curved model with 70 mm
diameter which is consistent with the experimental conditions.
Table 1
Heat conduction coefficient

p [MPa] 0 30 180 300 420 600

h [kW m�2 K�1] 5 18 87 222 410 500



Table 2
Thermomechanical properties of work and tool materials

AISI 4340 PcBN

Density [kg m�3] 7850 4280

Modulus of elasticity [GPa] 205 587

Poisson’s ratio 0.29 0.13

Specific heat [J kg�1 K�1] 475 750

Thermal conductivity [W m�1 K�1] 44.5 44

Thermal expansion [mm/m K�1] 12.3 4.7

Table 3
Pressure-dependent shear friction factor

p [MPa] 500 1000 1500 2000 2500

m1 0.4 0.7 0.8 0.9 1.0

m2 0.2 0.35 0.4 0.5 0.7

Fig. 6. Temperature distributions.

Fig. 5. Comparison of measured and simulated forces.
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Only a segment (158) of the workpiece was modeled in order to
keep the size of mesh elements small. Workpiece model includes
200,000 elements. The bottom surface of the workpiece is fixed in
all directions. The cutting tool is modeled as a rigid body which
moves at the specified cutting speed by using 125,000 elements. A
very fine mesh density is defined at the tip of the tool and at the
cutting zone to obtain fine process output distributions. The
minimum element size for the workpiece and tool mesh was set to
0.025 and 0.009 mm, respectively. Thermal boundary conditions
are defined accordingly in order to allow heat transfer from
workpiece to cutting tool. The heat conduction coefficient, h, is
defined as a function of pressure as given in Table 1. Other thermo-
mechanical properties are given in Table 2.

All simulations were run at the same cutting condition
(V = 300 m/min, f = 0.15 mm/rev, d = 1 mm). In 3D FE modeling,
constant shear friction factor, m and pressure-dependent shear
friction factor, m = f( p), have been benchmarked to identify the
friction between micro-geometry tool and workpiece. Pressure-
dependent shear friction models used in simulations are given in
Table 3.

FE simulation results for various friction values are given in
Table 4. Pressure-dependent shear friction resulted in best force
predictions (highlighted as bold). Especially, a reduced shear friction
was observed in variable hone micro-geometry PcBN insert.

The comparison of experimental and simulated forces (Fc,
cutting force, Ft, thrust force and Fz, feed force) are shown in Fig. 5.
The simulated cutting forces are found to be in close agreements
with the experimental ones.

Predicted temperature distributions on the tool are shown in
Fig. 6 for three different micro-geometry inserts. These distribu-
tions depict that smallest hot zone formed on the variable honed
tool and maximum temperatures of 853, 724, 664 and 626 8C were
predicted for uniform chamfered, uniform waterfall (WF 30:60),
uniform honed (Hone 40) and variable honed (Var. Hone 50)
inserts, respectively. Due to the more uniform uncut chip thickness
to the edge radius ratio along the variable micro-geometry insert,
the cutting temperature at the same cutting condition is found to
Table 4
The effect of friction factor on process outputs

m Ft [N] Fc [N] Fz [N] Tool [8C]

Chamfer

0.75 299 700 236 1020

m1 386 775 335 853

WF, re1 = 30 mm, re2 = 60 mm

0.3 342 782 225 836

m1 360 690 310 724

Uniform Hone, re = 40 mm

m2 354 835 276 623

m1 324 675 336 664

Var. Hone, reA = 50, reB = 10 mm

m1 390 800 352 693

m2 285 690 258 638
be significantly lower than other uniform micro-geometry
(chamfered, honed and waterfall) inserts. In addition, the heat is
seen more uniformly distributed along the cutting edge of the
variable micro-geometry insert.

Predicted chip geometries and strain fields (see Fig. 7) indicate
the effect of micro-geometry edge design on the plastic strain
induced on the workpiece. Large edge micro-geometry insert has
induced greater effective strain hence greater thermo-mechanical
load to the workpiece. This creates higher heat generation and
higher temperatures on the tool cutting edge.

Finite element simulations are also utilized to predict tool wear.
The distributions of the process variables such as effective stresses,
temperatures and sliding velocities allow the simulation of the tool
wearonthetoolrakeand flankfaceswhencombinedwithatoolwear
model. The tool wear rate models describe the rate of volume loss on
the tool rake and flank faces per unit area per unit time. There are
many different tool wear rate models proposed in literature depen-
ding on the type of tool wear, i.e. adhesive, diffusive, etc. Among
those, the tool wear rate model based on the adhesive wear proposed
byUsui etal. [10], given in Eq. (5), uses interface temperature, normal
stress,and sliding velocity at the contact surfaces as inputs and yields
tool wear rate for a given location on the tool surface.

dVB

dt
¼ c1snVs eð�c2=TÞ (5)



Fig. 8. Comparison of tool wear experiments with simulations.

Fig. 7. Simulated chip formation and strain fields.
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where dVB/dt is the volumetric wear rate, c1 and c2 are the
constants, T is the temperature, Vs is the sliding velocity, and sn is
the normal stress applied to the tool surface. In this study, the wear
constants c1 and c2 for PcBN are found to be as c1 = 1 � 10�6 and
c2 = 0.9 � 102 by trial-and-error with FE simulations. Fig. 8 shows
the simulated tool wear zones on the tool for uniform chamfer,
uniform hone re = 40 mm and variable hone reA = 50 mm,
reC = 10 mm inserts. Variable micro-geometry edge design has
the lowest wear rate under the same cutting conditions.

5. Conclusions

In this paper, experimental and FE modelling investigations
on hard turning with variable edge design PcBN inserts are
presented. The results revealed that the variable edge prepara-
tion inserts perform better than uniform edge preparation
counterparts if the variable edge is properly designed for the
given cutting conditions. Specifically, the following conclusions
can be made:
� V
ariable micro-geometry tool design reduces the heat generation
along the tool cutting edge.

� V
ariable micro-geometry insert cutting edge induces less plastic

strain on the machined workpiece.

� T
ool wear is decreased with the use of a variable micro-geometry

insert.
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