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Capacity management numerical experiments to evaluate the value of utilizing contingent capacity and to study the effects
Flexible capacity of capacity acquisition lead time, providing useful managerial insights.
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1. Introduction and related literature

In a make-to-stock production system that faces volatile demand, system costs may be decreased by managing the capacity as well as
the inventory in a joint fashion, in case there is some flexibility in the production capacity. In some production environments, it is possible
to increase the production capacity temporarily while it may take some time to do so. We refer to this delay as capacity acquisition lead
time. In this paper we consider such a make-to-stock production system subject to periodic review in a finite-horizon under non-stationary
stochastic demand, where our focus is on the effects of capacity acquisition lead time.

The production capacity of a system can be permanent or contingent. We define permanent capacity as the maximum amount of pro-
duction possible in regular work time by utilizing internal resources of the company such as existing workforce level on the steady payroll
and the machinery owned or leased by the company. Total capacity can be increased temporarily by acquiring contingent resources, which
can be internal or external. Some methods of acquiring contingent capacity are hiring temporary workers from external labor supply agen-
cies, authorizing overtime production, renting work stations, and so on. We refer to the acquired additional capacity, which is only tem-
porarily available, as contingent capacity. Contingent capacity can be acquired in any period provided that it is ordered in a timely manner,
and corresponding costs are incurred only in the periods that contingent capacity is utilized.

Throughout this paper, we primarily consider the workforce capacity setting for ease of exposition. We use the temporary (contingent)
labor jargon to refer to capacity flexibility. In that setting, we assume that the production quantity is mostly determined by the workforce
size, permanent and contingent.

The availability of contingent capacity may be subject to a certain time lag associated with the operations of the capacity acquisition
process, where we refer to this time as the capacity acquisition lead time. For example, an external labor supply agency (ELSA) may not
be able to immediately send the temporary workers that a company asks for. The process of searching for and contacting the appropriate
workers are the main drivers of this time delay, along with factors such as absenteeism, unavailability or skill requirements. The companies
may make contracts with the ELSAs that guarantee the availability of temporary workers provided that they are requested some certain
time in advance, which is the case according to our experience in the Netherlands. Naturally, the capacity acquisition lead time increases
for jobs that require higher skills.
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Changing the level of permanent capacity as a means of coping with demand fluctuations, such as hiring and/or firing permanent work-
ers frequently, is not only very costly in general, but it may also have many negative impacts on the company. Utilizing flexible capacity is a
possible remedy to this problem and we consider it as one of the two main operational tools of coping with fluctuating demand, along with
holding inventory. The ELSAs that employ their own workforce provide such flexibility to companies. Since the temporary workers are em-
ployed by the ELSAs, decreasing the temporary workforce levels is different than firing permanent workers for the companies and does not
bring any additional costs. There exists a significant usage of flexible workforce in many countries. We refer the reader to Tan and Alp (in
press) for statistical evidence.

Flexible capacity management refers to adjusting the total production capacity with the option of utilizing contingent resources in addi-
tion to the permanent ones. Since long-term changes in the state of the world can make permanent capacity changes unavoidable, we con-
sider the determination of the permanent capacity level as a tactical decision that needs to be made only at the beginning of the planning
horizon and not changed until the end of the horizon. The integrated inventory and flexible capacity management problem that we deal
with in this paper refers to determining the contingent capacity to be ordered which will be available in a future period as well as deter-
mining the optimal production quantity in a certain period given the available capacity which has been determined in an earlier period. We
note that this problem is essentially a stochastic version of the aggregate production planning problem.

The dynamic capacity investment/disinvestment problem has been investigated extensively in literature. This problem aims at optimiz-
ing the total production capacity of firms at a strategic level to meet long-term demand fluctuations. Rocklin et al. (1984) show that a target
interval policy is optimal for this problem. This policy suggests investing in (expanding) the capacity if its current level is below a critical
value, disinvesting in (contracting) the capacity if its current level is above another critical value, and doing nothing otherwise. Eberly and
van Mieghem (1997) later extend this result to environments with multiple resources. Further multidimensional optimality results are
shown by Gans and Zhou (2002) and Ahn et al. (2005). Angelus and Porteus (2002) show that target interval policy is still optimal for man-
aging the capacity in the joint capacity and inventory management problem of a short-life-cycle product under certain assumptions. In
general, the lead time for the realization of the capacity expansion and contraction decisions is neglected in this literature and Angelus
and Porteus (2002) state that ‘this important generalization to the case of positive capacity lead time with inventory carry-over merits fur-
ther research’. The lead time issue is considered in the capacity expansion literature to a certain extent. Angelus and Porteus (2003) show
optimality of the echelon capacity target policy for multiple resources, which can have different investment lead times and for which
investments can be deferred. Ryan (2003) presents a summary of the literature on dynamic capacity expansions with lead times. There
are two main differences between the dynamic capacity investment/disinvestment problem and the integrated inventory and flexible
capacity management problem that we consider: (i) investment results in possession of capital goods, which still has some value at the
time of disinvestment, whereas flexible capacity is not possessed, but acquired only for a temporary duration, (ii) investment decisions
are strategic, while integrated inventory and flexible capacity management is tactical and operational.

The problem that is addressed in this paper is closely related to the problems considered by Tan and Alp (in press), Alp and Tan (2008), and
Yang et al. (2005). Tan and Alp (in press) deal with a similar problem environment where the lead time for capacity acquisitions is neglected
and only the operational decisions are considered. Alp and Tan (2008) extend this analysis by including the tactical level decision of determi-
nation of the permanent capacity level. Both of these studies consider fixed costs that are associated with initiating production as well as
acquiring contingent workers. We ignore such fixed costs in this study and focus on the effects of capacity acquisition lead time. When the
fixed costs are ignored, these two studies reduce to a special case of our work for a capacity acquisition lead time of zero. We refer the reader
to these two studies for analysis of this special case and also for a review of the literature on flexible capacity and inventory management for all
aspects of the problem other than the capacity acquisition lead time. Yang et al. (2005) deal with a production/inventory system under uncer-
tain permanent capacity levels and the existence of subcontracting opportunities. Subcontracting takes a positive lead time, which is assumed
to be one period longer than or equal to the production lead time and a fixed cost is associated with subcontracting. The optimal policy on sub-
contracting is shown to be of capacity-dependent (s,S)-type. The authors also show that there is a complementarity condition between slack
capacity and subcontracting: If subcontracting is more costly than production, no subcontracting will take place unless production capacity is
fully utilized. There is a major operational difference between this form of subcontracting option and the use of contingent capacity as in our
setting. Subcontracting affects the inventory level directly (any amount subcontracted increases the inventory position with full quantity),
while contingent capacity gives extra flexibility as it allows under-utilization of capacity at the time of production.

The rest of the paper is organized as follows. We present our dynamic programming model in Section 2. The optimal policy and some of
its properties are discussed in Section 3 and our computations that result in managerial insights are presented in Section 4. We summarize
our conclusions and suggest some possible extensions in Section 5.

2. Model formulation

In this section, we present a finite-horizon dynamic programming model to formulate the problem under consideration. Unmet demand
is assumed to be fully backlogged. The relevant costs in our environment are inventory holding and backorder costs, and the unit cost of
permanent and contingent capacity, all of which are non-negative. There is an infinite supply of contingent capacity, and any number of
contingent workers ordered become available with a given time lag. The notation is introduced as need arises, but we summarize our major
notation in Table 1 for ease of reference.

We consider a production cost component which is a linear function of permanent capacity in order to represent the costs that do not
depend on the production quantity (even when there is no production), such as the salaries of permanent workers. That is, each unit of
permanent capacity costs c, per period, and the total cost of permanent capacity per period is Uc,, for a permanent capacity of size U, inde-
pendent of the production quantity. We do not consider material-related costs in our analysis, but it can easily be extended to accommo-
date this component. In order to synchronize the production quantity with the number of workers, we redefine the “unit production” as the
number of actual units that an average permanent worker can produce; that is, the production capacity due to U permanent workers is U
“unit”s per period. We also define unit production cost by contingent workers as c. in the same unit basis. For ease of exposition we con-
sider the productivity rates of contingent and permanent capacity to be the same, but our model can accommodate different productivity
rates as explained in Tan and Alp (in press).
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Table 1
Summary of Notation
T Number of periods in the planning horizon
L Lead time for contingent capacity acquisition
Cp Unit cost of permanent capacity per period
Ce Unit cost of contingent capacity per period
h Inventory holding cost per unit per period
b Penalty cost per unit of backorder per period
o Discounting factor (0 < o < 1)
W, Random variable denoting the demand in period t
Ge(w) Distribution function of W,
g (w) Probability density function of W,
U Size of the permanent capacity
Xt Inventory position at the beginning of period t before ordering
Ve Inventory position in period t after ordering
0r Contingent capacity available in period t (that is ordered in period t — L)
(06,0011, -, 012, 0000-1) IfO<t<T—L
0 {(()[,()M,,..,()T,l,(h) ifT-L+1<t<T
0 ift=T+1
fe(xe,0°,U) Minimum total expected cost of operating the system in periods t,t +1,...,T, given the system state (x, 0", U)
Jee, 01, 0) Cost-to-go function of period t excluding the period’s capacity-related costs, given the system state (y,, 0!, U)
St Slack capacity in period t, after production
* Optimal solution
: Unconstrained optimum
Ve Optimal inventory position after ordering in period t subject to 0;,; =0
@?\ I Optimal contingent capacity ordered in period t subject to y, = x;
(0} Optimal contingent capacity ordered in period t subject to y, = x; + 0; + U

In every period, a decision is made to determine the number of contingent workers to be available in exactly L periods after the
current period, as long as there are at least L periods before the end of planning horizon. If 6; contingent workers are ordered in period
t — L then that many workers become available in period t at a total cost of c.0; which is charged when they become available. There
could be situations where modifications on pipeline of contingent workers are possible, however this was not the case in the appli-
cations we were involved with and we do not consider such flexibility in our model. In other words, we do not allow for cancellations
of the previously ordered capacity or a carry-over of the currently available contingent capacity without prior notice. For example,
when the capacity flexibility is by means of overtime, the workers need to be timely informed about overtime production in each
and every occasion. Similarly, when the capacity flexibility is by means of temporary labor, the labor supply agencies need to plan
where the workers will be sent, and in case the current employee of a given temporary worker wants to extend the employment
of the worker for one more period without any prior notice, that may contradict the planned new employment of the temporary work-
er. In any period t < T — L, we keep a vector 6" = (0, 0.1, ...,00,.-1) Which consists of the number of contingent workers that are or-
dered in periods t —L,t —L+1,...,t — 1. In the next period, the vector "' consists of the information on the hired contingent workers
available in periods t +1,t+2,...,t+L—1, carried from the vector ', as well as the decision made for period t +L, 0,,;, in period t.
Since no contingent workers are ordered after period T — L, 0' = (0,041, ...,0r_1,07) for T—L+1<t<T and 0™ := 0. The size of the
permanent workforce, U, is determined only at the beginning of the first period, and it is considered to be fixed during the whole
planning horizon.

The order of events in a period is as follows. At the beginning of period t, the initial inventory level, x; is observed, and the number of
previously ordered contingent workers, 0;, become available. The total amount of capacity in period t becomes U + 0;, which is the upper
limit on the production quantity of this period. Then, the operational decisions, i.e. the production decision given the available capacity and
the decision on the number of contingent workers to be available in period t + L, are made. According to the production decision, the inven-
tory level is raised to y, < x; + U + 0;. We note that the optimal production quantity (y, — x;) may result in partial utilization of the available
capacity, which is already paid for. At the end of period ¢, the realized demand w; is met/backlogged, resulting in a starting inventory for
period t + 1, X, = ¥, — w,. The vector 0! is constructed as explained above. We assume the demand to be independently but not neces-
sarily identically distributed, and we denote the random variable corresponding to the demand in period t as W, and its distribution func-
tion as G;. Finally, denoting the minimum cost of operating the system from the beginning of period t until the end of the planning horizon
as fi(x., 0", U), we use the following dynamic programming formulation to solve the problem of integrated Capacity and Inventory Manage-
ment with Capacity Acquisition Lead Times (CILT):

miny, ey +0,+0{ Lt (Ve) + 0E[fei1 (Ve — W, 0, U)l} ifT-L+1<t<T,

fi(xe, 00,U) = Ucy + 0cc + _
’ ‘ mln()HL>O.y[e[x[:x[+(),+u]{ff)t(yt) + “E[fr+1 (y[ - Wy, 0”17 U)]} if1<t<T— L,

fO(xl) = rninU;OJ)1 z(lfl (Xl ) 0]7 U)

where fr,1(-) =0,0 <L < T and Z(2) = h [;(z — 0)dG(w) + b [* (0 — 2)dG,(o).

We note that the number of contingent workers hired before the planning horizon begins, 6" = (61,6, ...,0;), is also optimized in the
above formulation, assuming that those decisions are made in advance in an optimal manner. Nevertheless, all of our analytical results
would hold for any given 0! as well.

When capacity acquisition lead time is zero (L =0), the minimization operator, min,.,soy,cpx-+0+u 1S to be read as mingo
miny,cx.x-0+u), the cost 0.cc gets inside the minimization, and 6' disappears from the state space. Tan and Alp (in press) show that this
two-dimensional minimization can be reduced to a single-dimensional one.
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3. Analysis of the optimal policies

In this section, we first characterize the optimal solution to the problem that is modeled in Section 2. Then, we introduce some prop-
erties of the optimal solution, including those that regard the utilization of the available capacity.

Let J, denote the cost-to-go function of period t excluding the period’s capacity-related costs; J,(y;,0"",U) = Z:(y;) + 2Elfes1(y,—
W,, 6" U)]. Accordingly, f;(x, 6", U) can be rewritten as

miDYrG[Xr:X[+()r+ULI[(yt7 0H17 U) ifT-L+1<t< T,

fe(xe, 0,U) = Ucp, + Orcc + ] )
’ ‘ mlnguL20~)’r€[xrixz+9rAUllt(yt7 9t+17 U) if 1 <t< T-L

Let (¢, OHL) be the unconstrained minimizer of the function J,(-) for given state variables 0;.1,...,0:_1, and U. We use the following defi-
nitions in our further discussion for t € {1,...,T —L}:

- . £41
X[ = arg mlny[e[x[:xt+0r+U]<0[+L:?]t(y[’ 0 5 U),
04,, == argminy,, >of, (%, 0", U), and

08, := argming, , »of (X + 0, + U, 0" U).

) Let (y;,0;,,) be the aggregate optimal production and contingent capacity hiring decision in period t given that the state variables are x;,
0" and U.

3.1. Optimal policy characterization

The optimal decisions at any period t (inventory level after production, y,, and number of contingent workers hired, 6;,,) are made by
minimizing the function J, over the feasible region. First, we characterize the solution of CILT in Theorem 1.
Theorem 1. The following hold for any capacity acquisition lead time L =0,1,2,...T — 1.

(a) For any period t (1 <t < T), f; and ], are (jointly) convex functions.
(b) For any period t such that 1 <t < T — L, the optimal production and contingent capacity ordering policy is given by

(e, Ocar) if ¢ € X% + 0 + U], Oy >0,
(Xtvé?ﬂ) if Yo <X, 0rir = 0,

i) = OO Jreznbnl b 20
(¢, 0) if ¢ € [Xe;xc + 0 + U], 0 <O,
(72 0?4) s (Ve — Xt)D'LL =0 if ye <Xy, 0r+L <0,
G0, 08) : G =% — 0 — U2, =0 if Jt > %+ 0+ U, Op.y <O.

Proof. See Appendix. O

The convexity of J, as stated in part (a) implies that the production quantity should bring the inventory level to the base-stock level
(0", 00,1, U) for a given 0,,, — where y,(60",0,,;,U) is the minimizer of J, for a given (0°,0.,;,U) - as long as the base-stock level is in the
interval [x;,x; + 0, + U]. Otherwise, y; = x, if the base-stock level is less than x;, meaning that no production should take place, and
Y; =X + 0, + U if the base-stock level is greater than x; + 0, + U, meaning that all of the available capacity (permanent and contingent)
should be utilized. With respect to the contingent capacity ordering decision, 6;,; = 0:L (v, 0°,U) for any given y, — where 0., (y,, 0", U)
is the minimizer of J, for a given (y,, 0, U) - as long as 0,..(y,, 0, U) > 0. Otherwise, no contingent capacity should be ordered. We also note
that for periods T — L + 1 to T, the optimal level of inventory after production is given by a state-dependent base-stock policy, due to con-
vexity of J,. Part (b) of Theorem 1 characterizes the optimal integrated production and contingent capacity ordering decisions in terms of
the unconstrained minimizer and y.@,,, and 0%, which are the minimizers on the borders of the feasible domain
(0rr = 0,y, € [Xe;X: + 0 + U]). The first case corresponds to the situation where the unconstrained minimizer falls in the feasible region,
and hence the unconstrained minimizer is the optimal solution. In the latter five cases the unconstrained minimizer is outside the feasible
region, where the optimal solution is then on the boundary of the feasible region, due to convexity of J,. The last two cases further char-
acterize the optimal solution by imposing a condition (that we refer to as “complementary slackness property” in Section 3.2) when neither
9 nor 0., is within its feasible interval. Finally, part (a) also states that the recursive minimum expected cost function of the dynamic pro-
gramming formulation, f;(x;, 0', U) is convex. Therefore, finding the optimal permanent capacity level, U* is a convex optimization problem.

Remark 1. If ¢c < ¢p, then U* = 0.
Remark 1 holds due to the fact that any solution with U > 0 would be dominated by the solution that has U =0 and 6; = U for all t.
In what follows we utilize the notion of supermodularity and submodularity to show properties on the pairwise relations of the
variables and parameters in our model, which is a notion employed in economic theory often to explore economic complements and
substitutes. A function which is supermodular (submodular) on two arguments implies that more of one of the arguments induces less
(more) of the other (Porteus, 2002). In particular, Theorem 2 identifies such relations in our problem environment between contingent
capacity ordered, inventory position, permanent capacity, and demand.

Theorem 2. For any period t (1 <t < T), and capacity acquisition lead time L=1,2,...,T — 1, the following hold:

(@) fi(x;,0",U) and J,(y,, """, U) are supermodular functions.
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(b) J; is submodular in (W, (0"*',U)) and in (Wy,y,), where W, € D, and D is the poset of discrete random variables with the first order sto-
chastic dominance as partial order, (0"',U) € R, on which the product order is the partial order.

Proof. See Appendix. O

Supermodularity of J,(y,, ™', U) implies, for example, that y, and 6" are economic substitutes: in any element we increase in 6!, the
optimal y, is non-increasing. Naturally, it implies as well that substitution holds between y, and U, any element of ¢! and U, or any two
elements of 0!, Supermodularity of f;(x;, 0', U) allows similar interpretation as that of J,(y,, ', U): the inventory, the pipeline contingent
capacity and the permanent capacity are economic substitutes. For example, a higher starting inventory eliminates the necessity for a high-
er permanent capacity.

Submodularity of the function J, in (W, 6;,;) given in part (b) indicates that W, and 0, are economic complements. That is to say, sto-
chastically larger demand distributions lead to hiring more contingent capacity. A similar relation also exists between W, and y,. Note that
the sub- and supermodularity results in Theorem 2 do not apply only to optimal decisions. For example, supermodularity of J, in y, and 0.,
implies that the marginal cost of increasing y, increases in 6;,;. The reader is referred to Porteus (2002) and Topkis (1998) for further details
on sub- and supermodular functions, and Puterman (1994) for partial ordering of random variables.

The following corollary to the second part of Theorem 2(a) helps to reduce the search space by providing bounds on the decision vari-
ables y, and 0., using the fact that they are economic substitutes.

Corollary 1. For any period t (1 < t < T — L), the (constrained) optimal solution of ], is in the domain {(y, 0r) : ¥r € [Xe; Je), O € (0,5 602,,1}

3.2. Complementary slackness

In our model, we have two decision variables to be determined in every period: the inventory level after production and the contingent
capacity ordered that will arrive L periods later. The former decision variable is bounded from above by the maximum amount of capacity
available (the permanent capacity level plus the contingent capacity that was ordered L periods ago) whereas the latter decision variable is
only constrained to be non-negative. Let s, denote the slack capacity in period t after the production decision is implemented,
St = X + U + 0; — y,. We define the complementary slackness property as follows:

Definition 1. For any period t, there exists a Complementary Slackness Property (CSP) between slack capacity, s;, and contingent capacity
ordered, 0., only if s¢0;,; = O.

If a solution does not satisfy CSP, a positive contingent capacity is ordered for future use, while the current capacity which has already
been paid for is not fully utilized. If such a solution is optimal then ordering contingent capacity to be available L periods later is preferred
to utilizing currently available capacity fully which might lead to carrying inventory. In case the optimal solution is known to satisfy CSP,
this helps not only to further characterize the optimal solution, but also to simplify the solution of CILT. In particular, whenever the optimal
solution satisfies CSP, the problem reduces to one-dimensional optimization problems. In what follows, we present some special cases
where the optimal solution satisfies CSP.

For the special case where the demand is deterministic, it is straightforward to show that the optimal solution satisfies CSP if
Zf;(} oih < otc.. This condition simply implies that it is less costly to carry inventory than to order contingent capacity, which assures that
contingent capacity is never ordered unless available capacity is fully utilized.

Theorem 3. When L = 1, the optimal solution satisfies CSP in the following cases:

(a) In the infinite-horizon problem with stationary and positive demand (T — oo, W, = W > 0), when h < ac.
(b) In the two-period problem, when h(1 + «) < ac..

Proof. See Appendix. [

Note that for the special case of L = 1, Theorem 3 is valid under reasonable cost parameter settings. Moreover, part (a) is valid for infi-
nite-horizon and part (b) is valid for any demand distribution. Nevertheless, while an optimal solution which does not satisfy CSP might
seem to be counter-intuitive, it turns out that in some cases this is true, as we illustrate in the following examples where CSP does not hold
in the optimal solution.

Example 1. For T=15,L=2,h=1,b=5,¢,=24,¢cc=32,2=1,U=10,%; =0, 6; > 0, and 0; > 0, consider the following demand
stream: P(W; =0)=1, P(W, =30)=04, P(W,=0)=06, PW3=...=W;;=0)=1 and P(W;; =--- = Wy5 = 10) = 1. The optimal
decision is (yj,03) = (0,10). That is, 10 units of contingent capacity is ordered while the available capacity is not fully utilized which
violates CSP. The intuition behind this solution is as follows: Because the uncertainty will be resolved in period 2, any production before
that may result in holding inventory for a number of periods. On the other hand, if the production capacity in period 3 is not increased -
which requires requesting 2 periods in advance - there may be high backordering costs in case positive demand in period 2 is materialized.

Example 2. ForT=2,L=1,h=298,b=5,c, =2.5,¢cc=3,0=0.99,U = 6,x; =0, and 0, = 0, let the demand follow normal distribution
with E[W;] =3, Var[W,]=0.36, and E[W,]=21, Var[W;,] =17.64 (both yielding coefficient of variation=0.2). In this case,
(v, 05) = (4.8,10.4), violating CSP.

4. Numerical results and discussion

The main goal of this section is to gain insights on how the value of flexible capacity and the optimal permanent capacity levels change
as the following system parameters change: capacity acquisition lead time, unit cost of contingent capacity, backorder cost, and the
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variability of the demand. For this purpose, we conduct some numerical experiments by solving CILT. We use the following set of input
parameters, unless otherwise noted: T =12,b=10,h=1,c. =3, ¢, = 2.5, « = 0.99, and x; = 0. We consider Normal demand with a coef-
ficient of variation (CV) of 0.2 that follows a seasonal pattern with a cycle of 4 periods, where the expected demand is 10, 15, 10, and 5,
respectively. Recall that the values of the pipeline of contingent capacity at the beginning of the first period are optimized in CILT, and
accordingly the results containing different lead times are comparable.

Solution of CILT in a Pentium 4 with a 2.79 GHz CPU and 1 Gb RAM for the parameter set given above took less than 1 sforL < 3and 14 s
for L = 3. For longer lead times, the curse of dimensionality prevails and computational limitations become prohibitive.

In the results that we present, we use the term “increasing” (“decreasing”) in the weak sense to mean “non-decreasing” (“non-increas-
ing”). We provide intuitive explanations to all of our results below and our findings are verified in several numerical studies. However, like
all experimental results, one should be careful in generalizing them, especially for extreme values of problem parameters.

4.1. Value of flexible capacity

The option of utilizing contingent capacity provides additional flexibility to the system and leads to reduction of the total costs, even
though there is a certain lead time associated with it. We measure the magnitude of cost reduction in order to gain insight on the value
of flexible capacity. We compare a flexible capacity (FC) system with an inflexible one (IC), where the contingent capacity can be utilized in
the former but not in the latter. We define the absolute value of flexible capacity, VFC, as the difference between the optimal expected total
cost of operating the IC system, ETC\c, and that of the FC system, ETCgc. That is, VFC = ETC,c — ETCgc. We also define the (relative) value of
flexible capacity as the relative potential cost savings due to utilizing the flexible capacity. That is, %VFC = 100 - VFC/ETC\c. We note that
both VFC and %VFC are always non-negative. We also note that the permanent capacity levels are optimized in both systems separately to
ensure that the differences are not caused by the insufficiency of permanent capacity in the inflexible system.

We first test the value of flexibility with respect to the backorder and contingent capacity costs under different capacity acquisition lead
times, by varying the value of one of the parameters while keeping the rest fixed. We present the results in Table 2, which verifies intuition
in the sense that %VFC is higher when capacity acquisition lead time is shorter. These results also generalize the findings of Tan and Alp (in
press) for L = 0 to the case of positive capacity acquisition lead times, such that %VFC is higher when contingent capacity cost is lower or
backorders are more costly (equivalently, when a higher service level is targeted).

We note that, although %VFC decreases with an increasing lead time, the marginal decrease appears to be decreasing as L increases.
Besides, we also observe that %VFC with higher lead times persists to be comparable with %VFC with lower lead times, meaning that flex-
ibility is still valuable even when the capacity acquisition lead time is relatively long.

We also analyze the relation between the value of flexible capacity and the demand variability. The results presented by Alp and Tan
(2008) indicate that the value of flexibility is not necessarily monotonic (i.e. it does not increase or decrease consistently) as the demand
variability increases for the case where the lead time is zero. We find out that this continues to be true for the case where the lead time is
strictly positive. The explanation is that the system has the ability to adapt itself to changes in coefficient of variation, CV, by optimizing the
permanent capacity level accordingly. Nevertheless, for increasing values of the contingent capacity acquisition lead time we observe that
the value of flexibility generally decreases when the demand variability increases as is the case in Fig. 1. A longer capacity acquisition lead
time deteriorates the effectiveness of capacity flexibility. This effect is amplified in case of higher demand variability. In other words, since
the capacity needs are more predictable for lower demand variability, use of contingent capacity — which has to be ordered one lead time
ahead - becomes more effective as compared to the high variability case. This also explains why the decrease in the value of flexibility as
lead time increases is steeper when the variability is higher.

4.2. Optimal level of permanent capacity

In this section, we investigate how the optimal level of permanent capacity changes as the problem parameters change. We present the
data regarding some of our results in Table 3. We first note that the optimal permanent capacity decreases as the contingent capacity acqui-
sition lead time decreases, in all of the cases that we consider. That is, since the decreased lead time makes the capacity flexibility a more
powerful tool, it decreases the required level of permanent capacity. When c. and L are small enough, the benefits of capacity flexibility
becomes so prevalent that, even when c. > ¢, the optimal permanent capacity level may turn out to be zero. We also note that the findings

Table 2
%VFC as L, ¢, and b change
L %VFC

0 1 2 3
Cc
1.0 63.35 58.94 57.63 57.36
2.0 36.35 31.50 28.34 27.18
2.5 22.87 17.90 14.57 12.71
3.0 14.91 10.30 8.55 7.50
3.5 11.10 7.26 6.27 5.61
4.0 8.92 5.58 491 4.21
5.0 6.02 3.18 2.98 2.74
8.0 1.75 0.42 0.37 0.34
b
5 11.79 7.91 6.49 5.54
10 1491 10.30 8.55 7.50
20 17.50 12.22 10.22 9.07
50 20.51 14.63 12.31 11.09

250 24.82 18.06 15.49 14.22
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Fig. 1. %VFC as a function of L for different demand streams.

Table 3

U* as a function of the lead time, L, for varied c, b and demand distribution streams

L 0 1 2 3
Cc U* for b =10

2.5 0 0 0 0
2.51 0 0 2 3
2.6 3 3 4 6
3.0 7 7 8 9
3.5 8 9 10 10
4.0 9 10 10 10
5.0 10 11 11 11
8.0 11 12 12 12
Demand U* forb=10

Deterministic 7 7 7 7
Normal, CV = 0.1 7 8 8 8
Normal, CV =0.2 7 7 8 9
Normal, CV=0.3 6 7 9 9
Demand U* for b = 50

Deterministic 7 7 7 7
Normal, CV = 0.1 7 7 7 8
Normal, CV = 0.2 6 7 8 9
Normal, CV=0.3 5 6 8 9

of Alp and Tan (2008) for the case of L = 0, which state that the optimal permanent capacity level decreases as contingent capacity cost
decreases or backorder cost increases, also hold for positive capacity acquisition lead times.

Similar to the value of flexibility, we observe that the optimal permanent capacity level is not necessarily monotonic in demand vari-
ability. Nevertheless, for longer capacity acquisition lead times or higher costs of contingent capacity, optimal permanent capacity level in
general increases as demand variability increases. On the contrary, for shorter capacity acquisition lead times and lower costs of contingent
capacity, optimal permanent capacity level in general decreases as demand variability increases.

5. Conclusions and future research

In this paper, the integrated problem of inventory and flexible capacity management under non-stationary stochastic demand is con-
sidered, when lead time is present for flexible capacity acquisition. Permanent productive resources may be increased temporarily by hir-
ing contingent capacity in every period, where this capacity acquisition decision becomes effective with a given time lag. Other than the
operational level decisions (related to the production and capacity acquisition levels), we also keep the permanent capacity level as a tac-
tical decision variable which is to be determined at the beginning of a finite planning horizon. We provide insights on the effects of capacity
acquisition lead time.

We first prove that all of the decision making functions under consideration are convex. This result helps us to provide an optimal policy
for the operational decisions and to find the optimal permanent capacity level. Moreover, we prove that the inventory (either before or
after production), the pipeline contingent capacity, the contingent capacity to be ordered, and the permanent capacity are economic sub-
stitutes. We also show that the stochastic demand variable and the optimal contingent capacity acquisition decisions are economic com-
plements; for stochastically larger demand streams, we observe higher contingent capacity levels in optimality. A similar interpretation is
also true for stochastically larger demand streams and the optimal inventory levels obtained after production.
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A policy that might seem to be optimal is never to order contingent capacity unless the permanent capacity is fully utilized, which we
refer to as complimentary slackness property (CSP). We show through numerical examples that an optimal solution does not necessarily
satisfy CSP. We also provide some cases where the optimal solution is assured to satisfy CSP.

By making use of our model, we develop some managerial insights. First of all, the value of flexibility naturally decreases with an
increasing lead time. Consequently, there is a value in trying to decrease capacity acquisition lead time in the system through means such
as negotiating with the external labor supply agency or forming a contingent labor pool perhaps within different organizations of the same
company. This especially holds when the demand is highly variable. Nevertheless, the value of flexibility remains considerable even when
the capacity acquisition lead time is relatively long. Therefore, the existence of a lead time in acquiring contingent capacity should not dis-
courage the production company from making use of capacity flexibility, especially if the demand variability is not very high. Consequently,
the managers should invest in higher levels of permanent capacity when capacity acquisition lead time and demand variability are high,
and it is not wise to do so when the contingent capacity is a more “effective” tool in the sense that capacity acquisition lead time is short
and the demand variability is high.

This research may be extended in several ways. Introducing an uncertainty on the permanent and contingent capacity levels would en-
rich the model (see Pac et al., in press, for the analysis of capacity uncertainty in a zero lead time environment). For example, the supply of
contingent capacity may be certain for larger lead times whereas it may be subject to an uncertainty for shorter lead times. Some other
extension possibilities include considering the fixed costs for production and/or acquisition of contingent capacity, including expansion
and contraction decisions for the permanent capacity, considering alternative resources of capacity flexibility, considering the possibility
to carry-over the contingent capacity and cancel previously ordered capacity, and developing efficient heuristic methods for the problem.

Appendix

Proof of Theorem 1. We prove part (a) by induction. Note that fr.;(-) = 0 and is convex. Assume that f;,1(-) is also convex. The function
JeWe, 01 U) = Le(yy) + oElfe1(y, — We, 071, U)] is convex because (i) L:(y,) is a convex function, (ii) E[fy;1(y, — W, 07", U)] is convex by the
convexity preservation of the expected value operator (see Appendix A.5 in Bertsekas (1976)), and (iii) the convexity preservation of the
linear combination with non-negative weights. Then note that the following minimization operators preserve the convexity of J.
gx,0,U)= min J(y,U),
Yexx+0+U]
h(x,0,U)= min J(y.5,U).
yexx+0+U]

=0

From Proposition B-4 of Heyman and Sobel (2004), coupled with the convexity preservation of affine mappings (see Hiriart-Urruty and
Lemaréchal, 1993) it follows that the resulting g and h functions are convex when J is convex. Finally,

gx,0,U) forT—-L+1<t<T,

,0',U) = Ucy + 0
fi%, 0, U) = Ucp + tcc+{h(x[,0,U) for1<t<T-L

is convex, which completes the proof of part (a).
Part (a) implies directly part (b). O

Preliminaries to Proof of Theorem 2: We start with two lemmas that will help us with the proof of Theorem 2.

Lemma 1. For any cost parameters, the newsboy function (loss function)
y 0
LW.y) =h [ - widFw(w)+b [ (w—y)dFu(w)
J —o0 JYy
is submodular with y € R (real) and W € D, where D is the poset of random variables with the first order stochastic dominance (<) as partial order.

Proof. We need to show that L(W,y) is submodular; that is L(W ,y~) +L(W* y*) <LW*,y~) +L(W~,y*) for all W W' €D and
y-,yt € R, for which W~ < W* and y~ < y*.We denote the cumulative distribution functions of W~ and W* by F~ and F*, respectively.
Then by the definition of stochastic dominance, if W~ < W* then we have F~(w) > F"(w) for all w € R. In the first step, we split integration
intervals in L(W,y") and L(W,y~) by y~ and y*.

00

"y "yt g
LW, y*) = h/ v+ — w)dFw (W) + h/ " — w)dFw (W) + b/ (W — y*)dFuw (W),
. -

! 0

Yy y
LW.y ) =h [ 7 = widFww) +b [ (w=y )dFww) b [ vy )dFw(w)
—00 Jy- Jyt
We denote the difference of the abqve standing two terms by A(W). One can show with the help of partial integration that
AW) :=L(W,y*) —L(W,y") = (h+b) [j’, Fw(w)dw holds.
In the final step, we subtract A(W*) from A(W™) and use the first order stochastic dominance of W* over W~, meaning F~(w) > F*(w)
forallw e R.
AWT) —AW") = [LW",y") =LW",y")] = [LW",y") =L(W",y )] = (h + D) / (F*(w) = F(w))dw < 0.
.

This completes the proof. O

Lemma 2. Convex minimization operators resulting in supermodular functions.
Assume that y, X, 0, ¢ are real numbers, z is a real vector, and g is a real valued function.
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(a) If g(y) is convex then H(x,0) := MiNyepxui0+q€ (V) is supermodular (0 > 0,c = 0).
(b) If g(v,2) is supermodular, then H(x,z) = minycyx:q&(Y,Z) is supermodular (c > 0).
(c) If g(y,2) is supermodular, then H(0,z) = MiNyepyic08(Y,2) is supermodular (6 = 0,c > 0).

Proof. Proof of part (a): We define the global optimum point as y := miny.rg(y) € R U {—o00, +o0}. For supermodularity, we aim to show for
all x- <x*,00 < 0" that

H(x",07) + H(x~,0") <H(x",07) + H(x",0").
The domain of H(x, 0) can be divided into three parts.

g(x) increasing in x, if y<x
H(x,0) = < g(y) constant, ify—-c<x+0andx<y
g(x+0+c) decreasinginx+0, ifx+0<y—c.

We can observe that H(x~,0") < H(x~,0") holds for all x~,07,0", when 0~ < 0*. We distinguish two cases by where x* is situated:

When x* > y —c, then H(x*,0”) = H(x*, 0%) holds, which implies that supermodularity inequality holds.

When x* < y — ¢, then we can define a function with a single variable h(x + ) := H(x, §) which is convex (as discussed in Theorem 1(a)).
Note that a function (H) is supermodular if it is defined as a single argument convex function (h) at its arguments’ non-negative linear
combination, due to Lemma 2.6.2.a in Topkis (1998). This completes the proof

Proof of part (b): We introduce y* := arg minyex x +q&(¥,z~) and yB := arg minycy: x18(¥,z") with x~ < x* and z~ < z*. Now we can
express H(x~,z") and H(x*,z*) as g(y*,z") and g(y?,z"), respectively. Furthermore H(x~,z%) < gyt z%) and H(x*,z7) < +g(¥8,z7) holds
because y4 € [x ;x~ +c] and yB € [x*;x* + .

If y* < yB, then by supermodularity of g, we have

H(x,z") +H(x",z7) < g(* z*) +808,z7)<gW,z) +gWP zt) =H(x ,z°) + H(x",z") from which supermodularity of H follows.

If y8 < y4, then both y# and y? are in the [x*,x + ¢] interval, which imply H(x*,z") < g(y*,z") and H(x~,z*) < g(y®,z"). Therefore,

H(x",z")+H(x ,z*) <gW*,z)+g0¥8 z") =H(x ,z7) + H(x*,z") from which supermodularity of H follows.

Proof of part (c): We introduce y~ := arg minycxxic018(Y,2) and y* := arg minyg .. o+8(, 2), for which y~ < y* obviously holds.

By supermodularity of g(y, z), we have

HO ,z7)+HO",z") =gy~ ,z")+gWy",z") = gy",z7) +g(y~,z") = H(0",z") + H(0~,z") implying the supermodularity of H(0,z). O

Proof of Theorem 2. Proof of part (a) is by induction. The base step consists of the following substeps:

frv1 =0and J;(yr, U) = L1 (yr) + fr+1 are obviously supermodular.miny, e, x;+o,+uL71(Yr) is supermodular in (xr, o7, U) by Lemma 2(a).
Finally, fr(xr,0",U) = Ucp + 0rCc + Miny, cpyagrop0pL1¥r) and Jp_y Vp_1,0",U) = L1_1 (V1) + «Elfr(yr_y — Wr_1,0",U)] are supermodular
because of the supermodularity preservation of the non-negative linear combination and limit operators (see Lemma 2.6.1 and Corollary
2.6.2 in Topkis (1998)).

The general inductive step includes substeps as in the base step, and one additional substep. That is to prove

J:(v,, 01, U) is supermodular in (x;, 6", U) with 0' = (¢, 0441, ...,0r_1, 0r), ifT<t+1,

min
Ye€XeXe+0c+U]

J,,, 071, U) is supermodular in (x, 0", U) with 6° = (0,041, ...,001-1,001), If t+L<T

min
Ye€Xe:Xe+0¢+U],0p,p =0

given that J,(y,, 6", U) is supermodular and convex in (y,, 0!, U). The first branch follows directly from Lemma 2, the second branch follows
from the supermodularity preservation of the projection operator (see Topkis, 1998), additionally.

Proof of part (b), first statement: From part (a), we have f,.q (.1, 0", U) being supermodular. By the definition of supermodularity, for
x~ <x*, z7 <z" we have

Jrirn 5, 27) + frn (7, 27) < fenn (7, 27) + e (X5, 29),

where z* = (0, ..., Opinge.7y UY) are vectors such that 0, <0, ..., 0pinge.rry < Oingesry> and U™ < U™

We introduce new variables w- :=y —x*, w" :=y —x~ with an arbitrary y. For w- <w",z- <z" we have fi 1 (y —w,z7) + fi11
y-—whz") < frri(y —w,z7) + fri1(y — w, z") for all y. This means that Hi(w, z) := f;,1(y — w, 2) is submodular for all t. By submodularity
preservation of the expected value and the non-negative linear combination operators (see Topkis, 1998), ], = Z.(y,) + «E[H,(W., (6", U))]
is also submodular in (W, (6", U)).

Proof of part (b), second statement: We denote the first order stochastic dominance by <. Since f,1(x..1,0"") is convex for all t, we have
He(%) == fri1(x,0""") convex for all t. H; (w,y) := H,(y — w) is also submodular in (w,y) for all ¢ (due to Lemma 2.6.2.b in Topkis, 1998).

We introduce Q(w) := H; (w,y~) — H; (w,y") with some y~ < y*. Because H, (w,y) is submodular, it has non-increasing differences (see
Theorem 2.6.1 in Topkis (1998)), so Q(w) is non-increasing. Therefore, for any W~ < W*, we have Q(W") < Q(W~) implying
E[Q(W™)] < E[Q(W™)], as well (see Proposition 4.1.1 and Lemma 4.7.2 in Puterman, 1994). The latter expression means that
E[H; (W.,y,)] has non-increasing differences, which is equivalent with its submodularity in (W,,y,).

Finally, J, = £(W,,y,) + o«E[H; (W¢,,)] is submodular in (W¢, y,) because of Lemma 1 and the submodularity preservation of the non-
negative linear combination operator (see Corollary 2.7.2 in Topkis, 1998). O

Proof of Theorem 3. We prove the first statement indirectly. The limiting (y;, 05) for T — oo exist because of the discountedness (see Puter-
man, 1994), and y; = y; holds. Let Wy, > 0 be the smallest possible realization of W. Assume, that (y;, 0;) does not satisfy the complemen-
tary slackness property. We can define another feasible strategy (y,,0;) such that y,:=y;+e and 0,:=0;—¢ with
&= min{"";‘in X1+ 01+ U —y;,05} > 0. We study the cost difference AJ; between the two strategies

Aly =1 9505, U) = J1 (1,02, U) = Prin € %2 + 00l (L3;) — L01) + oce) + Prlyy € sz + 911 + Prlys € (—o05%)]C
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with x, = y; — W, and some C; and C; expected costs for the remaining periods. By the first term of the summation, the two strategies follow
the same sample paths from the second period on, while none of the latter two terms are possible, as 0 < ¢ < Wy,,. Thus, we have
Pr[yy € [X2;%2 +¢&)] = Pr[y1 € (—oo;X2)] = 0 and Pry; € [x; + ¢ 00)] = 1.

Therefore, AJ; = Z(y;) — L(¥; + ¢) + acce. Since £ is convex and ¢’ < h, we have Z(y; +¢) — Z(y;) < he. Using the required h < ac.
sufficiency condition, we find AJ; > —he + acce > 0. However, the positive AJ; contradicts with (y;, 6;) being the optimum.

The proof of the second part is as follows. For the two-period problem, J; can be expressed explicitly. For a given U, the curve of the
intersection of J, with the plane y, + 0, = 0 defines a new function, J;, which we parameterize with variable y,.

) V19 oo
1) = L11) + e, — ay1Ce + 2 2232)[G ()02 + / L2 — g (@)do + / (U - 0)g(0)do.
—o0 52

We take the derivative of function J; (y;) and look for negative values.

~ R R Y1 -2
0> 0,J0) = +440) — 56 ~ 222210~ 3) +30y, [ Ly - o)y (0)do

-0

As a result, we have the inequality,

Y1-Y2
219y + a(h + b) / Gayy — @)y (@)de < ace + oG (yy — 92)

By increasing its LHS, we create a sufficient condition for this inequality to hold.
Y1-Y2 Y1-Y2
fl,”l(yl)—i—oc(h—}—b)/ G (¥, — w)g(w)dw < h+ot(h+b)/ 1g,(w)dw = h+a(h+ b)G1(y; —¥2) < h(1 + o) + abG1(y; — ¥2).

When we check if the increased LHS is still below its RHS, we find
h(] + 0() + ctbGl (yl —_}A/z) < oCc + dbcl (yl —_}A/z)

which is equivalent to h(1 + «) < ac..
Consequently, for a given U, {y; + 0, = 0,y; — +oo} is an always decreasing ray for J, (y;, 0., U) when h(1 + «) < ac.. Therefore, the con-
strained optimum of the first period satisfies the complementary slackness property.
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