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Abstract—In this letter, we consider iterative solutions of the
three-dimensional electromagnetic scattering problems formu-
lated by surface integral equations. We show that solutions of
the electric-field integral equation (EFIE) can be improved by
employing an iterative least-squares QR (LSQR) algorithm. Com-
pared to many other Krylov subspace methods, LSQR provides
faster convergence and it becomes an alternative choice to the
time-efficient no-restart generalized minimal residual (GMRES)
algorithm that requires large amounts of memory. Improvements
obtained with the LSQR algorithm become significant for the so-
lution of large-scale problems involving open surfaces that must be
formulated using EFIE, which leads to matrix equations that are
usually difficult to solve iteratively, even when the matrix-vector
multiplications are accelerated via the multilevel fast multipole
algorithm.

Index Terms—Iterative algorithms, least-squares QR algorithm,
multilevel fast multipole algorithm, scattering problems.

I. INTRODUCTION

FOR surface formulations of electromagnetic scattering
problems, various integral equations can be employed

either at our discretion, or due to limitations imposed by the
problem. For solutions of problems with closed geometries, the
combined-field integral equation (CFIE) is preferred over the
electric-field integral equation (EFIE) and the magnetic-field
integral equation (MFIE). This is because CFIE is free of the
internal-resonance problem and it provides better-conditioned
matrix equations [1], which are easier to solve iteratively com-
pared to the matrix equations obtained with EFIE and MFIE.
However, MFIE and CFIE are applicable only to closed geome-
tries, leaving EFIE as the only choice for the solutions of various
real-life problems of electromagnetics involving geometries
modelled by open surfaces. For example, scattering problems
involving a sphere geometry depicted in Fig. 1(a) can be formu-
lated by EFIE, MFIE, and CFIE. However, only EFIE can be
employed for the solution of problems involving a patch geom-
etry shown in Fig. 1(b). Unfortunately, EFIE usually produces
matrix equations that are difficult to solve iteratively [2].

Manuscript received March 2, 2007; revised September 5, 2007. This
work was supported by the Scientific and Technical Research Council
of Turkey (TUBITAK) under Research Grant 105E172, by the Turkish
Academy of Sciences in the framework of the Young Scientist Award Program
(LG/TUBA-GEBIP/2002-1-12), and by contracts from ASELSAN and SSM.

The authors are with the Department of Electrical and Electronics
Engineering and Computational Electromagnetics Research Center
(BiLCEM), Bilkent University, TR-06800, Bilkent, Ankara, Turkey (e-mail:
ergul@ee.bilkent.edu.tr; lgurel@bilkent.edu.tr).

Color versions of one or more figures in this letter are available online at
http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LAWP.2007.908008

Fig. 1. Examples of closed and open geometries. (a) Sphere of radius � (closed
geometry) and (b) � � � square patch (open geometry).

There are many efforts to improve the convergence of the
EFIE solutions by employing preconditioners [3]. Although dif-
ferent kinds of simple preconditioners, such as block-diagonal
preconditioners, easily improve the convergence of the CFIE
solutions, they usually do not reduce the number of iterations
for EFIE [2]. As the problem size gets larger and the dimen-
sions of the matrix equation grow, solutions with EFIE become
extremely difficult, even when iterative techniques are used
with acceleration methods, such as the multilevel fast multipole
algorithm (MLFMA) [4] for the matrix-vector multiplications.
Therefore, strong preconditioners are implemented to increase
the convergence rates without increasing the computational
complexity. In this way, it becomes possible to solve problems
with millions of unknowns on relatively inexpensive clusters
of personal computers, even when the geometries are open and
the problems are formulated by the ill-conditioned EFIE [3].

In an iterative solution, the number of iterations naturally de-
pends on the type of the iterative solver. Among the different
kinds of algorithms, Krylov subspace methods, such as conju-
gate gradient (CG), conjugate gradient squared (CGS), bicon-
jugate gradient (BiCG), stabilized BiCG (BiCGSTAB), quasi-
minimal residual (QMR), transpose-free QMR (TFQMR), and
generalized minimal residual (GMRES) [5], can be employed
for the solutions of various problems in computational electro-
magnetics. For a given problem, the performance of each al-
gorithm may vary significantly, depending on the shape of the
geometry, discretization, and the type of the formulation. Since
reducing the number of iterations is extremely important to ob-
tain efficient solutions, we investigate and compare the itera-
tive solutions provided by various algorithms. In this letter, we
show that a least-squares QR (LSQR) [6] algorithm provides im-
proved convergence rates compared to other algorithms for the
solutions of the problems formulated with EFIE. We also show
that the improved convergence is peculiar to EFIE and LSQR
does not have a good performance for CFIE solutions. Iterative
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solutions of relatively large problems involving a patch geom-
etry are presented to compare the performance of LSQR with
other algorithms that are commonly used in the literature.

II. ITERATIVE LEAST-SQUARES SOLUTIONS OF

INTEGRAL EQUATIONS

For conducting surfaces, EFIE and MFIE can be written di-
rectly from the boundary conditions for the tangential electric
and magnetic fields (in phasor notation with the conven-
tion) as

(1)

and

(2)

respectively. In (1) and (2), and are the tangential and out-
ward normal unit vectors on the surface at the observation point

and are the incident electric and magnetic fields, is
the electric current induced on the surface, is the wavenumber,

is the impedance of free space, and

(3)

denotes the free-space Green’s function. Then, CFIE is defined
as the convex combination of EFIE and MFIE as

(4)

where is a parameter between 0 and 1.
By the simultaneous discretization of both the geometry and

the integral equation applied to formulate the problem, we ob-
tain an matrix equation, i.e.

(5)

where represents the unknown coefficient vector, is the
impedance matrix, and is the excitation vector. Matrix ele-
ments are derived as

(6)

for EFIE and

(7)

for MFIE, respectively, where . In (6) and
(7), and represent the set of basis and testing functions
with the spatial supports of and , respectively.

For the least-squares solution of the matrix equation in (5),
we perform the transformation

(8)

Fig. 2. Iterative solutions of a scattering problem involving a sphere of radius
���� formulated by CFIE (red) and EFIE (blue). Matrix equations have 8364
unknowns and the solutions are performed by the CGS algorithm applied on
the ordinary equation and the transformed equations in (8) and (10), labeled by
“Z Z” and “ZZ”, respectively.

with

(9)

where “ ” and “*” represent the transpose and complex conju-
gate operations, respectively. We note that is a Hermitian
matrix. In this letter, we choose the basis and testing functions
as Rao–Wilton–Glisson (RWG) [7] functions defined on planar
triangles and apply the Galerkin method. Then, in the case of
EFIE, the impedance matrix with the elements in (6) becomes
symmetric and only the complex conjugate operation is required
in (9). When the transformed matrix equation in (8) is solved it-
eratively using MLFMA, it is relatively easy to obtain the multi-
plications related to the complex conjugate matrix using the or-
dinary MLFMA with simple modifications. On the other hand,
for the least-squares solution of a matrix equation involving a
nonsymmetric impedance matrix, a transpose MLFMA should
be implemented carefully by reversing the steps of the ordinary
MLFMA. With the Galerkin method, least-squares solutions of
MFIE with the matrix elements in (7), and therefore also CFIE,
require the implementation of the transpose MLFMA.

Fig. 2 presents the iterative solutions of a scattering problem
related to a sphere of radius , where the residual error is
plotted with respect to the iteration count. The sphere is illumi-
nated by a plane wave and the matrix equations with 8364 un-
knowns are solved by the CGS algorithm using MLFMA. For
both the CFIE and the EFIE formulations, we compare the rate
of convergence of the ordinary matrix equation in (5) and the
transformed equation in (8). In addition, we also consider the
transformation in the form of

(10)

where both sides of the ordinary matrix equation in (5) are mul-
tiplied with the impedance matrix.

We note that the new matrices in (8) and (10) obtained by the
transformations, i.e., and , have condition numbers
that are the squares of the condition numbers of the impedance
matrix . With higher condition numbers, both transformations
might decrease the convergence rates. However, Fig. 2 shows
that this is not true and we obtain different results from the two
transformations, especially for EFIE.
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1) The transformation in (10) decreases the convergence rates
significantly for both CFIE and EFIE compared to the or-
dinary solutions. The transformed matrix equations require
more iterations, especially in the case of EFIE, where con-
vergence to an error of less than 0.1 cannot be achieved
within 1000 iterations.

2) With the transformation in (8), CFIE has a faster conver-
gence compared to the solution obtained by the transfor-
mation in (10), but it is still slower than the ordinary solu-
tion. However, in the case of EFIE, the transformation in
(8) leads to an even faster convergence than the ordinary
solution.

We also confirmed the results presented in Fig. 2 by considering
various scattering problems involving different geometries with
closed and open surfaces. We observed that the transformation
in (8) consistently improved the convergence rate of the iterative
solutions of the EFIE formulations.

It is shown in [8], [9] that a transformation similar to (10)
improves the conditioning of EFIE and provides faster conver-
gence in the iterative solutions, but not in the discrete form as in
(10), and subject to a stabilization procedure that is valid only
for closed surfaces. In this work, we show that the iterative so-
lutions of EFIE can be improved by the transformation in (8)
using the transpose complex conjugate of the impedance ma-
trix. This improvement is obtained in the discrete form of the
transformation as in (8), and it also exists for the solutions of
problems involving open surfaces.

In Fig. 2, the transformed equation in (8) offers a faster con-
vergence rate compared to the ordinary equation for EFIE. How-
ever, it does not increase the efficiency of the iterative solu-
tion since the transformed equation requires four matrix-vector
products per CGS iteration while the ordinary solution requires
only two. As a consequence, we suggest solving the transformed
equation in (8) using the CG algorithm in order to reduce the
number of matrix-vector multiplications to two per iteration,
while maintaining the benefits of the transformation. Among
the different types of CG algorithms for least-squares equa-
tions, we choose the LSQR algorithm, which is a stable method
based on Lanczos bidiagonalization as detailed in [6]. Then,
without having to consider the transformation in (8) explicitly,
we simply feed the LSQR algorithm with the matrix-vector mul-
tiplications related to the impedance matrix and its transpose
complex conjugate . Then, LSQR performs the CG solutions
of the transformed equation in an implicit and stable way.

III. RESULTS

Fig. 3 presents the iterative solutions of a scattering problem
with 14 871 unknowns. The problem involves a sphere of radius
2 illuminated by a plane wave. Ordinary equations obtained
with CFIE and EFIE are solved iteratively by employing various
algorithms, including LSQR. We note that the solution of the or-
dinary equation in (5) using LSQR corresponds to a stable solu-
tion of the transformed equation in (8) using the CG algorithm.
All the iterative algorithms in Fig. 3 require two matrix-vector
multiplications for each iteration except for GMRES, which re-
quires only one matrix-vector multiplication per iterations at the
cost of increased memory.

Fig. 3(a) shows that the most efficient solutions of the CFIE
formulation are performed by BiCGSTAB and the no-restart

Fig. 3. Iterative solutions of a scattering problem involving a sphere of radius
�� formulated by (a) CFIE and (b) EFIE. Matrix equations with 14 871 un-
knowns are solved by various iterative algorithms.

GMRES. In terms of the processing time, GMRES is better than
other iterative algorithms since it requires only 34 matrix-vector
multiplications to reduce the residual error to less than .
However, BiCGSTAB is preferable since it requires only 20 it-
erations, or 40 matrix-vector multiplications, without using the
extra memory needed by GMRES. On the other hand, LSQR
is inefficient compared to all other iterative algorithms by re-
quiring 50 iterations, or 100 matrix-vector multiplications, to
reduce the error to the same levels. Therefore, LSQR appears to
be a bad choice for the CFIE solution of the problem.

In contrast to CFIE, Fig. 3(b) shows that LSQR has signifi-
cantly different convergence properties for the EFIE solution of
the problem; it is not the slowest converging iterative algorithm
as in Fig. 3(a). Indeed, it requires 383 iterations, or 766 ma-
trix-vector multiplications, to reduce the error to less than
without using the extra memory needed by GMRES, which re-
quires 510 matrix-vector multiplications. In other words, LSQR
provides faster convergence compared to BiCG, BiCGSTAB,
CGS, and TFQMR, and it is a good alternative to GMRES,
which offers a faster convergence at the cost of extra memory.
The improved convergence provided by LSQR is due to the fa-
vorable properties of the transformation in (8) for EFIE. The
same improvement cannot be observed in the CFIE solutions
since the transformation in (8) does not improve the conver-
gence of CFIE, as also depicted in Fig. 2.

In Fig. 3, we observe that LSQR provides an improved con-
vergence for EFIE, but it is still inefficient compared to CFIE
solutions. In general, for the solutions of problems involving
closed surfaces, CFIE is very efficient and negates the necessity
of employing LSQR with EFIE. On the other hand, for prob-
lems with open surfaces, EFIE is the inevitable choice and the
improved convergence provided by LSQR becomes important.
As an example, Fig. 4 presents the solution of scattering prob-
lems involving a conducting patch depicted in Fig. 1(b), where
has various values from to and the patch is illuminated
by a plane wave propagating in the direction. Discretiza-
tions of the geometry for different frequencies lead to relatively
large matrix equations with the number of unknowns ranging
from 49 200 to 310 383. The scattering problems are solved
by using a parallel implementation of MLFMA on an 8-way
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Fig. 4. (a) Iterative solutions of a scattering problem involving a ��� � ���

patch leading to a matrix equation with 310 383 unknowns. (b) Processing time
and peak memory per processor with respect to number of unknowns for the
solutions of scattering problems involving a patch geometry with various di-
mensions from ���� ��� to ���� ���. The scattering problems are solved
by using a parallel implementation of MLFMA on an 8-way SMP server with
dual-core AMD Opteron processors, and only the time and memory required
for the iterative solutions are considered.

SMP server with dual-core AMD Opteron processors. Fig. 4(a)
presents the iteration counts when and the number
of unknowns is 310 383. In terms of iteration counts, LSQR
provides the fastest convergence compared to other iterative al-
gorithms and it requires 642 iterations, or 1284 matrix-vector
multiplications, to reduce the error to less than . On the
other hand, since GMRES requires only one matrix-vector mul-
tiplication per iteration, a fair comparison should be based on
the processing times of the iterative solutions. In addition, such

a comparison is necessary in order to consider different setup
times required by the iterative algorithms, which become con-
siderable as the number of unknowns increases. In this manner,
Fig. 4(b) presents the processing times for the solutions with
respect to the number of unknowns. We ignore the fixed setup
time for MLFMA and report only the time required to perform
the iterative solutions to reduce the residual error to less than

. It can be observed that no-restart GMRES provides the
fastest solution, especially as the problem size grows. However,
as also seen in Fig. 4(b), it requires a peak memory that is signifi-
cantly larger than the other iterative algorithms. As an example,
for the solution of the largest problem in Fig. 4 with 310 383
unknowns, GMRES requires 321 MB memory per processor,
while the total memory usage (including the memory required
by MLFMA) is only 456 MB per processor. Thus, leaving the
memory-hungry GMRES aside, among the memory-efficient
solutions provided by the other algorithms, LSQR requires the
minimum processing time, as depicted in Fig. 4(b). In other
words, LSQR performs better than CGS, BiCG, BiCGSTAB,
and TFQMR, and it is a strong alternative to no-restart GMRES,
which has considerably larger memory requirements.

IV. CONCLUSION

In this letter, we present improved iterative solutions of EFIE
by employing the LSQR algorithm. The accelerated conver-
gence of iterations is especially important for problems with
open geometries that cannot be formulated with CFIE. LSQR is
a stable way of applying the CG algorithm on the transformed
equation obtained by preconditioning the ordinary equation
with the transpose complex conjugate of the impedance matrix.
Despite the squaring of the condition number due to such a
transformation, LSQR improves the rate of convergence of
iterative solutions of EFIE, for which it is demonstrated to be
as fast as GMRES, and furthermore, it does not need the extra
memory build-up required by the no-restart GMRES.
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