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a b s t r a c t

We consider supplier diversification in an EOQ type inventory setting with multiple suppliers and
binomial yields. We characterize the optimal policy for the model and show that, in this case, it does
not pay to diversify, in contrast to previous results in the random yield literature.
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1. Introduction

In this paper, we analyze an inventory system with possible
multiple suppliers under binomial yield, characterize the optimal
replenishment policy, and show that working with a single
supplier is always optimal.

There is a vast literature on inventory models facing yield
uncertainty. Yano and Lee [16] classify random yield models
in the literature into four categories: Binomial yield, batch
size independent–stochastically proportional yield, batch size
dependent–stochastically proportional yield and random capacity.

Binomial yield differs from the rest in the important aspect
that it exhibits independence across units in a given order
whereas intra-batch correlation is implied in all other categories.
Mazzola et al. [11] provides the earliest work on an inventory
model with binomial yield. For other works in this category, see
Beja [3], Grosfeld-Nir and Gerchak [8], Barad and Braha [2], Sepheri
et al. [14], and Gürbüz [10].

For a comprehensive review of individual works in the
remaining categories, we refer the reader to Yano and Lee [16], and
mention only Erdem and Ozekici [5], Gerchak et al. [7], Gurnani
et al. [9], Wang and Gerchak [15] and Erdem et al. [4] as recent
works.

Most of the previous work has focused on inventory systems
with a single supplier and does not consider diversification
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issues. However, in practice buyers can work with multiple
suppliers, and thus may reduce variability of actual yield through
diversification among suppliers. Anupindi and Akella [1], Erdem
and Ozekici [5], Gerchak and Parlar [6], Parlar and Wang [13]
consider diversification under different yield structures (excluding
binomial yield), and Gürbüz [10] under binomial yield. Erdem
et al. [4] allow for more than two suppliers in the presence of
random capacity.

There is also evidence from practice that diversification is
desirable for certain settings. A good example is furnished by Li &
Fung, the supply chain integrator, which connects the fragmented
suppliermarket (Asia, Indian subcontinent, the Caribbean basin) to
the large retailers in the US and Western Europe. When Li & Fung
receives an order from a retailer, say for a 1000 units, depending on
the characteristic of the product and the particular supply chain,
they procure the item from, say, 5 different suppliers (even within
the same country), 200 fromeach (see [12]). However, in this paper
we show that, under binomial supplier yield, workingwith a single
supplier is always optimal. Thus, not all sources of uncertainty can
be remedied through diversification.

The rest of the paper is organized as follows: In Section 2, we
describe the model. Sections 3 and 4 present the optimality results
and the discussion. Section 5 concludes the paper with possible
extensions of this work.

2. Model

We consider an EOQ type inventory model in which demand
occurs continuously at a constant rate D. The system is subject to
an inventory holding cost h per unit held in inventory per unit
time. No backorders are allowed. The system is replenished by
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ordering from n (n ≤ N) suppliers where N denotes the total
number of available suppliers.We assume that the replenishments
are instantaneous (i.e., zero lead time) and that each unit delivered
by supplier i, where i = 1, 2, . . . ,N , has a constant probability that
it is of acceptable quality, pi, independent of the order quantity,
Qi. The system pays a unit purchasing cost ci for each unit ordered
irrespective of its quality. Later, the results are also extended to the
case where the system pays only for the ‘‘good’’ units. The ‘‘bad’’
units are discarded right at the delivery (and hence do not join the
stock and do not induce any holding cost). There is an ordering cost
K (Q1, . . . ,QN), which is a positive function of the order quantities
Qi. We assume that K (Q1, . . . ,QN) is nondecreasing in each order
quantity Qi.

We employ the following EOQ type ordering policy: The
inventory level is monitored continuously and an order of size
Qi is placed at supplier i whenever inventory level hits zero.
Clearly there is no incentive to order prior to reaching zero
inventory level because of the zero lead time assumption. The
objective is to minimize the total long-run average cost, which
consists of ordering, purchasing and holding components. All the
order quantities have to be optimized simultaneously in order to
characterize the optimal policy parameters.

The reader should note that the number of acceptable units
from supplier i is the sum of Qi independent Bernouilli random
variables and thereby has binomial distribution with parameters
pi and Qi. We call this quantity the effective received from supplier
i and denote it as Ri. The numbers of the effectives received from
different suppliers are independent. The sum of these quantities
from all suppliers is the total effective received Rwhere

R =

N∑
i=1

Ri. (1)

We can easily compute the expected values of R and of R2 as

E[R] =

N∑
i=1

E[Ri] =

N∑
i=1

piQi and (2)

E[R2
] =

N∑
i=1

E[R2
i ] + 2

N∑
i=1

N∑
j=i+1

E[Ri]E[Rj]

=

N∑
i=1

Var(Ri) +

N∑
i=1

E2
[Ri] + 2

N∑
i=1

N∑
j=i+1

E[Ri]E[Rj]

=

N∑
i=1

pi(1 − pi)Qi +

(
N∑
i=1

piQi

)2

. (3)

Note that the expected total effective exhibits similar structure to
the models incorporating stochastically proportional yield instead
of binomial. Yet, the variance of the effective received is different
in the sense that it is proportional to the order quantities in
contrast to the stochastically proportional yield models in which
the variance is proportional to the square of the order quantities.
This characteristic of the binomial yield eliminates the need for
diversification in order to obtain the risk pooling effect as shown
in the rest of the work.

The inventory level of the described inventory system is a
stochastic process. The process regenerates itself every time the
inventory level hits zero. Thus, one can obtain the long-run
average cost for the system using the renewal–reward analysis.
The replenishment cycle is defined as the time elapsed between
two consecutive instants at which the inventory level hits zero.
The system orders from its suppliers once per cycle. Even though
the problem setting is based on discrete inventory units, we treat
the units as continuous variables for analytical convenience as is
customary in the previous yield literature [4,6,11].
The expected cycle length is
E[Cycle Length] = E[R]/D (4)
and the expected cycle cost is

E[Cycle Cost] = K (Q1, . . . ,QN) +

N∑
i=1

ciQi +
h
2D

E[R2
]. (5)

Finally, due to renewal–reward theorem, the long-run average cost
for the system, denoted as CR, can be obtained from

CR =
E[Cycle Cost]

E[Cycle Length]
. (6)

3. Optimality results

Define adjusted unit cost for supplier i as

ACi =
ci
pi

+
h
2D

(1 − pi) . (7)

Lemma 1. Let i and j be the indices for any two suppliers such that
Qi,Qj > 0, let −

(
pi/pj

)
Qi < ∆ < Qj, and let K (Q1, . . . ,QN) = K.

If the order quantity from supplier j is decreased by ∆, and the order
quantity from supplier i is increased by (pj/pi)∆, then the resulting
increase in the long-run average cost is

CR | Qi=qi+(pj/pi)∆

Qj=qj−∆

− CR | Qi=qi
Qj=qj

=
Dpj
E[R]

(
ACi − ACj

)
∆,

(8)

where the notation Exp| Qi=a
Qj=b

denotes the same expression as Exp when

Qi is set to a and Qj is set to b.

Proof. Using (4), we compute the expected cycle length under the
new order quantities as

E[Cycle Length] | Qi=qi+(pj/pi)∆

Qj=qj−∆

=

∑
l6=i,j

plQl + pi
(
qi +

(
pj/pi

)
∆
)
+ pj

(
qj − ∆

)
D

=

N∑
l=1

plQl

D
= E[Cycle Length] | Qi=qi

Qj=qj
(9)

and observe that the expected cycle length and the expected total
effective received remain the same. Then using (5) and (9) we
compute the change in the expected cycle cost as

E[Cycle Cost] | Qi=qi+(pj/pi)∆

Qj=qj−∆

− E[Cycle Cost] | Qi=qi
Qj=qj

= ci
(
qi +

(
pj/pi

)
∆ − qi

)
+ cj

(
qj − ∆ − qj

)
+

h
2D

(
pi(1 − pi)

(
qi +

(
pj/pi

)
∆ − qi

)
+ pj(1 − pj)

(
qj − ∆ − qj

))
= ci

(
pj/pi

)
∆ − cj∆ +

h
2D

(
pj(1 − pi)∆ − pj(1 − pj)∆

)
= pj

((
ci
pi

+
h
2D

(1 − pi)
)

−

(
cj
pj

+
h
2D

(1 − pj)
))

∆. (10)

Finally by bringing together (6), (9) and (10) we obtain (8).
The reader should note that this analysis is only valid when
−
(
pi/pj

)
Qi < ∆ < Qj, since the order quantities always need to

be positive. If one of the order quantities becomes zero, one would
need to add the change in the ordering costs as well. �
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When the ordering cost is constant, Lemma 1 suggests that it is
better to ordermore froma supplierwith a lower adjusted unit cost
while reducing the order quantity from a supplier with a higher
adjusted unit cost such that the total expected effective received is
kept constant. Thus, by switching the order quantities in a proper
fashion to a ‘‘cheaper’’ supplier we can always decrease the long-
run average cost for the inventory system. If the adjusted unit costs
of two suppliers are the same, no improvement (nor worsening) is
possible by the kind of switch described.

It is easy to recognize that the first component of the adjusted
unit cost, ci/pi, is the purchasing cost per good unit; whereas the
second component, (h/2D) (1 − pi), can be interpreted as the extra
holding cost due to the variability caused by the unreliable nature
of the ordered units. The latter disappears as the supplier becomes
more reliable, i.e., as pi tends to one.

Theorem. Define AC∗
= min1≤i≤N ACi and S∗

= {i|1 ≤ i ≤ N, ACi
= AC∗

}. The following three results hold for three different ordering
cost structures:

(i) Consider the setting when K(Q1, . . . ,QN) = K. The
ordering quantity vector(s) (Q1, . . . ,QN) satisfying the following two
conditions are optimal:

1. For i 6∈ S∗, Qi = 0,

2.
∑
i∈S∗

piQi =

√
2KD
h

. (11)

(ii) Consider the setting when K(Q1, . . . ,QN) = K(
∑N

i=1
1{Qi > 0})where K(.) is a positive monotonically increasing function
and 1{Qi > 0} is the indicator function that returns 1 if Qi > 0
and returns 0 otherwise. The ordering quantity vector(s) (Q1, . . . ,QN)
satisfying the following three conditions are optimal:

1.
∑N

i=1 1{Qi > 0} = 1,

2. for some j ∈ S∗, Qj =
1
pj

√
2K(.)D

h ,
3. for i ∈ {1, . . . ,N} \ {j}, Qi = 0.
(iii) Consider the setting when K (Q1, . . . ,QN) = K +∑N
i=1 ki1{Qi > 0} where K > 0 and all ki > 0, 1 ≤ i ≤ N. Define

CRi =
(K + ki)D

piQi
+ ACiD +

hpiQi

2
, (12)

CR∗

i =

√
2 (K + ki)Dh + ACiD, (13)

and S̃∗
=
{
i|1 ≤ i ≤ N, CRi = CR∗

i

}
. The ordering quantity vector(s)

(Q1, . . . ,QN) satisfying the following three conditions are optimal.
1.
∑N

i=1 1{Qi > 0} = 1,

2. for some j ∈ S̃∗, Qj =
1
pj

√
2(K+kj)D

h ,
3. for i ∈ {1, . . . ,N} \ {j}, Qi = 0.

Proof. (i) From Lemma 1, the long-run average cost can be
continuously improved as order quantities are properly shifted
(i.e., keeping the total expected effective received constant) from
a supplier with higher unit adjusted cost to a supplier with lower
unit adjusted cost until it hits zero. Thus, it is not optimal to order
from any supplier not in S∗, consisting of the supplier(s) with the
lowest unit adjusted cost.

Using (3) and (5), we now have

E[Cycle Cost] = K +

∑
i∈S∗

pi

(
ci
pi

+
h
2D

(1 − pi)
)
Qi

+
h
2D

(∑
i∈S∗

piQi

)2

. (14)
Since the suppliers in S∗ all have the same adjusted unit cost, AC*,
we have

E[Cycle Cost] = K + AC∗
∑
i∈S∗

piQi +
h
2D

(∑
i∈S∗

piQi

)2

. (15)

Similarly (4) becomes

E[Cycle Length] =

∑
i∈S∗

piQi

D
. (16)

Hence,

CR =
KD∑

i∈S∗

piQi
+ AC∗D +

h
2

(∑
i∈S∗

piQi

)
. (17)

Noting the canonical EOQ type cost structure, we obtain (11).
(ii) From Lemma 1 and the fact that the fixed ordering cost is

monotonically increasing in the number of suppliers with positive
order quantities, long-run average cost is improved by setting
equal to zero the order quantities for suppliers not in S∗. For any
given value of the expected total effective received (

∑
i∈S∗ piQi),

long-run average cost is minimized when
∑N

i=1 1{Qi > 0} = 1,
which implies operating with only one of the supplier(s) in S∗. The
result follows from univariate optimization.

(iii) Consider the minimization of long-run average cost with
respect to any two suppliers i and j such that Qi,Qj > 0 and
ACi ≤ ACj, while keeping constantQl, l 6= i, j. If ki < kj, by Lemma1
long-run average cost is improved by setting Qj = 0. If ki > kj,
the best solution is obtained when either Qj = 0 or Qi = 0, since
the interior points are suboptimal due to Lemma 1. Hence, for any
subset of two suppliers, it is optimal towork onlywith one of them.
Proceeding in the same fashionwith all possible supplier subsets of
size 2, it is shown that it is optimal to work with a single supplier.

The average cost expression using single supplier i can be
obtained by modifying (17) as

CRi =
(K + ki)D

piQi
+ ACiD +

hpiQi

2
. (18)

The reader should note that this expression is just like the one in
the canonical EOQ model with the exception of replacing Q with
piQi. Thereby, modifying the result for the EOQ model the optimal
average cost with supplier i yields

CR∗

i =

√
2 (K + ki)Dh + ACiD. (19)

Thus, the optimal supplier to work with is found from

i∗ = arg min
1≤i≤N

{
CR∗

i

}
(20)

and the optimal order quantity from this supplier is

Q ∗

i∗ =
1
pi∗

√
2 (K + ki∗)D

h
. � (21)

Remark 1. If there are no supplier specific minor costs (as in (i)
and (ii)), the suppliers with adjusted unit costs higher than the
minimum available adjusted unit cost should never be used. In the
presence of such costs (as in (iii)), it may be possible to exploit the
trade-off between the ordering cost component and the remaining
cost components, andworkwith the supplier that provides the best
cost rate combination, but not necessarily has the lowest individual
components.
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Remark 2. Consider the case when the fixed ordering cost is a
constant. If the cardinality of the set S∗, i.e., the number of suppliers
with the minimum adjusted unit cost, is greater than one, then
the optimality conditions given in the above theorem do not yield
a unique optimal solution. Infinitely many solutions lie over an
optimal simplex which is the intersection of the positive quadrant
and the hyperplane defined by a constant value of the expected
total effective received. However, whenwe have the fixed ordering
cost as strictly increasing with the number of suppliers used, i.e.,
Kn > Km given that n > m, then the set of optimal solutions is
characterized by the vertices of the aforementioned simplex.

4. Discussion

A key observation from the analysis above is that if suppliers are
subject to binomial yield uncertainty, to use a single supplier is al-
ways optimal. Although theremay be other optimal configurations
in cases where we are indifferent between suppliers, in practice an
exact equality of adjusted unit prices is unlikely. This result consti-
tutes a contrast to the conventional wisdom in the area of random
yield. We provide this managerial finding in the following.

Corollary. (i) In the presence of constant fixed ordering cost, zero lead
times and binomial yield, diversification does not bring additional cost
benefit over using a single supplier.

(ii) When fixed ordering costs are monotonically increasing in the
number of suppliers used or include supplier specific minor ordering
costs, diversification is never optimal under binomial yields and zero
lead times.

Diversification has been found to be beneficial due the risk
pooling effects under yield structures investigated in the literature
(e.g. stochastically proportional, all or nothing, random capacity).
The underlying mathematical reason behind this phenomenon
is that when we sum random variables, their variability, best
manifested in their coefficient of variation, decreases.

In the case of binomial yield, the reason that diversification
is not beneficial is that one can obtain variability reduction just
by increasing the order quantities without resorting to additional
suppliers. The critical fact to be observed is that the binomial
distribution is itself a sum of Bernouilli distributions. As the order
quantity from a supplier, i.e., number of trials in a binomial
experiment increases, we sum up Bernouilli random variables and
benefit from variability reduction. Thus, instead of obtaining risk
pooling effect via supplier diversification, one can obtain it by
simply augmenting the order from the ‘‘cheapest’’ supplier.

The three fixed ordering cost structures investigated herein are
commonplace and correspond to realistic settings. For instance, the
case in which the fixed ordering cost is an increasing function of
the number of suppliers used, models the administrative burden
due to themanagement effort inmaintaining a large supplier base.
Our finding is consistent with the recent efforts in many industries
in reducing the supplier base. The fixed ordering cost structure
with supplier specific minor costs is found when there are fixed
components of freight costs in addition to administrative efforts,
or when foreign suppliers are used with customs clearance costs.

5. Extensions

There are a number of possible extensions to the model herein.
We discuss these next.

One of the assumptions of the model, which states that the
purchasing cost is paid per item received irrespective of its quality,
can be modified with a simple adjustment in the results. For
example, if we assume that we only pay the purchasing cost, ci,
per ‘‘good’’ item received, all the derived results are valid once the
adjusted unit cost (given in (7)) is redefined as

ACi = ci +
h
2D

(1 − pi). (22)

A similar variation in the model is to allow the holding costs
to depend on the purchasing price of the inventory. In this
circumstance the inventory holding cost for one unit supplied from
supplier i per unit time can be expressed as hi = h + ĥci. If we
assume that inventories originating from different suppliers are
consumed simultaneously such that they all deplete at the same
moment in time, i.e., when the inventory level drops to zero, the
derived results are again valid given that the adjusted unit cost
(given in (7)) is redefined as

ACi =
ci
pi

+
hi

2D
(1 − pi). (23)

A final variation that we would like to talk about is the
incorporation of supplier capacities to the model. In the case
that the capacities do not bind the optimal solution, the previous
optimal solutions are still valid. Otherwise, we can only present a
solution for the case that the ordering cost is constant irrespective
of the number of suppliers used, i.e., Kn = K . In this case, one
would have to sort the suppliers according to their adjusted unit
costs and order from the ‘‘cheapest supplier’’ up to its capacity and
then continue filling the supplier capacities until (11) is satisfied. If
it cannot be satisfied even when all available supplier capacities
are used then the process stops and ordering to full capacity
is the optimal policy. If the most general cost structures along
with capacity constraints are assumed then the problem becomes
combinatorial in nature and there is little that can be done except
trying all possible supplier combinations.
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