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In this work, we consider 2-surfaces in R3 arising from the modified Korteweg–de
Vries �mKdV� equation. We give a method for constructing the position vector of
the mKdV surface explicitly for a given solution of the mKdV equation. mKdV
surfaces contain Willmore-like and Weingarten surfaces. We show that some mKdV
surfaces can be obtained from a variational principle where the Lagrange function
is a polynomial of the Gaussian and mean curvatures. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2409523�

I. INTRODUCTION

In this work we study the 2-surfaces in R3 arising from the deformations of the modified
Korteweg–de Vries �mKdV� equation and its Lax pair. Deformation technique was developed by
several authors. Here we mainly follow Refs. 1–12.

Let u�x , t� satisfy the mKdV equation

ut = u3x +
3

2
u2ux. �1�

Substituting the traveling wave ansatz ut−� ux=0 in Eq. �1�, where � is an arbitrary real constant,
we get

u2x = �u −
u3

2
. �2�

Here and in what follows, subscripts x, t, and � denote the derivatives of the objects with respect
to x, t, and �, respectively. The subscript nx stands for n times x derivative, where n is a positive
integer, e.g., u2x indicates the second derivative of u with respect to x. We use Einstein’s summa-
tion convention on repeated indices over their range. Equation �2� can be obtained from a Lax pair
U and V, where

U =
i

2
� � − u

− u − �
� , �3�

V = −
i

2
� 1

2u2 − �� + �� + �2� �� + ��u − iux

�� + ��u + iux − 1
2u2 + �� + �� + �2�

� , �4�

and � is the spectral parameter. The Lax equations are given as
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�x = U�, �t = V� , �5�

where the integrability of these equations are guaranteed by the mKdV equation or the zero
curvature condition

Ut − Vx + �U,V� = 0. �6�

A connection of the mKdV equation to surfaces in R3 can be achieved by defining su�2� valued
2�2 matrices A and B satisfying

At − Bx + �A,V� + �U,B� = 0. �7�

Let F be an su�2� valued position vector of the surface S corresponding to the mKdV equation
such that

yj = Fj�x,t;��, j = 1,2,3, F = i�
k=1

3

Fk�k, �8�

where �k’s are the Pauli sigma matrices

�1 = �0 1

1 0
�, �2 = �0 − i

i 0
�, �3 = �1 0

0 − 1
� . �9�

The connection formula �connecting integrable systems to 2-surfaces in R3� is given by

Fx = �−1A�, Ft = �−1B� . �10�

Then at each point on S, there exists a frame �Fx ,Ft ,�
−1C�	 forming a basis of R3, where C

= �A ,B� / 
 �A ,B�
 and �A ,B� denotes the usual commutator �A ,B�=AB−BA. The inner product �,�
of su�2� valued vectors X and Y are given by �X ,Y�=− 1

2 tr�XY�. Hence 
X 
 =��X ,X��. The first
and second fundamental forms of S are

�dsI�2 � gijdxidxj = �A,A�dx2 + 2�A,B�dxdt + �B,B�dt2,

�11�
�dsII�2 � hijdxidxj = �Ax + �A,U�,C�dx2 + 2�At + �A,V�,C�dxdt + �Bt + �B,V�,C�dt2,

where i , j=1,2, x1=x, and x2= t. Here gij and hij are coefficients of the first and second funda-
mental forms, respectively. The Gauss and the mean curvatures of S are, respectively, given by
K=det�g−1h� and H= 1

2 tr�g−1h�, where g and h denote the matrices �gij� and �hij�, and g−1 stands
for the inverse of the matrix g.

In order to calculate the fundamental forms in Eq. �11� and the curvatures K and H, one needs
the deformation matrices A and B. Given U and V, finding A and B from Eq. �7� is a difficult task
in general. However, there are some deformations which provide A and B directly. They are given
as follows:

• Spectral parameter � invariance of the equation:

A = �
�U

��
, B = �

�V

��
, F = ��−1��

��
, �12�

where � is an arbitrary function of �.
• Symmetries of the �integrable� differential equations:

A = �U, B = �V, F = �−1�� , �13�

where � represents the classical Lie symmetries and �if integrable� the generalized symme-
tries of the nonlinear partial differential equations �PDEs�.

• Gauge symmetries of the Lax equation:
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A = Mx + �M,U�, B = Mt + �M,V�, F = �−1M� , �14�

where M is any traceless 2�2 matrix.

There are some surfaces which may be obtained from a variational principle. For this purpose,
we consider a functional F which is defined by

F � �
S

E�H,K�dA + p�
V

dV , �15�

where E is some function of the curvatures H and K, p is a constant, and V is the volume enclosed
by the surface S. For open surfaces, we let p=0. The first variation of the functional F gives the
following Euler-Lagrange equation for the Lagrange function E:13–16

��2 + 4H2 − 2K�
�E
�H

+ 2�� · �̄ + 2KH�
�E
�K

− 4HE + 2p = 0, �16�

where �2 and � · �̄ are defined as

�2 =
1
g̃

�

�xi�g̃gij �

�xj�, � · �̄ =
1
g̃

�

�xi�g̃Khij �

�xj� , �17�

and g̃=det�gij�, where gij and hij are the inverse components of the first and second fundamental
forms, x1=x, x2= t. The following are examples of surfaces derived from a variational principle:

�i� Minimal surfaces: E=1, p=0;
�ii� constant mean curvature surfaces: E=1;
�iii� linear Weingarten surfaces: E=aH+b, where a and b are some constants;
�iv� Willmore surfaces: E=H2;17,18 and
�v� surfaces solving the shape equation of lipid membrane: E= �H−c�2, where c is a

constant.13–16,19–21

The surfaces obtained from the solutions of the equation

�2H + aH3 + bHK = 0 �18�

are called Willmore-like surfaces, where �2 is the Laplace-Beltrami operator defined on the surface
and a ,b are arbitrary constants. Unless a=2 and b=−2, these surfaces do not arise from a varia-
tional problem. The case a=−b=2 corresponds to the Willmore surfaces. For compact 2-surfaces,
the constant p may be different than zero, but for noncompact surfaces we assume it to be zero.
For the latter, we require asymptotic conditions, where K goes to a constant and H goes to zero.
This requires that the mKdV equation have solutions decaying rapidly to zero as �x�→ ±�. Soliton
solutions of the mKdV equation satisfy this requirement. In this work, using solitonic solutions of
the mKdV equation, we find the corresponding 2-surfaces and then solve the Euler-Lagrange
equation �Eq. �16�� for polynomial Lagrange functions of H and K, i.e.,

E = aNHN + ¯ + b10KH + b11KH2 + ¯ + e1K + . . . . �19�

For each N, we find the constants al, bnk, and em in terms of others and the parameters of the
surface.

From a solution of the mKdV equation, we first find the fundamental forms in Eq. �11� and the
curvatures K and H of the corresponding 2-surface S. To find the position vector y�x , t� of S, we
use Eq. �10�. To solve this equation, we need the matrix � satisfying the Lax equation �Eq. �5�� for
a given function u�x , t�. Hence, in general, our method for constructing the position vector y of
integrable surfaces consists of the following steps:

�i� Find a solution u�x , t� of the mKdV equation.
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�ii� Find a solution of the Lax equation �Eq. �5�� for a given u�x , t�.
�iii� Find the corresponding deformation matrices A, B, and find F from Eq. �10�.

In this work more specifically, starting with one soliton solution of the mKdV equation and
following the steps above, we solve the Lax equations and find the corresponding SU�2� valued
function ��x , t�. Then using the spectral deformations and combination of the gauge and spectral
deformations, we find the parametric representations �position vectors� of the mKdV surfaces and
plot some of them for some special values of constants. We show that there are some Weingarten
and Willmore-like mKdV surfaces obtained from spectral deformations. Surfaces arising from a
combination of the gauge and spectral deformations do not contain Willmore-like surfaces. We
study also the mKdV surfaces corresponding to the symmetry deformations. We determine all
geometric quantities in terms of the function u�x , t� and the symmetry 	�x , t�. For the simplest
symmetry 	=ux, the surface turns out to be the surface of the sphere with radius ����� / �2���,
where � is the spectral parameter and � and � are constants.

II. mKdV SURFACES FROM SPECTRAL DEFORMATIONS

In this section, we find surfaces arising from the spectral deformation of Lax pair for the
mKdV equation. We start with the following proposition.

Proposition 1: Let u satisfy (which describes a traveling mKdV wave) Eq. (2). The corre-
sponding su�2� valued Lax pair U and V of the mKdV equation are given by Eqs. (3) and (4),
respectively. Then, su�2� valued matrices A and B are

A =
i

2
�� 0

0 − �
� , �20�

B = −
i

2
�− ��� + 2��� �u

�u �� + 2��
� , �21�

where A=�U� , B=�V� , � is a constant, and � is the spectral parameter. The surface S, gener-
ated by U, V, A and B, has the following first and second fundamental forms �j ,k=1,2�:

�dsI�2 = gjkdxjdxk =
�2

4
��dx + �� + 2��dt�2 + u2dt2� , �22�

�dsII�2 = hjkdxjdxk =
�u

2
�dx + �� + ��dt�2 +

�u

4
�u2 − 2��dt2, �23�

with the corresponding Gaussian and mean curvatures

K =
2

�2 �u2 − 2��, H =
1

2�u
�3u2 + 2��2 − ��� , �24�

where x1=x , x2= t.
By using U, V, A, and B and the method given in Sec. I, Proposition 1 provides the first and

second fundamental forms, and the Gaussian and mean curvatures of the surface corresponding to
spectral deformation. The following proposition gives a class of surfaces which are Willmore-like.

Proposition 2: Let ux
2=�u2−u4 /4. Then the surface S, defined in Proposition 1, is a Willmore-

like surface, i.e., the Gaussian and mean curvatures satisfy Eq. (18), where

a =
4

9
, b = 1, � = �2, �25�

and � is an arbitrary constant.
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It is important to search for mKdV surfaces arising from a variational principle.13–16 For this
purpose, we do not need a parametrization of the surface. The fundamental forms and the Gauss
and mean curvatures are enough to look for such mKdV surfaces. The following proposition gives
a class of mKdV surfaces that solves the Euler-Lagrange equation �Eq. �16��.

Proposition 3: Let ux
2=�u2−u4 /4. Then there are mKdV surfaces defined in Proposition 1

satisfying the generalized shape equation [Eq. (16)] when E is a polynomial function of H and K.
Here are several examples:
Example 1: Let deg �E�=N, then

�i� for N=3:

E = a1H3 + a2H2 + a3H + a4 + a5K + a6KH ,

� = �2, a1 = −
p�4

72�4 , a2 = a3 = a4 = 0, a6 =
p�4

32�4 ,

where ��0, and �, p, and a5 are arbitrary constants;
�ii� for N=4:

E = a1H4 + a2H3 + a3H2 + a4H + a5 + a6K + a7KH + a8K2 + a9KH2,

� = �2, a2 = −
p�4

72�4 , a3 = −
8�2

15�2 �27a1 − 8a8�, a4 = 0,

a5 =
�4

5�4 �81a1 + 16a8�, a7 =
p�4

32�4 , a9 = −
1

120
�189a1 + 64a8� ,

where ��0, ��0, and p, a1, a6, and a8 are arbitrary constants;
�iii� for N=5:

E = a1H5 + a2H4 + a3H3 + a4H2 + a5H + a6 + a7K + a8KH + a9K2 + a10KH2 + a11K
2H

+ a12KH3,

� = �2, a3 = −
1

504�2�2 ��6�4212a1 + 256a11� + 7p�6� ,

a4 = −
8�2

15�2 �27a2 − 8a9�, a5 =
6�4

7�4 �135a1 − 88a11� ,

a6 =
�4

5�4 �81a2 + 16a9�, a8 =
1

32�2�2 ��6�− 324a1 + 512a11� + p�6� ,

a10 = −
1

120
�189a2 + 64a9�, a12 = −

1

756
�1053a1 + 512a11� ,

where ��0, ��0, and p, a1, a2, a7, a9, and a11 are arbitrary constants;
�iv� for N=6:

E = a1H6 + a2H5 + a3H4 + a4H3 + a5H2 + a6H + a7 + a8K + a9KH + a10K
2 + a11KH2

+ a12K
2H + a13KH3 + a14K

3 + a15K
2H2 + a16KH4,
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� = �2,

a4 = −
1

504�2�2 ��6�4212a2 + 256a12� + 7p�6� ,

a5 = −
�4

900�4 �− 359 397a1 + 191 488a14 − 203 472a16� −
8�2

15�2 �27a3 − 8a10� ,

a6 =
6�4

7�4 �135a2 − 88a12� ,

a7 =
�6

25�6 �29 889a1 − 9856a14 + 11 664a16� +
�4

5�4 �81a3 + 16a10� ,

a9 =
1

32�2�4 ��6�− 324a2 + 512a12� + p�6� ,

a11 = −
�2

1800�2 �59 778a1 − 13 312a14 + 23 328a16� −
1

120
�189a3 + 64a10� ,

a13 = −
1

756
�1053a2 + 512a12� ,

a15 = −
1

2880
�5103a1 + 2048a14 + 3888a16� ,

where ��0, ��0, and p, a1, a2, a3, a8, a10, a12, a14, and a16 are arbitrary constants.

For general N, from the above examples, the polynomial function E takes the form

• for odd N:

E = �
l=0

M

alH
2l+1 + �

n=1

M � �
k=0

�M−n�

bknH2k+1�Kn + eK ,

where N=2M +1, M =1,2 ,3. . .;
• for even N:

E = �
l=0

M

alH
2l + �

n=1

�M−1� � �
k=0

�M−1−n�

bknH2k+2�Kn + �
m=1

M

emKm,

where N=2M, M =2,3 ,4 , . . .. In both cases al, bkn, and em are constants.

A. The parametrized form of the three parameter family of mKdV surfaces

In the previous section, we found possible mKdV surfaces satisfying certain equations. In this
section, we find the position vector
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y = �y1�x,t�,y2�x,t�,y3�x,t�� �26�

of the mKdV surfaces for a given solution of the mKdV equation and the corresponding Lax pair.
To determine y, we use the following steps:

�i� Find a solution u of the mKdV equation with a given symmetry: Here we consider Eq. �2�,
which is obtained from the mKdV equation by using the traveling wave solutions ut
=�ux, where �=−1/c, c�0 are arbitrary constants.

�ii� Find the matrix � of the Lax equation �Eq. �5�� for given U and V: In our case, the
corresponding su�2� valued U and V of the mKdV equation are given by Eqs. �3� and �4�.
Consider the 2�2 matrix �

� = ��11 �12

�21 �22
� . �27�

By using this and Eq. �3� for U, we can write �x=U� in matrix form as

���11�x ��12�x

��21�x ��22�x
� = � 1

2 i��11 − 1
2 iu�21

1
2 i��12 − 1

2 iu�22

− 1
2 i��21 − 1

2 iu�11 − 1
2 i��22 − 1

2 iu�12
� . �28�

Combining ��11�x= 1
2 i��11− 1

2 iu�21 and ��21�x=− 1
2 i��21− 1

2 iu�11, we get

��21�xx −
ux

u
��21�x + � 1

4u
�u��2 + u2� − 2i�ux���21 = 0. �29�

Similarly, a second order equation can be written for �22 by using the first order equa-
tions of �12 and �22. By solving the second order equation �Eq. �29�� of �21 and the
equation for �22, we determine the explicit x dependence of �21, �22 and also �11, �12.
The components of �t=V� read

��11�t = −
i

2
�u2

2
− � − �� − �2��11 −

i

2
��� + ��u − iux��21, �30�

��21�t =
i

2
�u2

2
− � − �� − �2��21 −

i

2
��� + ��u + iux��11, �31�

and

��12�t = −
i

2
�u2

2
− � − �� − �2��12 −

i

2
��� + ��u − iux��22, �32�

��22�t =
i

2
�u2

2
− � − �� − �2��22 −

i

2
��� + ��u + iux��12. �33�

By solving these equations, we determine the explicit t dependence of �11, �21, �12, and
�22. This way we completely determine the solution � of the Lax equations.

�iii� We use Eq. �10� to find F. For our case, A and B are given by Eqs. �20� and �21�, which are
obtained by the spectral deformation of U and V, respectively. Integrating Eq. �10�, we get
F.

Now by using a given solution of the mKdV equation, we find the position vector of the
mKdV surface. Let u=k1 sech 
, 
=k1�k1

2t+4x� /8, be one soliton solution of the mKdV equation,
where �=k1

2 /4. By substituting u into the second order equation �Eq. �29�� and using the notation
ux=k1u
 /2 , ��21�x=k1��21�
 /2, we find the solution of �x=U� as follows:
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�21 = iA1�t��tanh 
 + 1�i�/2k1�tanh 
 − 1�−i�/2k1 sech 
 + B1�t��k1 tanh 
 + 2i��

��tanh 
 − 1�i�/2k1�tanh 
 + 1�−i�/2k1, �34�

�22 = iA2�t��tanh 
 + 1�i�/2k1�tanh 
 − 1�−i�/2k1 sech 
 + B2�t��k1 tanh 
 + 2i��

��tanh 
 − 1�i�/2k1�tanh 
 + 1�−i�/2k1, �35�

�11 = −
i

k1
A1�t��2� + ik1 tanh 
��tanh 
 + 1�i�/2k1�tanh 
 − 1�−i�/2k1 + ik1B1�t�

��tanh 
 − 1�i�/2k1�tanh 
 + 1�−i�/2k1 sech 
 , �36�

�12 = −
i

k1
A2�t��2� + ik1 tanh 
��tanh 
 + 1�i�/2k1�tanh 
 − 1�−i�/2k1 + ik1B2�t�

��tanh 
 − 1�i�/2k1�tanh 
 + 1�−i�/2k1 sech 
 . �37�

Hence one part ��x=U�� of the Lax equations has been solved. By using these solutions in Eqs.
�30�–�33� obtained from �t=V�, we find

A1�t� = A1ei�k1
2+4�2�t/8 and B1�t� = B1e−i�k1

2+4�2�t/8, �38�

A2�t� = A2ei�k1
2+4�2�t/8 and B2�t� = B2e−i�k1

2+4�2�t/8, �39�

where A1, A2, B1, and B2 are arbitrary constants. We solved the Lax equations for a given U, V and
a solution u of the mKdV equation �Eq. �2��. The components of � are

�11 = −
i

k1
A1ei�k1

2+4�2�t/8�2� + ik1 tanh 
��tanh 
 + 1�i�/2k1�tanh 
 − 1�−i�/2k1

+ ik1B1e−i�k1
2+4�2�t/8�tanh 
 − 1�i�/2k1�tanh 
 + 1�−i�/2k1 sech 
 , �40�

�12 = −
i

k1
A2ei�k1

2+4�2�t/8�2� + ik1 tanh 
��tanh 
 + 1�i�/2k1�tanh 
 − 1�−i�/2k1

+ ik1B2e−i�k1
2+4�2�t/8�tanh 
 − 1�i�/2k1�tanh 
 + 1�−i�/2k1 sech 
 . �41�

�21 = iA1ei�k1
2+4�2�t/8�tanh 
 + 1�i�/2k1�tanh 
 − 1�−i�/2k1 sech 
 + B1e−i�k1

2+4�2�t/8�k1 tanh 
 + 2i��

��tanh 
 − 1�i�/2k1�tanh 
 + 1�−i�/2k1, �42�

�22 = iA2ei�k1
2+4�2�t/8�tanh 
 + 1�i�/2k1�tanh 
 − 1�−i�/2k1 sech 
 + B2e−i�k1

2+4�2�t/8�k1 tanh 
 + 2i��

��tanh 
 − 1�i�/2k1�tanh 
 + 1�−i�/2k1. �43�

Here we find that det���= ��k1
2+4�2� /k1��A1B2−A2B1��0.

Inserting A, B, and � in Eq. �10�, and solving the resultant equation and letting A1=A2, B1

= �A1e��/k1� /k1, and B2=−B1, we obtain a three parameter �� ,k1 ,�� family of surfaces param-
etrized by

y1 = −
1

4k1�e2
 + 1�
R1�E�e2
 + 1� + 32k1� , �44�
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y2 = − 4R1 cos G sech 
 , �45�

y3 = 4R1 sin G sech 
 , �46�

where

R1 = −
�k1

2�k1
2 + 4�2�

, �47�

G = t��2 +
1

4
k1

2�1 + ��� + x� , �48�

E = �t�8� + k1
2� + 4x��k1

2 + 4�2� , �49�


 =
k1

3

8
�t +

4x

k1
2 � . �50�

This surface has the following first and second fundamental forms:

�dsI�2 =
1

4
�2��dx + �1

4
k1

2 + 2��dt�2

+ k1
2 sech2 
dt2� ,

�dsII�2 =
1

2
�k1 sech 
�dx + �1

4
k1

2 + ��dt�2

+
1

8
�k1

3 sech 
�2 sech2 
 − 1�dt2, �51�

and the Gaussian and mean curvatures, respectively, are

K =
k1

2

�2 �2 sech2 
 − 1� , �52�

H =
1

4�k1 sech 

�6k1

2 sech2 
 + �4�2 − k1
2�� . �53�

Proposition 4: The surface which is parametrized by Eqs. (44)–(46) is a cubic Weingarten
surface, i.e.,

4�2H2�2��2K + k1
2�� − 9�4K2 − 12�2�k1

2 + 2�2�K − �k1
2 + 2�2�2 = 0. �54�

When k1=2� in Eqs. (52) and (53), it reduces to a quadratic Weingarten surface, i.e.,

8�2H2 − 9�2K − 36�2 = 0. �55�

B. The analyses of the three parameter family of mKdV surfaces

In general, y2 and y3 are asymptotically decaying functions, and y1 approaches ±� as 
 tends
to ±�. For some small intervals of x and t, we plot some of the three parameter family of surfaces
for some special values of the parameters k1, �, and � in Figs. 1–4.

Example 2: By taking k1=2 ,�=1, and �=−8 in Eqs. �44�–�46�, we get the surface �Fig. 1�.
The components of the position vector of the surface are
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y1 = − E1 − 8/�e2
 + 1�, y2 = − 4 cos G sech 
, y3 = − 4 sin G sech 
 , �56�

where E1=4�x+3t� ,G=x+3t, and 
=x+ t. As 
 tends to ±�, y1 approaches ±�, and y2 and y3

approach zero. This can also be seen in Fig. 1. For small values of x and t, the surface has a
twisted shape.

Example 3: By taking k1=2, �=0, and �=−4 in Eqs. �44�–�46�, we get the surface �Fig. 2�.
The components of the position vector of the surface are

y1 = − E1 − 8/�e2
 + 1�, y2 = − 4 cos G sech 
, y3 = − 4 sin G sech 
 , �57�

where E1=2�x+3t� , G= t, and 
=x+ t. As 
 tends to ±�, y1 approaches ±�, and y2 and y3 tend to
zero. This can also be seen in Fig. 2. Asymptotically, this surface and the surface given in Example
2 are the same. However, for small values of x and t, they are different.

FIG. 1. �x , t�� �−3,3�� �−3,3�.

FIG. 2. �x , t�� �−6,6�� �−6,6�.
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Example 4: By taking k1=3, �=1/10, and �=−452/75 in Eqs. �44�–�46�, we get the surface
�Fig. 3�. The components of the position vector of the surface are

y1 = − E1 − 8/�e2
 + 1�, y2 = − 4 cos G sech 
, y3 = − 4 sin G sech 
 , �58�

where E1=−�5537t+2260x� /750, G=17�497t+20x� /200, and 
= �12x+27t� /8. Asymptotically,
this surface is similar to the previous two surfaces. For small values of x and t, the surface looks
like a shell.

Example 5: By taking k1=1, �=−1/10, and �=−52/25 in Eqs. �44�–�46�, we get the surface
�Fig. 4�. The components of the position vector of the surface are

y1 = − E1 − 8/�e2
 + 1�, y2 = − 4 cos G sech 
, y3 = − 4 sin G sech 
 , �59�

where E1=−13�20x+ t� /250, G= �47t−20x� /200, and 
= �4x+ t� /8. Asymptotically, this surface is
similar to the previous three surfaces.

III. mKdV SURFACES FROM SPECTRAL-GAUGE DEFORMATIONS

In this section, we find surfaces arising from a combination of the spectral and gauge defor-
mations of the Lax pair for the mKdV equation.

Proposition 5: Let u satisfy (which describes a traveling mKdV wave) Eq. (2). The corre-
sponding su(2) valued Lax pair U and V of the mKdV equation are given by Eqs. (3) and (4),
respectively. The su(2) valued matrices A and B are

A = i�� 1
2� − �u� − ��

− �� − � 1
2� − �u� � , �60�

FIG. 3. �x , t�� �−6,6�� �−6,6�.
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B = i� 1
2��� + 2�� − ��� + ��u − 1

2�u + �� 1
2u2 − � − �� − �2�

− 1
2�u + �� 1

2u2 − � − �� − �2� − 1
2��� + 2�� + ��� + ��u

� , �61�

where A=�U�+���2 ,U�, B=�V�+���2 ,V�, � is the spectral parameter, � and � are constants,
and �2 is the Pauli sigma matrix. The surface S , generated by U, V, A, and B, has the following
first and second fundamental forms �j ,k=1,2�:

�dsI�2 = gjkdxjdxk, �62�

�dsII�2 = hjkdxjdxk, �63�

where

g11 =
1

4
�2 + ����u2 + �2� − �u� , �64�

g12 =
1

4
�� + 2���2 +

1

4
����2�� + 2��u2 + 4��3 + �� + �2��� − 4��� + ��u� , �65�

g22 =
1

4
�u2 + �2� + ��2��2 + ����1

4
u4 + ��� − 1 + ��u2 + ��1 + ��� + �2�2�

−
1

2
�u3 − ���2 + �2� − 1�� + �2�u� , �66�

h11 =
1

2
�u − ��u2 + �2� , �67�

FIG. 4. �x , t�� �−20,20�� �−20,20�.
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h12 =
1

2
��� + ��u − �����2 + �� + �� +

1

2
�� + 2��u2� , �68�

h22 =
1

4
��u3 + 2��2 + �2� − 1�� + �2�u� − ��1

4
u4 + ��� − 1 + ��u2 + ��1 + ��� + �2�2� ,

�69�

and the corresponding Gaussian and mean curvatures are

K =
2u�u2 − 2��

��2�u�u2 − 2�� − 3�u2 − 2���2 − ��� + �2u
, �70�

H =
��3u2 + 2��2 − ��� − 4u��u2 − 2��

2��2�u�u2 − 2�� − 3�u2 − 2���2 − ��� + 2�2u
, �71�

where x1=x and x2= t.

A. The parametrized form of the four parameter family of mKdV surfaces

We apply the same technique that we used in Sec. II to find the position vector of the
corresponding surface. Let u=k1 sech 
, 
=k1�k1

2t+4x� /8, be the one soliton solution of the mKdV
equation, where �=k1

2 /4. The Lax pair U and V are given by Eqs. �3� and �4�, respectively, which
is the same as in the spectral deformation case. So we can use the solution of the Lax equation
�Eq. �5�� that we found in the spectral deformation case. By solving Eq. �10�, we obtain the
position vector, where the components of � are given by Eqs. �40�–�43� and A, B are given by
Eqs. �60� and �61�, respectively. Here we choose A1=A2 ,B1= �A1e��/k1� /k1, and B2=−B1 to write
F in the form F= i��1y1+�2y2+�3y3�. Hence we obtain a four parameter �� ,k1 ,� ,�� family of
surfaces parametrized by

y1 = R2
e2
 − 1

�e2
 + 1�
sech 
 + R3Ẽ + R4

1

e2
 + 1
,

y2 = �1

2
R4 sech 
 + R5

�e4
 + 1�
�e2
 + 1�2 − R6 sech2 
�cos G + R7

�e2
 − 1�
�e2
 + 1�

sin G , �72�

y3 = �−
1

2
R4 sech 
 − R5

�e4
 + 1�
�e2
 + 1�2 + R6 sech2 
�sin G + R7

�e2
 − 1�
�e2
 + 1�

cos G ,

where

R2 =
2k1

2�

k1
2 + 4�2 , R3 =

�

8
, �73�

R4 =
4�k1

2

k1
2 + 4�2 , R5 =

��k1
2 − 4�2�

k1
2 + 4�2 , �74�

R6 =
��4�2 + 3k1

2�
2�k1

2 + 4�2�
, R7 =

4�k1
2�

k1
2 + 4�2 , �75�
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G = t��2 +
1

4
k1

2�1 + ��� + x� , �76�

Ẽ = �t�8� + k1
2� + 4x� , �77�


 =
k1

3

8
�t +

4x

k1
2 � . �78�

Thus the position vector y= �y1�x , t� ,y2�x , t� ,y3�x , t�� of the surface is given by Eq. �72�. This
surface has the following first and second fundamental forms �j ,k=1,2�:

�dsI�2 = gjkdxjdxk, �79�

�dsII�2 = hjkdxjdxk, �80�

where

g11 =
1

4
�2 + ����k1

2 sech2 
 + �2� − �k1 sech 
� ,

g12 =
1

4
�� + 2���2 +

1

4
����2k1

2�� + 2��sech2 
 + �4�3 + 4�� + 4�2��� − 4��� + ��k1 sech 
� ,

g22 =
1

4
�k1

2 sech2 
 + �2� + ��2��2 + ����1

4
k1

4 sech4 
 + �k1
2�� − 1 + ��sech2 
 + ��1 + ��� + �2�2�

−
1

2
�k1

3 sech3 
 − �k1��2 + �2� − 1�� + �2�sech 
� ,

h11 =
1

2
�k1 sech 
 − ��k1

2 sech2 
 + �2� ,

h12 =
1

2
��� + ��k1 sech 
 − �����2 + �� + �� +

1

2
k1

2�� + 2��sech2 
� ,

h22 =
1

4
��k1

3 sech3 
 + 2k1
2��2 + �2� − 1�� + �2�sech2 
�

− ��1

4
k1

4 sech4 
 + �k1
2�� − 1 + ��sech2 
 + ��1 + ��� + �2�2� ,

and the corresponding Gaussian and mean curvatures are

K =
2k1 sech 
�k1

2 sech2 
 − 2��
��2�k1 sech 
�k1

2 sech2 
 − 2�� − 3�k1
2 sech2 
 − 2���2 − ��� + �2k1 sech 


,

H =
��3k1

2 sech2 
 + 2��2 − ��� − 4�k1 sech 
�k1
2 sech2 
 − 2��

2��2�k1 sech 
�k1
2 sech2 
 − 2�� − 3�k1

2 sech2 
 − 2���2 − ��� + 2�2k1 sech 

,

where x1=x , x2= t, and �= 1
4k1

2.
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B. The analyses of the four parameter family of surfaces

Asymptotically, y1 approaches ±�, y2 approaches R5 cos G±R7 sin G, and y3 approaches
−R5 sin G±R7 cos G as 
 tends to ±�. For some small intervals of x and t, we plot some of the
four parameter family of surfaces for some special values of the parameters k1, �, �, and � in Figs.
5–7.

Example 6: By taking k1=2, �=0, �=−4, and �=1 in Eq. �72�, we get the surface �Fig. 5�.
The components of the position vector are

y1 = 2 sech 
�e2
 − 1�/�e2
 + 1� − E2 − 8/�e2
 + 1� , �81�

y2 = �− 4 sech 
 + �e4
 + 1�/�e2
 + 1�2 − �3/2�sech2 
�cos G , �82�

y3 = �4 sech 
 − �e4
 + 1�/�e2
 + 1�2 + �3/2�sech2 
�sin G , �83�

where E2=−2�x+ t� ,G= t and 
=x+ t. As 
 tends to ±�, y1 approaches ±�, y2 approaches cos t,
and y3 approaches −sin t.

Example 7: By taking k1=2 , �=1, �=1/10, and �=1 in Eq. �72�, we get the surface �Fig. 6�.
The components of the position vector are

y1 = sech 
�e2
 − 1�/�e2
 + 1� + E2 + 1/�10�e2
 + 1�� , �84�

y2 = ��1/20�sech 
 − sech2 
�cos G + sin G�e2
 − 1�/�e2
 + 1� , �85�

y3 = �− �1/20�sech 
 + sech2 
�sin G + cos G�e2
 − 1�/�e2
 + 1� , �86�

where E2= �x+3t� /20, G= �x+3t�, and 
=x+ t. As 
 tends to ±�, y1 tends to ±�, y2 approaches
sin�x+3t�, and y3 approaches cos�x+3t�.

Example 8: By taking k1=1, �=−1/10, �=−52/25, and �=−1 in Eq. �72�, we get the surface
�Fig. 7�. The components of the position vector are

y1 = − �25/13�sech 
�e2
 − 1�/�e2
 + 1� − E2 − 8/�e2
 + 1� , �87�

FIG. 5. �x , t�� �−4,4�� �−4,4�.
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y2 = �− 4 sech 
 − �12/13��e4
 + 1�/�e2
 + 1�2 + �19/13�sech2 
�cos G

+ �5/13�sin G�e2
 − 1�/�e2
 + 1� , �88�

y3 = �4 sech 
 + �12/13��e4
 + 1�/�e2
 + 1�2 − �19/13�sech2 
�sin G + �5/13�cos G�e2
 − 1�/�e2
 + 1� ,

�89�

where E2=13�20x+ t� /250, G= �47t−20x� /200, and 
= �4x+ t� /8. As 
 tends to ±�, y1 tends to
±�, y2 approaches cos t, and y3 approaches −sin t.

IV. CONCLUSION

In this work, we considered mKdV 2-surfaces by using two deformations, spectral deforma-
tion and a combination of gauge and spectral deformations of mKdV equation and its Lax pair. We
found the first and second fundamental forms, and the Gaussian and mean curvatures of the

FIG. 6. �x , t�� �−6,6�� �−6,6�.

FIG. 7. �x , t�� �−20,20�� �−20,20�.
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corresponding surfaces. By solving the Lax equation for a given solution of the mKdV equation
and the corresponding Lax pair, we also found position vectors of these surfaces.

The surfaces arising from the spectral deformation are Weingarten and Willmore-like surfaces.
We also obtained some mKdV surfaces from the variational principle for the Lagrange function,
that is, a polynomial of the Gaussian and mean curvatures of the surfaces corresponding to the
spectral deformations of the Lax pair of the mKdV equation. For some special values of param-
eters, we plotted these three parameter family of surfaces in Examples 2—5.

In the case of the gauge-spectral parameter deformations, we obtained a four parameter family
of mKdV surfaces. For some special values of the parameters in the position vectors �Eq. �72�� of
these surfaces, we plotted them in Examples 6—8.
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