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Abstract

Control charts with exponentially weighted moving average (EWMA) statistics (mean and variance) are used to jointly
monitor the mean and variance of a process. An EWMA cost minimization model is presented to design the joint control
scheme based on pure economic or both economic and statistical performance criteria. The pure economic model is
extended to the economic-statistical design by adding constraints associated with in-control and out-of-control average
run lengths. The quality related production costs are calculated using Taguchi’s quadratic loss function. The optimal val-
ues of smoothing constants, sampling interval, sample size, and control chart limits are determined by using a numerical
search method. The average run length of the control scheme is computed by using the Markov chain approach. Compu-
tational study indicates that optimal sample sizes decrease as the magnitudes of shifts in mean and/or variance increase,
and higher values of quality loss coefficient lead to shorter sampling intervals. The sensitivity analysis results regarding the
effects of various inputs on the chart parameters provide useful guidelines for designing an EWMA-based process control
scheme when there exists an assignable cause generating concurrent changes in process mean and variance.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Control charts are used for monitoring the level
of variation in a production process over time with
the objective of reacting quickly to harmful devia-
tions from the normal operating conditions (as well
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as indicating the effects of process changes and
improvements).1 To implement control charts in
practice, control limits, sample size, and sampling
frequency must be specified. Once these design
parameters are determined, the processes can be
controlled against assignable (special) causes lead-
ing to undesirable process output. The sample
.

1 Control charts are also used to monitor the impact of process
improvements. Its design parameters can then be readjusted to
reflect their effects, and then the process remonitored for out-of-
control conditions associated with special causes.
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statistics computed based on random samples taken
from the process are compared against control lim-
its, and a decision is made regarding whether the
process is currently in-control or out-of-control.
False alarms occur when an in-control process is
erroneously classified as out-of-control (type 1
error) and an assignable cause is searched. There
also exists the risk of concluding that the process
is in-control based on the sample test statistic
although the process is actually out-of-control (type
2 error).

Various types of quality control charts have been
proposed to monitor the process mean and/or vari-
ability. Although the Shewhart X-bar chart is the
most common chart applied in practice to monitor
the process mean, in the last 20 years exponentially
weighted moving average (EWMA) charts have
been offered as a suitable alternative to the X-bar
chart for detecting small to moderate shifts in the
process mean. Similarly, various alternative control
charts exist for monitoring process variation (Aco-
sta-Mejia et al., 1999). Generally control charts
for mean and dispersion are used simultaneously
since, due to a special cause, one of these two
parameters may deviate from its in-control value
while the other parameter remains unchanged.
Sometimes a single assignable cause may result in
changes in both process mean and variation. For
example, in integrated circuit manufacturing, the
solder paste is printed onto the printed circuit board
(PCB) before the mounting of circuit components.
The thickness of the solder paste influences the sol-
derability of circuit components on the board.
When the process goes out of control, the thickness
of the paste is off-target and at the same time the
process variance is large since the solder paste thick-
ness is not uniformly distributed over the board
(Gan et al., 2004). Thus, process mean and variance
are simultaneously affected by the same special
cause in this manufacturing setting.

The statistical performance of EWMA based
control charts for monitoring the process mean
and variation jointly have been studied in several
papers (e.g. Morais and Pacheco, 2000; Reynolds
and Stoumbos, 2001; Knoth and Schmid, 2002;
Reynolds and Stoumbos, 2004). The statistical

design of control charts takes into account the in-
control and out-of-control average run lengths
resulting from the sample size and the control limits
chosen by the user. Average run length (ARL) is a
measure of the expected number of consecutive
samples taken until the sample statistic falls outside
the control limits. Since ARL is a function of the
prevailing process mean and standard deviation,
its value depends on whether the process is in-con-
trol or out-of-control. When multiple charts are
used jointly for monitoring the process, the investi-
gation for an assignable cause is initiated when at
least one of the charts triggers an out-of-control sig-
nal. Hence, not the ARLs of the individual charts
but the joint ARL of the overall control scheme is
the relevant performance measure when multiple
charts are used simultaneously. Since the statistical
design of control charts does not explicitly take into
account the dependence of the sampling, inspection,
and defective product costs on the chart parameters
selected, some researchers have suggested the for-
mulation of economic models as an alternative
method to a purely statistical approach for design-
ing the control charts.

The economic design approach to control charts
advocates the determination of the control chart
design parameters based on a cost-minimization
model that takes into account all costs affected by
the choice of these parameters (Lorenzen and
Vance, 1986). The economic design of control charts
for monitoring the process mean has been investi-
gated extensively in the literature (see, e.g. Mont-
gomery, 1980; Ho and Case, 1994a). In the
literature on control charts employing an EWMA
type statistic, several authors have explored the eco-
nomic design of EWMA control charts to monitor
the process mean (Ho and Case, 1994b; Montgom-
ery et al., 1995). Park et al. (2004) extended the tra-
ditional economic design of an EWMA chart to the
case where the sampling interval and sample size
may vary depending on the current chart statistic.
Tolley and English (2001) studied the economic
design of a control scheme combining both EWMA
and X-bar charts.

Another research stream in the literature has
considered the joint economic design of mean and
variation control charts. Although the joint eco-
nomic design of X-bar and R (range) or X-bar and
S (standard deviation) control charts has been stud-
ied by several researchers (e.g., Saniga, 1979;
Rahim, 1989; Rahim and Costa, 2000; McWilliams
et al., 2001), joint economic design of EWMA based
control charts for monitoring both process mean
and dispersion does not appear to have been previ-
ously investigated. We propose such a model that
can be used to design a joint EWMA-based mean
(l) and variance (r2) control scheme. Our model is
built upon the general cost function of Lorenzen
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and Vance (1986) which is applicable to different
types of control charts. In addition to pure eco-
nomic design of control charts, we also consider
statistically constrained economic designs. Since the
in-control ARL of economically designed charts
often can be significantly less than what users prefer,
some researchers have proposed to reformulate the
pure economic model by incorporating additional
constraints on the statistical performance of the
model (e.g., McWilliams et al., 2001). In our statis-
tically constrained economic design, the solution is
required to satisfy two constraints specified by the
user: (a) the in-control ARL should be greater than
a lower bound, and (b) the out-of-control ARL
should be less than an upper bound.

The rest of the paper is organized as follows.
After describing the EWMA control charts for
mean and variance in Section 2, we present the cost
model used in our research in Section 3. Subse-
quently, the main aspects of the numerical search
method used in finding the optimal solution to the
cost model are discussed in Section 4. In Section
5, some numerical examples of EWMA control
charts that are designed based on either an eco-
nomic or economic-statistical criterion are pre-
sented. Finally, we offer a summary of the results
and concluding remarks in Section 6.
2. EWMA control charts

We assume that the observations for the process
variable X are independent and normally distrib-
uted. When the process is in control, the mean
and variance of X is l0 and r2

0, respectively. At
any sampling instant t, the sample mean and vari-
ance are computed from

X t ¼
Xn

i¼1

X it=n and; ð1Þ

S2
t ¼

Xn

i¼1

ðX it � X tÞ2=ðn� 1Þ; ð2Þ

where X t and S2
t are the sample mean and variance

at time t, and n is the fixed sample size, n P 2. Using
X t and S2

t , the chart statistics are calculated as

Zt ¼ kmX t þ ð1� kmÞZt�1; ð3Þ
Y t ¼ maxflnðr2

0Þ; kv lnðS2
t Þ þ ð1� kvÞY t�1g; ð4Þ

where km and kv are the smoothing constants associ-
ated with the EWMA chart for mean (EWMA-m)
and variance (EWMA-v), respectively, 0 < km, kv 6
1, Z0 = l0, Y 0 ¼ lnðr2
0Þ. The statistic Zt is used in

the EWMA-m chart, and Yt is associated with the
EWMA-v chart.

When EWMA schemes are used for process mon-
itoring, not only the current observations of X but
also the observations from previous samples are
taken into account. In the computation of the test
statistic, more recent samples are given a larger
weight than the ones taken earlier. The user can
increase the weight given to the last sample by
increasing the value of the smoothing constant.

Lucas and Saccucci (1990) describe the properties
of the EWMA-m chart in detail. We use the lower
and upper control limits (LCLm and UCLm) com-
puted based on the asymptotic in-control standard
deviation of the EWMA chart statistic Z such that

LCLm ¼ l0 � Lmrz; ð5Þ
UCLm ¼ l0 þ Lmrz; ð6Þ

where rz = r0(km/(2 � km)n)0.5 , and Lm is the con-
trol limit parameter. Thus, whenever Zt is outside
the interval (LCLm, UCLm), the process is consid-
ered to be out of control and a search for assignable
cause is conducted. Due to the natural variation of
the process, out-of-control signals may also occur
while the process is in control. However, when there
is a shift in process mean and/or variance, the chart
will generate an out-of-control signal much more
quickly.

To monitor the process dispersion, a number of
authors have previously studied the control charts
based on EWMA of lnS2 (Crowder and Hamilton,
1992; Gan, 1995; Acosta-Mejia et al., 1999). The
particular dispersion chart we adopt in this study
is referred to as EWMA-v which has the lower
and upper control limits as follows:

LCLv ¼ lnðr2
0Þ; ð7Þ

UCLv ¼ lnðr2
0Þ þ Lvry ; ð8Þ

where r2
y ¼ kvw

0½ðn� 1Þ=2�=ð2� kvÞ, w 0(Æ) is the
trigamma function, and Lv is the control limit
parameter. The trigamma function is the second
logarithmic derivative of the gamma function C(Æ),
i.e. w 0(u) = d2ln [C(u)]/du2, u > 0. We consider an
upper one-sided EWMA-v chart which is well-sui-
ted for detecting the increases in the process stan-
dard deviation. An increase in the process
standard deviation would either reflect an undesir-
able special cause or the impact of an undesirable
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process change (either purposeful or unpurposeful);
a decrease in process variation would indicate the
effect of a process improvement. EWMA-v chart
yields an out-of-control signal when Yt exceeds
UCLv. The statistical properties of the combined
EWMA-m/EWMA-v control scheme have been ex-
plored in Morais and Pacheco (2000).

To illustrate the smoothing effect of exponential
weighting, we plot the values of X t and Zt for 40
samples generated via simulation in Fig. 1. The
observations constituting the first 20 samples are
generated from the in-control process distribution
with l0 = 0, r0 = 1. The samples 21 through 40
are based on the out-of-control process distribution
with l1 = 0.5, r1 = 1.5; we also set n = 4, km = 0.2
in this simulation experiment. The values of lnðS2

t Þ
and Yt (with kv = 0.2) obtained from the same sim-
ulation run are displayed in Fig. 2. The lower and
upper control limits shown in these charts are based
on Lm = Lv = 2.5. Figs. 1 and 2 show that the time
series of exponentially weighted sample statistics
(Zt and Yt) exhibit less variability than the original
series ðX t and lnðS2

t ÞÞ from which they are derived.
EWMA-m chart
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Fig. 1. EWMA control chart for mean – Plot of X t and test
statistic Zt when step changes in both mean and variance occur at
sample 21.
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Fig. 2. EWMA control chart for variance – Plot of lnðS2
t Þ and

test statistic Yt when step changes in both mean and variance
occur at sample 21.
3. Cost model

3.1. Total cost components

We denote the time between two consecutive sam-
ples (sampling interval) by h. It is assumed that the
in-control time for the process is distributed expo-
nentially with mean 1/h. The assumption of expo-
nential distribution for failure time is not as
restrictive as it seems since previous research has
found that results in this kind of economic design
models are relatively insensitive to the type of prob-
ability distribution used for failure time (McWil-
liams, 1989). We allow the possibility that both the
process mean and variance may change when an
assignable cause occurs. When the process is out of
control, the mean of X becomes l1 = l0 + dr0 and
the standard deviation of X shifts to r1. Using the
Lorenzen and Vance (1986) framework, the expected
cost per unit time (hour), C, associated with the con-
trol scheme consisting of EWMA-m and EWMA-v
charts is (cf. Eq. (10) in Lorenzen and Vance):

C ¼ fC0=hþ C1ð�sþ nEþ hðARL1Þ þ c1T 1 þ c2T 2Þ
þ sF =ARL0 þW g=f1=hþ ð1� c1ÞsT 0=ARL0

� sþ nEþ hðARL1Þ þ T 1 þ T 2g
þ f½ðaþ bnÞ=h�½1=h� sþ nEþ hðARL1Þ
þ c1T 1 þ c2T 2�g=f1=hþ ð1� c1ÞsT 0=ARL0 � s

þ nEþ hðARL1Þ þ T 1 þ T 2g: ð9Þ
The parameters in (9) are defined as follows.

C0 cost per hour due to nonconformities pro-
duced while the process is in control

C1 cost per hour due to nonconformities pro-
duced while the process is out of control

s expected time between the occurrence of
the assignable cause and the time of the
last sample taken before the assignable
cause = [1 � (1 + hh)exp(�hh)]/[h(1 � exp
(�hh)]

E time to sample and chart one item
ARL0 average run length while in control
ARL1 average run length while out of control
T1 expected time to discover the assignable

cause
T2 expected time to repair the process
c1 =1 if production continues during searches,

0 if production ceases during searches
c2 =1 if production continues during repair, 0

if production ceases during repair
s expected number of samples taken while in

control = exp(�hh)/[1 � exp(�hh)]
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F cost per false alarm
W cost to locate and repair the assignable

cause
T0 expected search time when the signal is a

false alarm
a fixed cost per sample
b cost per unit sampled

The traditional approach to the economic
design of control charts involves calculation of
the expected cost per hour by dividing the expected
cost per cycle by the expected cycle length.
Each cycle is made up of two parts: (a) an in-
control interval, and (b) an out-of control interval
following that. The cost function in (9) is derived
by dividing the sum of costs incurred during
the in-control and out-of-control segments by the
expected cycle length. The expected lengths of the
in-control and out-of-control intervals, E(Iin) and
E(Iout), are

EðI inÞ ¼ 1=hþ ð1� c1ÞsT 0=ARL0; ð10Þ
EðIoutÞ ¼ �sþ nE þ hðARL1Þ þ T 1 þ T 2: ð11Þ

The in-control interval in (10) is composed of the
expected time until failure and the expected time
spent for investigating false alarms. The expected
length of the in-control interval depends on whether
the production continues during searches or not.
The right hand side of (10) follows from the
memoryless property of the exponential distribu-
tion. The out-of-control interval in (11) includes
the time from the occurrence of the assignable cause
to the next sampling instant (h � s), the time until
an out-of-control signal (h(ARL1 � 1)), the time to
collect and chart a sample (nE), the time to discover
the assignable cause (T1), and the time to repair the
process (T2). After an assignable cause is found and
corrective action is taken, the process mean and var-
iance are restored to their in-control values l0 and
r2

0, and the cycle restarts.
The decision variables are n, h, Lm, Lv, km, and kv.

As defined previously, average run length is the
expected number of samples taken before an out
of control signal is observed. To minimize false
alarms and react swiftly to out-of-control condi-
tions, large values for ARL0 and small values for
ARL1 are desirable. ARL0 and ARL1 depend on
all decision variables except h. Since the total cost
function is not analytically very tractable, numerical
optimization methods must be used to determine
the optimal solution.
3.2. Quadratic loss function

Some researchers have suggested the computation
of production costs based on a quadratic loss func-
tion for economically designing the X-bar control
charts (Moskowitz et al., 1994; Elsayed and Chen,
1994; Linderman et al., 2005). In accordance with
Taguchi’s quality loss concept, in this approach the
quality costs increase quadratically as the deviation
of the quality characteristic from its target value
increases. Let T be the target value for the quality
characteristic monitored, and K be the Taguchi loss
coefficient. Although it is desirable that the ideal
value (design specification) of the quality character-
istic T is equal to the in-control mean l0, under some
real-world operating conditions, it may be difficult
or costly to adjust the process mean to its target
value. If l0 is different from T, a fixed bias impacts
all manufactured items. Denoting the probability
density function of the quality characteristic X by
f(x), the expected quality cost per unit of product
when the process is in control, J0, is

J 0 ¼
Z 1

�1
Kðx� T Þ2f ðxÞdx

¼
Z 1

�1
Kðx� l0 þ l0 � T Þ2f ðxÞdx

¼
Z 1

�1
Kðx� l0Þ

2f ðxÞdxþ
Z 1

�1
Kðl0 � T Þ2f ðxÞdx

¼ K½r2
0 þ ðl0 � T Þ2�: ð12Þ

Let q be the ratio of the out-of-control standard
deviation to in-control standard deviation, i.e.
q = r1/r0. When the process is out of control, the
expected quality cost per unit, J1, is (cf. Elsayed
and Chen, 1994)

J 1¼
Z 1

�1
Kðx�l1þl1�T Þ2f ðxÞdx

¼
Z 1

�1
Kðx�l1Þ

2f ðxÞdxþ
Z 1

�1
Kðl0þdr0�T Þ2f ðxÞdx

¼K½r2
1þðl0þdr0�T Þ2�

¼K½q2r2
0þðl0�T Þ2þd2r2

0�2dr0ðl0�T Þ�:
ð13Þ

Taguchi loss coefficient K can be estimated by using

K ¼ A=ðx� T Þ2; ð14Þ

where A is the cost to rework or scrap one unit
of product when the value of quality characteristic
is x, and the deviation from target jx � Tj is
acceptable (Elsayed and Chen, 1994). Let p be the
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production rate (units produced per hour). To
incorporate the production costs based on quadratic
loss into the economic design, we substitute
C0 = J0p, and C1 = J1p into (9). After this step we
minimize the total hourly cost C to find the best val-
ues for the chart parameters. Note that the mean
and variance of the quality characteristic directly
influence the total cost in the model with quadratic
loss.

4. Computational optimization procedure

We use the Markov chain method to compute the
average run length of the combined control scheme
when the process is in control and out of control.
This approach is commonly used in calculating the
ARL of control charts (e.g., Saccucci and Lucas,
1990), and is described in more detail in Appendix
A. In order to find the optimal solution, we first
fix the sample size n and optimize (9) with respect
to the other five decision variables. Then we repeat
the previous step for all values of n between two and
twenty, which is a reasonable upper limit for the
sample size from a practical perspective. Finally
the best n value and corresponding values of the
remaining variables are identified by inspecting the
minimum total costs associated with each n value.
Thus, the sample size is actually constrained to be
less than 20 in our economic design. A similar
approach is used in Torng et al. (1995).

We use the Nelder–Mead downhill simplex
method in order to find the most economic design
for a specific sample size and a given set of input
parameters. This widely known numerical method,
starting with a set of points defining an initial sim-
plex, searches for an optimal solution to a multivar-
iable minimization problem by using only the
function evaluations, and does not require the com-
putation of derivatives (Press et al., 1992). If the
number of variables is m, the simplex consists of
m + 1 vertices. At each iteration, the vertex with
the highest cost is removed, and replaced by a new
vertex. The search terminates when either the
improvement in the objective function value in the
last iteration becomes less than a prespecified small
threshold value, or the limit on the number of iter-
ations is reached. Based on our numerical experi-
ment, the limit on the number of iterations in the
search procedure is set as 300. Although the Nel-
der–Mead method does not guarantee convergence
to the global optimal solution, as discussed in Sec-
tion 5, in our experiment we have observed that
the cost values resulting from implementations with
different initial points are close to each other.

The statistically constrained economic design is
found by employing essentially the same algorithm
with a slight modification such that the search is
forced back into the feasible region when the statis-
tical constraints are violated by the current set of
design parameters. This is accomplished by impos-
ing a large penalty cost to the objective function
when any ARL constraint is not satisfied. In the sta-
tistically constrained optimization case, we mini-
mize (9) subject to two additional constraints:
ARL0 P LB, and ARL1 6 UB, where LB and UB
are the desired lower and upper bounds on the
ARL of the scheme. Note that when statistical con-
straints exist, the numerical search should be started
with a feasible set of vertices.

We also define the search space by placing the
following upper limits on the variables: h 6 20, km,
kv 6 0.99, Lm, Lv 6 4. From a practical viewpoint,
we also set the minimum allowable values for km

and kv to 0.05.

5. Numerical examples

In the following examples we assume production
continues during the search for an assignable cause,
but it ceases during repair, i.e. c1 = 1, c2 = 0. We use
the following values of parameters: h 2 {0.01, 0.05},
F = 500, W = 250, a = 5, b = 1, E = 0.5, T0 = 0,
T1 = 20, T2 = 0, p = 200 per hour, r2

0 ¼ 1, and
l0 = T = 0. Let q be the ratio of the out-of-control
standard deviation to in-control standard deviation,
i.e. q = r1/r0. The optimal values of design param-
eters for given different shift values d and q are listed
in Table 1 for the joint EWMA scheme with
K = 0.1. Note that in the economic design model
using quadratic loss, J1 increases with d and q, as
defined in (13), implying that cost of a defective unit
is higher with greater shifts in mean and/or
variance.

Table 2 shows the best statistically constrained
designs for the EWMA scheme when LB = 250
and UB = 20. Economic-statistical designs for
LB = 100 and UB = 10 are displayed in Table 3.
Comparison of Table 1 with Tables 2 and 3 indi-
cates that for small shifts in mean and/or variance
(that is, d, q 6 1.5) economic-statistical designs have
shorter sampling intervals (h) compared to the
economic designs. It is also observed that eco-
nomic-statistical designs are more costly than pure
economic designs, and the cost difference between



Table 1
Optimal economic designs (K = 0.1)

h d q C h n km kv Lm Lv

0.01 0.5 1 24.51 20.00 7 0.29 0.11 2.45 2.67
1.5 32.26 10.65 11 0.80 0.77 2.80 1.83
2 39.10 6.14 6 0.99 0.86 3.13 1.69

1 1 28.54 15.63 10 0.83 0.15 2.53 3.12
1.5 34.98 8.10 7 0.76 0.99 2.67 1.88
2 41.92 5.19 5 0.81 0.84 3.09 1.69

1.5 1 33.64 9.40 6 0.88 0.05 2.73 2.80
1.5 39.43 5.53 5 0.85 0.81 2.75 2.04
2 46.45 4.14 4 0.84 0.86 3.02 1.63

2 1 40.21 5.27 4 0.85 0.11 2.96 2.27
1.5 45.70 4.41 4 0.82 0.41 3.00 3.98
2 52.68 3.43 3 0.83 0.89 2.94 1.53

0.05 0.5 1 25.36 20.00 2 0.68 0.11 3.90 1.38
1.5 45.60 15.57 9 0.85 0.98 2.28 1.37
2 65.77 4.87 5 0.94 0.74 2.90 1.52

1 1 38.38 19.98 8 0.73 0.09 2.20 3.88
1.5 54.33 7.64 6 0.80 0.94 2.34 1.65
2 73.92 3.89 4 0.83 0.92 2.74 1.44

1.5 1 53.15 7.41 5 0.82 0.86 2.44 3.19
1.5 67.90 4.26 4 0.87 0.93 2.56 1.80
2 87.20 3.03 3 0.93 0.88 2.77 1.41

2 1 72.10 4.51 3 0.86 0.96 2.65 2.24
1.5 86.35 3.37 3 0.78 0.66 2.63 1.78
2 105.52 2.63 3 0.77 0.99 2.86 1.45

Table 2
Optimal statistically constrained economic designs (ARL0 P 250, ARL1 6 20, K = 0.1)

h d q C h n km kv Lm Lv

0.01 0.5 1 24.89 12.20 6 0.35 0.35 3.25 2.15
1.5 32.63 6.80 9 0.63 0.59 3.35 2.10
2 39.47 6.49 8 0.50 0.72 3.35 2.10

1 1 29.12 5.45 4 0.34 0.20 2.90 2.00
1.5 35.37 4.20 5 0.50 0.20 3.00 1.90
2 42.46 5.45 7 0.49 0.68 3.38 2.14

1.5 1 34.10 4.45 4 0.50 0.15 3.00 1.90
1.5 39.63 3.95 4 0.60 0.15 3.00 1.90
2 46.94 3.20 4 0.55 0.35 3.00 1.90

2 1 40.46 3.95 3 0.62 0.20 2.90 2.00
1.5 45.75 3.70 3 0.67 0.20 2.90 2.00
2 52.98 3.20 3 0.76 0.20 2.90 2.00

0.05 0.5 1 26.84 12.20 6 0.35 0.35 3.25 2.15
1.5 46.28 8.20 9 0.61 0.56 3.35 2.10
2 66.45 3.70 4 0.55 0.69 3.40 1.70

1 1 38.88 11.45 5 0.39 0.35 3.25 2.15
1.5 54.91 3.70 5 0.63 0.55 2.90 2.30
2 74.50 3.70 4 0.55 0.75 3.40 1.70

1.5 1 53.66 4.36 3 0.55 0.55 2.90 2.11
1.5 68.15 3.70 5 0.75 0.55 2.90 2.30
2 87.55 2.70 4 0.85 0.85 3.00 1.90

2 1 72.43 3.70 3 0.55 0.65 2.90 2.60
1.5 86.51 2.70 3 0.85 0.85 3.00 1.90
2 105.83 2.51 3 0.85 0.85 3.00 1.90
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Table 3
Optimal statistically constrained economic designs (ARL0 P 100, ARL1 6 10, K = 0.1)

h d q C h n km kv Lm Lv

0.01 0.5 1 24.59 18.20 7 0.35 0.35 2.75 2.15
1.5 32.41 9.00 11 0.72 0.64 2.85 2.10
2 39.41 6.60 8 0.63 0.75 3.01 2.10

1 1 28.68 13.00 10 0.65 0.50 2.85 2.31
1.5 35.02 6.60 7 0.70 0.75 2.85 2.10
2 42.28 6.60 7 0.69 0.75 2.87 2.10

1.5 1 33.66 8.20 6 0.78 0.50 2.85 2.44
1.5 39.49 6.20 5 0.78 0.52 2.75 2.15
2 46.89 3.45 4 0.65 0.39 2.92 2.10

2 1 40.22 6.20 4 0.89 0.35 2.84 2.15
1.5 45.75 3.70 3 0.67 0.20 2.90 2.00
2 52.97 3.20 3 0.72 0.35 2.92 2.10

0.05 0.5 1 26.18 19.40 5 0.50 0.50 2.85 2.10
1.5 46.04 9.80 10 0.72 0.61 2.85 2.10
2 65.95 3.92 5 0.75 0.66 2.90 1.70

1 1 38.58 13.70 7 0.57 0.35 2.75 2.15
1.5 54.56 6.20 7 0.69 0.61 2.75 2.15
2 74.06 3.83 5 0.70 0.75 2.90 1.70

1.5 1 53.21 6.95 5 0.80 0.35 2.75 2.38
1.5 68.00 3.76 4 0.72 0.75 2.90 1.70
2 87.35 3.70 4 0.75 0.75 2.90 1.70

2 1 72.21 3.76 3 0.83 0.55 2.90 2.00
1.5 86.49 3.70 3 0.80 0.70 2.90 1.70
2 105.77 2.33 3 0.70 0.55 2.90 1.70
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the economic and economic-statistical design
decreases as the magnitudes of shifts increase. The
similar patterns have also been observed previously
in the economic design of EWMA charts for mean
(Montgomery et al., 1995).

The relatively stable values of decision variables
across different shift sizes in Tables 2 and 3 can be
explained by two factors. First, the feasible region
in the statistically constrained economic design is
smaller than that in the pure economic design. Sec-
ond, the values of decision variables at the start of
the search influence the resulting values at the termi-
nation of the algorithm. Although this implies that
the results found may not be globally optimal, in
our experiment we have observed only minor differ-
ences in the optimal cost values obtained using dif-
ferent seeds of variables. We also remark that, we
have also identified the optimal solution by using
exhaustive grid search approach in our set of
numerical examples for economic and economic-
statistical design. We have found that the results
obtained via Nelder–Mead method and those
obtained via grid search are very close in all cases
considered. Since we have also observed similar pat-
terns in other test problems (not reported here), it
can be stated that using an alternative search
method is not likely to yield significantly different
results. We also note that, since it requires a rela-
tively high computation time, exhaustive grid search
is not a practical solution approach in the current
problem.

Regarding the decision variables, especially for
large shifts, sample size and sampling interval have
been found to be relatively more robust than other
variables to changes in initial values. One of the rea-
sons behind the observed sensitivity of control limits
and smoothing constants to starting values may be
the additional flexibility provided by using two
charts rather than a single chart. The change in
one variable, say Lm, is compensated by a change
in another variable, say Lv, and hence, different
combinations of variables essentially lead to the
same impact on the total cost. If only a single chart
was used, due to a smaller set of decision variables,
the number of alternative combinations of variables
resulting in approximately same value of the total
cost would probably be less, and therefore, the
search would be more likely to converge to the same
values of decision variables at termination regard-
less of the initial values.

We investigate the impact of the Taguchi loss
coefficient K on the economic design parameters



Table 4
Optimal economic designs (K = 0.4)

h d q C h n km kv Lm Lv

0.01 0.5 1 90.42 18.81 18 0.60 0.05 2.06 3.78
1.5 114.79 3.10 6 0.71 0.56 2.93 1.68
2 140.22 2.19 4 0.99 0.72 3.04 1.56

1 1 103.40 6.22 8 0.73 0.24 2.56 3.86
1.5 125.04 2.68 5 0.71 0.78 2.70 1.82
2 150.89 1.64 3 0.69 0.79 3.09 1.41

1.5 1 122.05 3.10 4 0.73 0.15 2.75 2.49
1.5 142.33 1.74 3 0.65 0.99 2.78 1.66
2 168.43 1.51 3 0.84 0.82 3.13 1.43

2 1 147.02 2.34 3 0.84 0.29 2.81 2.38
1.5 166.70 1.41 2 0.72 0.37 2.96 1.58
2 192.53 1.30 2 0.77 0.83 3.09 1.12

0.05 0.5 1 99.13 20.00 7 0.52 0.81 1.54 3.35
1.5 160.94 3.53 6 0.92 0.89 2.49 1.36
2 235.15 1.54 3 0.96 0.87 2.81 1.19

1 1 135.41 5.09 6 0.79 0.92 2.19 2.88
1.5 192.32 2.13 4 0.73 0.99 2.41 1.57
2 266.46 1.34 3 0.72 0.73 2.71 1.32

1.5 1 189.06 2.93 4 0.78 0.15 2.57 2.21
1.5 244.02 1.56 3 0.67 0.05 2.57 1.52
2 318.05 1.15 2 0.52 0.76 2.73 0.94

2 1 261.90 1.70 2 0.79 0.89 2.50 2.22
1.5 315.75 1.27 2 0.61 0.56 2.57 1.44
2 389.92 0.95 2 0.61 0.42 2.75 1.14

Table 5
Optimal economic designs (K = 0.7)

h d q C h n km kv Lm Lv

0.01 0.5 1 155.39 9.79 12 0.47 0.32 2.10 2.71
1.5 195.06 1.90 5 0.65 0.62 2.83 1.62
2 239.03 1.42 3 0.99 0.89 2.88 1.33

1 1 176.90 3.83 6 0.62 0.05 2.52 2.61
1.5 212.94 1.57 4 0.63 0.68 2.81 1.67
2 257.38 1.27 3 0.89 0.80 2.91 1.38

1.5 1 208.89 2.42 4 0.78 0.05 2.71 3.02
1.5 243.05 1.46 3 0.75 0.57 2.79 1.82
2 287.57 1.01 2 0.86 0.82 2.90 1.10

2 1 252.27 1.98 3 0.84 0.16 2.75 2.29
1.5 285.22 1.04 2 0.67 0.55 2.96 2.13
2 329.97 1.03 2 0.92 0.72 2.87 1.08

0.05 0.5 1 169.96 19.74 12 0.60 0.05 1.36 2.34
1.5 273.02 2.24 5 0.80 0.80 2.39 1.42
2 401.12 0.96 2 0.91 0.75 2.66 0.94

1 1 230.26 3.20 5 0.55 0.55 2.30 3.10
1.5 327.20 1.16 3 0.49 0.54 2.61 1.42
2 455.16 0.82 2 0.95 0.64 2.75 0.93

1.5 1 322.85 2.11 4 0.78 0.05 2.53 2.15
1.5 416.80 0.88 2 0.58 0.75 2.56 1.85
2 544.71 0.89 2 0.74 0.71 2.82 0.97

2 1 449.21 1.03 2 0.81 0.55 2.51 2.57
1.5 542.09 0.95 2 0.81 0.81 2.52 2.01
2 670.77 0.81 2 0.66 0.70 2.58 1.25
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by using K = 0.4, and K = 0.7 in Tables 4 and 5,
respectively. Based on the results displayed in
Tables 1, 4, and 5, the optimal values of the sam-
pling interval (h) exhibit a decreasing trend as K
increases. Thus, more frequent sampling is required
when the cost incurred due to defective products is
high.

According to the results in Tables 1–5, in general,
as the sizes of the shifts increase, both the sampling
interval (h) and sample size (n) appear to decrease.
The inverse relationship between the optimal sample
size and the magnitude of the shift has also been
observed in the economic design of X-bar charts
(Montgomery, 1980). The results given in Park
et al. (2004) for EWMA mean charts also reveal a
similar pattern. The reduction in sample size can
be explained by the fact that large shifts in mean
and/or variance can be detected more easily than
small shifts, implying a reduced need for a large
sample size. On the other hand, higher sensitivity
of the charts to large shifts does not lead to a lower
sampling frequency; hence, with regard to the sam-
pling interval, the effect of cost of defectives appears
to outweigh the effect of the improved statistical
power of the control scheme. The decrease in sam-
pling interval reduces the average time for receiving
an out-of-control signal when a shift occurs. Hence,
a shorter sampling interval helps to constrain the
quality related costs which increase with shift sizes.
We also remark that, in previous research optimal
sampling interval is observed to decrease with shift
size for an EWMA mean chart (Park et al., 2004),
which is in consistence with our results for the
EWMA-m/EWMA-v scheme.

Comparing results for h = 0.01 versus h = 0.05 in
Tables 1–5, we observe that as the failure arrival
rate (h) increases, the total cost per hour (C)
increases. This behavior is due to the fact that as h
decreases the fraction of time that the process will
be in state of control increases, which results in a
lower cost per hour. According to results, it also
appears that in general an increase in h causes the
sampling interval (h) to decrease. Again, this impact
is similar to earlier research findings regarding
X-bar chart.

6. Conclusion

We have studied the joint economic design of
EWMA control charts for monitoring the mean
and variance of a process. The average run length
of the joint control scheme is computed by using
the Markov chain method. The quadratic loss func-
tion approach has been used to represent the cost of
producing defective products in the objective func-
tion of the model. In this approach, costs due to
off-target performance are computed based on
Taguchi’s loss function which quadratically penal-
izes the deviations from the target of the quality
characteristic. In our numerical examples we have
observed that, in general, both the optimal sample
size and sampling interval decrease as the size of
shifts in mean and/or variance increases. Similarly,
increases in the Taguchi quality loss coefficient K
result in shorter time intervals between samples.
We have also explored statistically constrained eco-
nomic designs which are sometimes preferred over
pure economic designs by the users who desire the
control scheme to achieve certain statistical perfor-
mance targets. It is found that including constraints
on average run length of the scheme leads to a
decrease in the optimal sampling interval when
shifts in mean and/or variance are small.

In the literature, the joint economic design of
control charts for process mean and dispersion has
been investigated for Shewhart control charts
employing a test statistic based on the current sam-
ple. In addition to the X-bar/Range and X-bar/
Standard deviation schemes analyzed in previous
research and the EWMA-m/EWMA-v scheme
investigated in this paper, future research may con-
sider joint economic design of other commonly used
control charts for mean and dispersion such as
cumulative sum (CUSUM) charts, as well as their
multi attributed variants.
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Appendix A. Computing the ARL using the Markov

chain method

In the Markov chain method we divide the inter-
val between the UCL and LCL in each chart into k

equally spaced subintervals (k must be an odd inte-
ger). For the EWMA-m chart, the subintervals are
R1 = [u0,u1], R2 = [u1,u2], . . . ,Ri = [ui�1,ui], . . . ,Rk =
[uk�1,uk] where ui = LCLm + iDu and Du =
(UCLm � LCLm)/k. The subintervals correspond
to the transitional states in the Markov chain and
the transition probabilities pi,j are found by setting
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the EWMA statistic Zt to the midpoint of the sub-
interval Ri when ui�1 < Zt 6 ui. Hence,

pi;j ¼ P ðZt 2 Rj j Zt�1 2 RiÞ
¼ P ðuj�1 < Zt 6 uj j Zt�1 ¼ ðui�1 þ uiÞ=2Þ:

Note that u(k+1)/2 = l0. Let U(.) denote the cumula-
tive distribution function (cdf) for the standard
normal probability distribution. The transition
probabilities can be computed iteratively by using

pi;j ¼ fi;j � fi;j�1; i; j ¼ 1; . . . ; k;

where

fi;j ¼ Uf½2Lmðj� ð1� kmÞði� 0:5Þ
� 0:5kmkÞ�=ðqk½kmð2� kmÞ�0:5Þ � dn0:5=qg;
i ¼ 1; . . . ; k; j ¼ 0; . . . ; k:

Recall that q = r1/r0; for the in-control case, q = 1
(Morais and Pacheco, 2000). The transient states in
the Markov chain are the in-control states and the
EWMA statistic Zt moves to the absorbing state if
Zt falls outside the control limits. The run length
distribution of the EWMA-m chart can be found
by using the initial probability vector and transition
probability matrix. The initial probability vector
contains the probabilities of Z starting in each state
of the Markov chain. In this paper we use the zero
state ARL, i.e. the starting state for the EWMA sta-
tistic is the in-control mean with probability one
(Lucas and Saccucci, 1990). Note that we express
the shift d = (l1 � l0)/r0 differently from Morais
and Pacheco (2000) who define the shift in terms
of the standard deviation of the sample mean.

The run length distribution of the EWMA-v
chart can be determined following a similar proce-
dure. Let Dv = (UCLv � LCLv)/k, and v2

n�1ð�Þ be
the cdf for the chi-squared probability distribution
with n � 1 degrees of freedom. The transition prob-
abilities qi,j in the Markov chain, associated with the
EWMA-v chart, can be computed recursively from

qi;j ¼ hi;j � hi;j�1; i; j ¼ 1; . . . ; k;

where

hi;j ¼ v2
n�1fðn� 1Þ expð½ðj� 1Þ
� ð1� kvÞði� 1:5Þ�Dv=kvÞ=q2g;
i ¼ 2; . . . k; j ¼ 1; . . . k;

h1;j ¼ v2
n�1fðn� 1Þ exp½ðj� 1ÞDv=kv�=q2g;

j ¼ 1; . . . ; k

and hi,0 = 0, i = 1 . . . ,k.
In order to find the ARL of the combined

EWMA scheme, we first determine the run length
distributions of the EWMA-m and EWMA-v
charts, and then use these results to obtain the com-
plementary cumulative distribution function of the
run length of the combined scheme (Morais and
Pacheco, 2000). The joint control scheme generates
an out-of-control signal when one of the two charts
yields an out-of-control signal. Then the probability
that the run length of the joint scheme is greater
than n, P(RLJ > n), is

P ðRLJ > nÞ¼ P ðRLm > nÞP ðRLv > nÞ; n¼ 0;1;2; . . . ;

where P(RLm > n) and P(RLv > n) are the probabil-
ity that the run length of the EWMA-m and
EWMA-v chart is greater than n, respectively. We
can use

P ðRLm > nÞ ¼ eT
i ½P�

n
1; n ¼ 1; 2; . . . ; ðA1Þ

where P = [pi,j] is the k · k matrix of transition
probabilities pi,j, ei is the ith unit vector with all ele-
ments zero except the ith element which is 1, and 1 is
a column vector of ones. In (A1), i = (k + 1)/2.
P(RLv > n) is computed similarly from

P ðRLv > nÞ ¼ eT
i ½Q�

n
1; n ¼ 1; 2; . . . ;

where Q = [qi,j] is the k · k matrix of transition
probabilities qi,j, and i = 1 in ei. Note that

P ðRLm > 0Þ ¼ P ðRLv > 0Þ ¼ 1:

Finally, the ARL of the joint control scheme,
ARLJ, is found from

ARLJ ¼
X1
n¼0

P ðRLJ > nÞ:

Our numerical experiments indicate that in our
solution space the error associated with computing
ARLJ by excluding the values of P(RLJ > n) for
n > 2000 has an insignificant impact on the optimal
cost (with k = 51), hence, we approximate ARLJ by
restricting the values of n to less than 2000.
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