
IEEE SIGNAL PROCESSING LETTERS, VOL. 14, NO. 1, JANUARY 2007 43

Projection-Slice Theorem as a Tool for Mathematical
Representation of Diffraction

Levent Onural, Senior Member, IEEE

Abstract—Although the impulse (Dirac delta) function has been
widely used as a tool in signal processing, its more complicated
counterpart, the impulse function over higher dimensional man-
ifolds in , did not get such a widespread utilization. Based on
carefully made definitions of such functions, it is shown that many
higher dimensional signal processing problems can be better for-
mulated, yielding more insight and flexibility, using these tools.
The well-known projection-slice theorem is revisited using these
impulse functions. As a demonstration of the utility of the projec-
tion-slice formulation using impulse functions over hyperplanes,
the scalar optical diffraction is reformulated in a more general con-
text.

Index Terms—Curve impulses, diffraction, distributions, gen-
eralized functions, impulse functions, projection-slice theorem,
radon transform, surface impulses.

I. INTRODUCTION

ADEFINITION of impulse functions over a manifold in
-dimensional space is given in [1] together with many

of its mathematical properties. A preferred definition of these
functions is presented in [2] as

(1)

together with some related properties. These functions represent
concentration (of mass) over the given manifold. The difference
between the two definitions above is in the distribution of the
concentrated mass along the manifold. In other words, the defi-
nition given in [2] yields uniform mass per unit geometry of the
manifold, i.e., uniform mass per unit length of a curve, per unit
area of a surface, etc., in . Such a definition is more conve-
nient in many engineering applications and easily extends the
definition to manifolds that are not smooth or cannot be easily
expressed analytically.

As in the case of well-known impulse function (Dirac delta
function) , underlying problems can still be solved
without formulating them using impulse functions over hyper-
surfaces; however, utilization of these functions paves the way
for simpler descriptions and provides a better insight.
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In this letter, the manifolds on which the impulse functions are
defined are restricted to be hyperplanes of any dimensionality in

. For this case, the definitions given in [1] and [2] become
equivalent. Fourier transforms of such impulse functions can be
found in [3] and [4]. In this paper, those Fourier transform rela-
tions are revisited using a notation consistent with the notation
used in [2] and by emphasizing their importance in signal pro-
cessing.

Furthermore, the well-known projection-slice theorem is re-
visited using the impulse functions over hyperplanes [5], [6].

Finally, the scalar optical diffraction relation between two
parallel planes is derived once more using the presented pro-
jection-slice approach. This is an exact relationship based on
plane-wave decomposition of the optical field [7].

We have “slices” in the space domain and “projections” in the
Fourier domain; this is contrary to the common usage of the pro-
jection-slice theorem in signal processing but better fits to the
formulation of the diffraction problem mentioned above. This
choice is mathematically trivial since the functions and their
Fourier transforms are dual.

II. FOURIER TRANSFORMS OF IMPULSE

FUNCTIONS OVER HYPERPLANES

Let be the -dimensional space and be a -di-
mensional hyperplane, in , passing through the origin. The
impulse function represents a uniform concentration (of
mass) over the hyperplane ; please see [2] for the definitions
and the notation. Simply, the Fourier transform of this function
is

(2)

Since it is rather difficult to evaluate this integral, we first find
the Fourier transform of the impulse function over another hy-
perplane, , which is the rotated version of , such that, for all

on is on , where is a rotation matrix. We choose
so that coincides with the

hyperplane. It is rather easy to find the Fourier transform of the
impulse over , as

(3)
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Fig. 1. Fourier transforms of impulse functions over planes. (a) Original tilted
plane S and the rotated plane S (z = 0) in 3-D space. The impulse function
may be loosely interpreted as a function that is “infinity” on the planes and
“zero” everywhere else. (b) Fourier transforms of the planes given in (a): the
Fourier transform of � (x) is an impulse function over the indicated lineQ that
is orthogonal to S, and the Fourier transform of � (x) is an impulse function
over Q that is orthogonal to S .

where is the -dimensional orthogonal hyperplane to
passing through the origin. In other words, and intersect
orthogonally at the origin. More specifically, as a consequence
of the definition of is an impulse over the hyper-
plane defined by .

An example may help to clarify the notation: let ,
and let be the -plane, represented by (2-D);
therefore, . The Fourier transform of the impulse function
over this plane, , will be , where is the
line (1-D). This is shown in Fig. 1.

Knowing that , where
, and represents the Fourier transform, we can

easily find the Fourier transform of

(4)

where and are hyperplanes related simply by rotation:
if , then . Therefore, is the hyperplane
orthogonal to and passes through the origin. An example is
shown in Fig. 1.

III. PROJECTION-SLICE THEOREM USING

IMPULSE FUNCTIONS OVER HYPERPLANES

With the definitions and notation adopted in the previous sec-
tion and in [2], the slice (in space domain) of an -dimensional
function, , by a -dimensional hyperplane

in is simply . The Fourier transform,
of the slice , using well-known Fourier transform

properties, is

(5)

where represents -dimensional convolution, and is the
-dimensional hyperplane crossing orthogonally at a point

on simply means the integral is a surface integral over
the indicated hyperplane. The last line in the above integral in-
dicates that is a “projection” in the sense of the pro-
jection-slice theorem. The last equation deserves some more
comments. First of all, the last two lines imply that

; in other words, is the shifted version of , such
that if is in , then is in . Furthermore,
is the flipped (with respect to origin) and shifted (by ) ver-
sion of . The flip is ineffective for the integrals above
since passes through the origin. Furthermore, since we are
dealing with hyperplanes (they extend to infinity), shifts of
along its own orientation will yield the same hyperplane, .
Shifts along other directions will generate parallel hyperplanes
to . Therefore, the value of the integral (projection) is a func-
tion of the point , which is the intersection of and . The
resultant is, therefore, a function of only:

, where is in
. (Therefore, is the direction normal to .) Therefore,

is -dimensional, and is -dimensional. We
may also choose to write, ,
and then by restricting to be on , we define

. Therefore, as expected, we can have -dimen-
sional slice and its -dimensional Fourier trans-
form, . (Here in the previous sentences, the superscript

is used to stress that those functions with that superscript
are -dimensional.) Thus, we arrive to the well-known
result: the Fourier transform of a slice in the space domain will
be a projection in the Fourier domain. The projections of a func-
tion are called the Radon transform [6], [8].

To summarize, the slice of is represented as an
-dimensional function, (a multiplication), and the

Fourier transform of this function, , as another -dimen-
sional function (a convolution, as

expected). This was possible by properly defining and utilizing
the impulse functions over hyperplanes. Such representations
may ease the utilization of these operations in signal processing:
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handling functions using well-known Fourier transform proper-
ties should be a benefit in applications by providing a better in-
sight.

For example, using the -dimensional representation of
slices and their Fourier transforms via given impulse func-
tions, we can easily find the relation for the translated slice,

: using simple Fourier transform relations, we
know that . Then, we
can immediately write

(6)

Therefore, we find that the Fourier transform of a translated slice
is the projection of a modulated Fourier transform of the original
function.

From the discussions above, we also know that the rotated
slice has its Fourier transform as projections onto
the rotated hyperplane

(7)

as a consequence of (5).
Combining the two properties above, we can easily get the

Fourier transform of a slice by an arbitrarily oriented hyperplane
that can always be represented as a rotated and translated version
of a hyperplane passing through the origin: Fourier transform of
rotated and translated slice, , is

(8)

which is the projection of the modulated Fourier transform of
the original function, onto the rotated and translated slice .
Here is the plane orthogonal to and passing through
the origin, and is its translated version so that it crosses

at .
The simple properties outlined above will be utilized in the

application given in the next section.

IV. MONOCHROMATIC SCALAR DIFFRACTION

It is well known that a scalar light field, , can be decom-
posed into planar waves, as

(9)

where represents the 3-D inverse Fourier trans-
form, is the wave-number vector representing the direction
and the frequency of the propagating plane wave, and is
the amplitude of that 3-D plane wave component [2]. If the field
consists only of a monochromatic light, then we have the re-
striction , where is the wavelength of the
monochromatic light. We exclude any evanescent wave com-
ponents and assume that the field consists only of propagating
waves. Therefore, we can write , where
is the sphere with radius . This simple description is another
demonstration of the use and power of the impulse functions
over surfaces. If there are further restrictions on the direction of
propagation, the surface will then be a segment (or segments)
of the sphere.

In classical diffraction problems, usually the relation between
diffraction patterns over planes is of interest. The simplest case
is the diffraction between two parallel planes. However, given
the 3-D field, a field pattern over a plane is just a 2-D “slice” in
the 3-D space. It is seen in the previous section that slices can
be elegantly represented by the introduced impulse functions.
Therefore, the diffraction relation between planar surfaces can
be easily handled using slices as follows.

Let us restrict the propagation of monochromatic light to be
along the positive -direction; therefore, the component of

must be positive; and this restricts the sur-
face to be the corresponding semi-sphere. Therefore, we can
simply represent the field over a plane perpendicular to -axis
(i.e., plane) as (let us call
the “object plane,” as usually done in optics). The “diffraction
plane” will be the plane; let us denote it as , and there-
fore, the field over this plane will be .
The desired relation between these two diffraction patterns can
be easily found using the projection-slice relations presented in
the previous section.

The Fourier transform, , of is the projection
given by

(10)

which directly follows the projection property of (5). Substi-
tuting for , we get

(11)

where we arrived at the final line by using the crossing prop-
erty given in [2, (12)], and is the angle between the
(shifted ) and the surface normal of the semi-sphere at the
point of their intersection. (Please see Fig. 2.) Therefore,



46 IEEE SIGNAL PROCESSING LETTERS, VOL. 14, NO. 1, JANUARY 2007

Fig. 2. Projection in the Fourier domain to describe the Raleigh–Sommerfeld
diffraction due to propagating waves between two parallel planes. The spectrum
of monochromatic waves propagating in the positive z-direction is an impul-
sive function over the semi-sphere K . The projections of this spectrum onto the
(k ; k ) plane are integrals taken along 1-D pathQ ; the same projection can
be interpreted as 3-D integrals of the multiplication of two impulsive functions:
one over the semi-sphere and one over the integral line. The integration line is
shifted to cover all projections of the semi-sphere.

is a 3-D function with no variation (constant) along the di-
rection. Due to the spherical form of surface

. Similarly, for the diffraction plane,

(12)

However, we also know that and are parallel, and there-
fore, is just a shifted version of . Therefore,

, where . Therefore, using the shifted
slice property of (6), we know that

(13)

As a final step, we note that

(14)

represents the transfer function of a 3-D linear shift invariant
system, which represents the change in the phase of each plane-
wave component as we go from object plane to diffraction
plane , as expected. Please note that is a 3-D func-
tion that has no variation (constant) along the direction. It

is instructive to write the same ratio (transfer function) in 2-D.
Using the arguments presented in Section III regarding the re-
lation between higher dimensional functions with no variation
along some directions and their 2-D counterparts, we can write

(15)

This is the transfer function of a 2-D linear shift invariant system
that represents the exact scalar diffraction between two parallel
planes due to propagating monochromatic waves.

V. CONCLUSION

We have shown that the impulse functions over surfaces, and
the associated interpretation of the projection-slice theorem, are
powerful tools to describe the fundamental mathematical nature
of some well-known physical problems. For example, the exact
optical diffraction relation between two parallel planes due to
propagating monochromatic waves is reformulated and solved
using the presented tools. Other more difficult optical diffrac-
tion relations corresponding to more complicated geometries
can be solved by similar approaches using the presented tools.
The basic steps for the diffraction formulation and the solution
can be summarized as 1) use the 3-D functions for representing
the diffraction even if we have 2-D signals (2-D patterns over
planes), 2) use well-defined impulse functions over surfaces for
that 2-D to 3-D transition, 3) represent the amplitude of plane
wave components that superpose to make the 3-D light field as

, 4) represent the two parallel planes for which we
sought the diffraction relation as slices of 3-D functions by 2-D
planes, and finally, 5) use the developed projection-slice formu-
lation based on impulse functions over planes.
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