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Application of Iterative Techniques for
Electromagnetic Scattering From Dielectric

Random and Reentrant Rough Surfaces
K. İnan and V. B. Ertürk, Member, IEEE

Abstract—Stationary [e.g., forward–backward method (FBM)]
and nonstationary [e.g., conjugate gradient squared, quasi-mini-
mal residual, and biconjugate gradient stabilized (Bi-CGSTAB)]
iterative techniques are applied to the solution of electromagnetic
wave scattering from dielectric random rough surfaces with arbi-
trary complex dielectric constants. The convergence issues as well
as the efficiency and accuracy of all the approaches considered
in this paper are investigated by comparing obtained scattering
(in the form of normalized radar cross section) and surface field
values with the numerically exact solution, computed by employ-
ing the conventional method of moments. It has been observed
that similar to perfectly and imperfectly conducting rough surface
cases, the stationary iterative FBM converges faster when ap-
plied to geometries yielding best conditioned systems but exhibits
convergence difficulties for general geometries due to its inherit
limitations. However, nonstationary techniques are, in general,
more robust when applied to arbitrarily general dielectric random
rough surfaces, which yield more ill-conditioned systems. There-
fore, they might prove to be more suitable for general scattering
problems. Besides, as opposed to the perfectly and imperfectly
conducting rough surface cases, the Bi-CGSTAB method and FBM
show two interesting behaviors for dielectric rough surface pro-
files: 1) FBM generally converges for reentrant surfaces when the
vertical polarization is considered and 2) the Bi-CGSTAB method
has a peculiar convergence problem for horizontal polarization.
Unlike the other nonstationary iterative techniques used in this
paper, where a Jacobi preconditioner is used, convergent results
are obtained by using a block-diagonal preconditioner.

Index Terms—Iterative techniques, method of moments (MoM),
normalized radar cross section (NRCS), random rough surface
scattering.

I. INTRODUCTION

A CCURATE and efficient evaluation of scattering from
rough surfaces [1], [2] has great importance for mili-

tary and commercial applications. Therefore, various integral
equation (IE)-based methods have been proposed for perfectly
[3], [4]–[14] and imperfectly [15], [16] conducting as well
as dielectric [17]–[23] random rough surfaces. However, the
order of N3 [i.e., O(N3)], where N is the number of un-
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knowns, computation cost for the direct solution procedure of
the resultant system of linear algebraic equations has led to the
use of iterative methods for electrically large rough surfaces
[6]–[16], [19]–[23]. Among them, the stationary forward–
backward method (FBM) has been widely used for both per-
fectly and imperfectly conducting rough surfaces and further
accelerated using the spectral acceleration (SA) algorithm [14].
However, due to its stationary nature, FBM fails when the
surface profile of interest is a multivalued one, such as the
reentrant surface of a ship. Therefore, besides the generalized
version of FBM, namely generalized FBM (GFBM) [12], vari-
ous nonstationary algorithms have been proposed [3], [15], [16]
because they prove to be much more robust in many relatively
ill-conditioned situations where FBM fails [3], [15].

On the other hand, when the scattering of electromagnetic
waves from dielectric random rough surfaces is considered,
the solution procedure for majority of the IE-based studies is
restricted to the conventional method of moments (MoM) [21],
which suffers from the excess computational cost requirements
when applied to electrically large profiles. Investigation of these
cases is very important since perfectly or highly conducting sur-
faces [i.e., use of impedance boundary conditions (IBC)] cannot
model many dielectric-type surfaces such as soil surfaces at
microwave frequencies [23]. Therefore, recently, the original
FBM has been modified (called modified FBM) to handle
scattering from dielectric one-dimensional (1-D) profiles with
arbitrary complex dielectric constant [22] and then applied to
scattering problems from natural soils modeled by dielectric
fractal profiles [23]. However, similar to the perfectly and
imperfectly conducting cases, modified FBM has some inher-
ent convergence limitations due to its stationary nature when
applied to certain dielectric random rough surfaces that are
relatively rough and less correlated. Furthermore, the modified
FBM may fail in the case of a reentrant dielectric rough surface
(random/deterministic).

Considering these facts in mind, in this paper, the work pre-
sented in [3] has been extended to dielectric random and dielec-
tric reentrant rough surfaces. Modified FBM as the stationary
and several nonstationary iterative techniques are applied to
the solution of electromagnetic wave scattering from dielectric
rough surfaces. Both random dielectric profiles, which are
described by Gaussian processes with Gaussian and exponential
correlations and deterministic reentrant dielectric profiles, are
considered. The convergence issues as well as the efficiency and
accuracy of all the approaches are investigated by comparing
obtained scattering and surface field results with the numeri-
cally exact solution, computed by employing the conventional
MoM. Among the nonstationary techniques, emphasis is given
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to conjugate gradient squared (CGS), quasi-minimal residual
(QMR), and biconjugate gradient stabilized (Bi-CGSTAB) [24]
since the others possess a much slower convergence rate for
the dielectric rough surface profiles (random/deterministic)
considered in this paper. It has been observed that when the
considered profile (random or deterministic) yields a relatively
well-conditioned moment–method interaction matrix, applica-
tion of modified FBM gives the fastest convergence. However,
many arbitrary profiles yield more ill-conditioned systems,
which are problematic for the modified FBM due to its inherent
limitations. Thus, nonstationary techniques are implemented to
such profiles because, in general, they are more robust. Very
accurate and reasonably efficient results are obtained for both
random and deterministic rough surface profiles, in particular
by using CGS. Besides, two interesting behaviors of FBM
and the Bi-CGSTAB method have been observed for dielectric
rough surfaces. First, FBM, which is known to be problematic
for perfectly and imperfectly conducting reentrant surfaces,
may converge for dielectric reentrant surfaces when the incident
electric field is vertically polarized (i.e., VV polarization).
Second, the Bi-CGSTAB method is known to work well for
perfectly and imperfectly conducting surfaces. However, for di-
electric surfaces, a carefully chosen preconditioner (in this case,
we used a block-diagonal preconditioner) may be required for
its convergence when the incident electric field is horizontally
polarized (i.e., HH polarization).

This paper is organized as follows. In Section II, the geome-
try and the formulation of the problem are given. Section III is
composed of numerical results and their discussions. Both far-
zone scattered and surface fields are evaluated using iterative
techniques whenever they converge and compared with the con-
ventional MoM solution. Accuracy, efficiency, and convergence
properties of both stationary and nonstationary iterative tech-
niques used in this paper are explored. An ejwt time convention
is employed and suppressed throughout this paper.

II. FORMULATION

Consider the 1-D rough surface profile embedded in a two-
dimensional (2-D) space as illustrated in Fig. 1. Surface height
profile and electromagnetic fields are assumed to be constant
along the y direction [21]. For this geometry, if the incident field
is horizontally polarized, then the surface electric and magnetic
fields can be evaluated solving the following pair of IEs [17],
[21]–[23]:

Einc(r)=
E(r)

2
+

∫
l

{jωµ0φ0(r, r′)Js(r′)

+ E(r′) [n̂′ · ∇φ0(r, r′)]} dl′ (1)

0 =
E(r)

2
−

∫
l

{jωµ0φ1(r, r′)Js(r′)

+ E(r′) [n̂′ · ∇φ1(r, r′)]} dl′ (2)

where Einc = Eincŷ and E = Eŷ are incident and total electric
fields, respectively. Js = n̂× H = Jsŷ is the equivalent elec-
tric surface current density, and n̂ is the outgoing normal to
the surface. On the other hand, if the incident field is vertically

Fig. 1. Geometry of scattering from dielectric random rough surface problem.

polarized, then the surface electric and magnetic fields can be
evaluated by solving the following pair of IEs [21]–[23]:

H inc(r) =
H(r)

2
+

∫
l

{jωε0φ0(r, r′)Ks(r′)

+H(r′) [n̂′ · ∇φ0(r, r′)]} dl′ (3)

0 =
H(r)

2
−

∫
l

{jωε1φ1(r, r′)Ks(r′)

+H(r′) [n̂′ · ∇φ1(r, r′)]} dl′ (4)

where Hinc = H incŷ and H = Hŷ are incident and total mag-
netic fields, respectively. Ks = −n̂× E = Ksŷ is the equiva-
lent magnetic surface current density, and ε0, ε1 = εrε0 are the
dielectric constants of the upper and lower media, respectively.
In (1)–(4), both r and r′ belong to the surface profile, and

φ0,1(r, r′) = − j

4
H

(2)
0 (k0,1|r − r′|) (5)

is the 2-D free-space Green’s function (zeroth-order Hankel
function of the second kind), where k0, k1 are the propagation
constants of the upper and lower media, respectively. Equations
(1)–(4) assume the lower space to be homogeneous, unlimited,
and with the same magnetic permeability, i.e., µ0, of the
upper one.

In this paper, the matrix formulation is given for (1)–(2).
However, the same procedure applies for (3)–(4). Similar to
[21], using rectangular pulse basis functions and performing a
point matching method, the IE pair (1)–(2) can be converted
into a pair of matrix equations for the unknowns E and Js

given by
[
S

0
Z

0

S
1

Z
1

] [
E
Js

]
=

[
Einc

0

]
(6)

where the size of the matrix is 2N × 2N , with N being the
number of rectangular pulse basis functions used to expand
the unknown current density Js and the unknown surface
field E over the entire illuminated surface contour. The full
expressions for the coefficients of the matrix elements are given
in [21], and for the sake of completeness, they are repeated
at the Appendix. The matrix equation given by (6) is solved
for the unknown surface fields by first employing a direct
solution method (LU decomposition) to obtain a numerically
exact reference solution. Then, the accuracy, efficiency, and
convergence properties of both stationary and nonstationary
iterative techniques are investigated by implementing them
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Fig. 2. Comparison of the monostatic NRCS values of the iterative methods with the conventional MoM results, for various angles of incidence at 1 GHz.
(a) HH polarization, σ = λ/6, rms slope = 13◦ (i.e., moderately rough surface), and εr = 4 (i.e., dry soil). (b) HH polarization, σ = 0.707λ, rms slope = 45◦
(i.e., very rough surface), and εr = 4. (c) HH polarization, σ = λ/6, rms slope = 13◦, and εr = 15 − j4 (i.e., moist soil). (d) HH polarization, σ = 0.707λ,
rms slope = 45◦, and εr = 15 − j4. (e) VV polarization, σ = λ/6, rms slope = 13◦, and εr = 4. (f) VV polarization, σ = 0.707λ, rms slope = 45◦, and
εr = 4. (g) VV polarization, σ = λ/6, rms slope = 13◦, and εr = 15 − j4. (h) VV polarization, σ = 0.707λ, rms slope = 45◦, and εr = 15 − j4.

to (6) for the dielectric rough surface problem. Therefore,
modified FBM [22], [23] as the stationary and several non-
stationary iterative techniques [24] are implemented. The non-
stationary algorithms are members of the general conjugate
direction class of algorithms developed for asymmetric/non-
Hermitian matrices [3], whose pseudocodes are given in [24].
Among them, emphasis is given to the CGS, QMR, and Bi-
CGSTAB methods since much quicker convergence rates have
been obtained by using them for the dielectric rough surface
profiles (both random and deterministic) considered in this
paper. All nonstationary techniques are applied directly to (6)
without any modification. A Jacobi preconditioner was initially
used for all of them as discussed in [24]. However, unlike
perfectly and imperfectly conducting rough surface cases, the
Bi-CGSTAB method exhibited a peculiar convergence problem
when dielectric rough surface profiles are considered for the
HH polarization. Therefore, a block-diagonal preconditioner
is used. In this preconditioner, blocks are chosen to be 2 ×
2 submatrices, whose details are given in [25]. Although Bi-

CGSTAB results converge with this preconditioner, the CPU
time for each iteration slightly increases compared with other
cases where the Jacobi preconditioner is used.

Once the surface fields are evaluated, the far zone scattered
field for z > 0 can be calculated. For the HH polarization case,
it is given by [26]

Es(r)=
k0 exp

(
j π

4

)
√

8πk0r
exp(−jk0r)

∫
l

[ηJs(r′)−(n̂′ ·n̂s)E(r′)]

× exp(jk0n̂s · r′)
√

1 + (dz/dx)2g(x′)dx′. (7)

For the VV polarization case, we use

Hs(r)=
k0 exp

(
j π

4

)
√

8πk0r
exp(−jk0r)

∫
l

[
Ks(r′)
η

−(n̂′ ·n̂s)H(r′)
]

× exp(jk0n̂s · r′)
√

1 + (dz/dx)2g(x′)dx′. (8)
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Fig. 3. Comparison of the monostatic NRCS values from [22] for various angles of incidence with the iterative results obtained in this paper at 1 GHz.
(a) VV polarization, σ = λ/6, rms slope = 13◦, and εr = 4. (b) HH polarization, σ = 0.707λ, rms slope = 45◦, and εr = 4. (c) HH polarization, σ = λ/6,
rms slope = 13◦, and εr = 15 − j4. (d) VV polarization, σ = 0.707λ, rms slope = 45◦, and εr = 15 − j4.

In (7) and (8), n̂s is the unit vector indicating the scattering
direction, r is the point in the far zone, r′ belongs to the surface
profile, η is the free-space intrinsic impedance, and g(·) is the
(slowly varying) illumination tapering function that reduces the
edge effect and is assumed to be negligible for |x′| ≥ Ls/2,
where Ls is the profile length [21]. More precisely, we assume
that g(x) is Gaussian with g(0) = 1 and a width such that
g(Ls/2) = 10−6, so that the profile effective length can be
defined as

Leff =
∫
Ls

g2(x′)dx′ (9)

which is directly related to the profile length Ls [17], [21].
Finally, the noncoherent normalized radar cross section

(NRCS) of a 1-D profile for the HH polarization is expressed
as [22], [27]

σ0 =
2πr

(〈|Es|2〉 − | 〈Es〉 |2)
Leff |Einc|2 (10)

where 〈·〉 stands for the mean value. This definition is based on
the hypothesis that the mean square value of the scattered field
is directly proportional to the profile effective length Leff and
has no other dependence on the illuminating function shape, so
that the NRCS turns out to depend only on surface properties
[21]. For the VV polarization, Es and Einc should be replaced
by Hs and H inc, respectively.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Accuracy of the Iterative Methods

To assess the accuracy of the iterative algorithms proposed in
this paper for the matrix equation given by (6), the noncoherent
NRCS results evaluated using (10) are obtained and compared
with: 1) the ones computed via the conventional MoM and
2) the ones given in [22]. The comparison methodology is
similar to the one used in [22]. Briefly, 160 independent sample
profiles with prescribed statistics are generated. Then, fields
scattered by different surfaces are evaluated using the conven-
tional MoM and stationary and nonstationary iterative tech-
niques and are subsequently averaged to compute the NRCS.
Consequently, the error estimate of σ0 is less than 1 dB with
a probability of 0.997 [22]. In all results, unless specified, the
width of each basis function is λ/10, the frequency is 1 GHz
(λ = 0.3 m), and the length of the surfaces is 15 m.

In Fig. 2, the monostatic HH and VV NRCS of the mod-
erately rough and very rough Gaussian correlated surfaces,
evaluated by MoM and iterative techniques (i.e., FBM, CGS,
QMR, Bi-CGSTAB), are plotted as a function of the angle of
incidence θi. Both the dry soil (i.e., εr = 4) and moist soil
(i.e., εr = 15 − j4) cases are considered. For the moderately
rough surface, σ is set to λ/6 and the root mean square (rms)
slope is set to 13◦, whereas for the very rough surface, these
parameters are set to 0.707λ and 45◦, respectively. These results
match very well with the ones given in [22], as shown in Fig. 3,
where the monostatic NRCS results obtained via CGS, QMR,
and Bi-CGSTAB (FBM is the same) are compared with those
given in [22] for some cases including both the HH and VV
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Fig. 4. Comparison of the bistatic NRCS values obtained from the iterative methods (a)–(d) with the conventional MoM solution and (e)–(f) with the result
given in [22] for both HH and VV polarizations. Dielectric constant is εr = 4. Frequency is 1 GHz. σ = λ/6, and rms slope = 13◦. (a) HH polarization for a
Gaussian correlated profile. (b) VV polarization for a Gaussian correlated profile. (c) HH polarization for an exponential correlated profile. (d) VV polarization
for an exponential correlated profile. (e) HH polarization for a Gaussian correlated profile. (f) VV polarization for a Gaussian correlated profile.

polarizations for the same parameters. Consequently, based on
Figs. 2 and 3, very accurate results are obtained. The difference
between the results in this paper and the ones given in [22]
is smaller than 1 dB for all cases. Furthermore, the rms error
[22, eq. (23)] between the iterative methods and the MoM is
found to be smaller than 0.05 dB, which shows the accuracy
of the stopping criterion and the good estimates of the surface
NRCS by iterative algorithms.

Similar to the monostatic NRCS comparisons, bistatic NRCS
comparisons have been performed. Fig. 4(a) and (b) depicts the
bistatic HH and VV NRCS of a moderately rough Gaussian
correlated surface versus scattering angle θs, respectively. Re-
sults obtained from the iterative techniques are compared with
the MoM result for a dielectric constant of εr = 4 (i.e., dry
soil). In Fig. 4(c) and (d), a similar result is also given for
an exponentially correlated rough surface profile where all the
parameters are kept same. In Fig. 4(e) and (f), results of bistatic
HH and VV NRCS derived in this paper for a moderately rough
Gaussian correlated surface are compared with the ones given
in [22]. As shown in Fig. 4, the agreement between the results
obtained from the iterative techniques and the MoM result, and
the agreement between the results in this paper and the ones

given in [22] are all very good. Consequently, establishing a
full confidence in our results, we can investigate their efficiency
and test them for electromagnetic scattering in more general
dielectric rough surface profiles.

B. Efficiency and Convergence Rate of the Nonstationary
Iterative Methods

Efficiencies and convergence rates of the nonstationary
iterative methods considered in this paper, namely CGS,
QMR, and Bi-CGSTAB, are investigated in a similar fashion
to [22] in which the FBM has been discussed. For the CGS,
QMR, and Bi-CGSTAB methods, Tables I–IV from [22] are
reproduced (see Tables I–IV). Results obtained by using FBM
are similar to [22] and, hence, are not repeated here. Following
the same methodology explained in [22], for each table, the
minimum number of iterations n0 is given such that an error of
r(n0) < 10−2 is satisfied for both Gaussian and exponentially
correlated autocorrelation surfaces with different values of
standard deviation σ and correlation length Lc. Each value in
all tables is obtained by averaging over ten surface realizations,
and “nc” means there is no convergence (i.e., the error criterion
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TABLE I
AVERAGE MINIMUM NUMBER OF ITERATIONS n0 SUCH THAT r(n0) <

10−2 IS SATISFIED FOR DIFFERENT VALUES OF STANDARD DEVIATION σ
AND CORRELATION LENGTH Lc AND FOR VV AND HH POLARIZATIONS.
ANGLE OF INCIDENCE = 60◦. SURFACE AUTOCORRELATION FUNCTION:

GAUSSIAN. RELATIVE DIELECTRIC CONSTANT: εr = 4

TABLE II
AVERAGE MINIMUM NUMBER OF ITERATIONS n0 SUCH THAT r(n0) <

10−2 IS SATISFIED FOR DIFFERENT VALUES OF STANDARD DEVIATION σ
AND CORRELATION LENGTH Lc AND FOR VV AND HH POLARIZATIONS.
ANGLE OF INCIDENCE = 60◦. SURFACE AUTOCORRELATION FUNCTION:

EXPONENTIAL. RELATIVE DIELECTRIC CONSTANT: εr = 4

defined above is not met) for at least one out of ten realizations.
The boldfaced numbers indicate the n0 values for a converged
result, which has been reported as nc in [22], where FMB is
used. In all tables, the σ/λ ratio defines the surface roughness.
An increase in this ratio corresponds to an increase in the
roughness of the surface. Similarly, the σ/Lc ratio defines
the correlation between the samples. As this ratio increases,
the correlation decreases. The surface autocorrelation function
(Gaussian or exponential) and the relative dielectric constant εr
used to generate the results are given at the top of each table.
Finally, for all cases, the angle of incidence is set to 60◦.

An investigation of the results tabulated in Tables I–IV and
their comparison with the FBM results given in [22] show that
FBM, as a stationary iterative method, has a much quicker

TABLE III
AVERAGE MINIMUM NUMBER OF ITERATIONS n0 SUCH THAT r(n0) <

10−2 IS SATISFIED FOR DIFFERENT VALUES OF STANDARD DEVIATION σ
AND CORRELATION LENGTH Lc AND FOR VV AND HH POLARIZATIONS.
ANGLE OF INCIDENCE = 60◦. SURFACE AUTOCORRELATION FUNCTION:

GAUSSIAN. RELATIVE DIELECTRIC CONSTANT: εr = 15 − j4

TABLE IV
AVERAGE MINIMUM NUMBER OF ITERATIONS n0 SUCH THAT r(n0) <

10−2 IS SATISFIED FOR DIFFERENT VALUES OF STANDARD DEVIATION σ
AND CORRELATION LENGTH Lc AND FOR VV AND HH POLARIZATIONS.
ANGLE OF INCIDENCE = 60◦. SURFACE AUTOCORRELATION FUNCTION:

EXPONENTIAL. RELATIVE DIELECTRIC CONSTANT: εr = 15 − j4

convergence rate than all the nonstationary methods when
it converges. However, there are cases where FBM cannot
converge while nonstationary algorithms can, in particular for
the exponentially correlated surfaces as shown in Tables II
and IV. Unfortunately, none of the methods converge for
exponentially correlated surfaces when the surface is very
rough (i.e., σ/λ = 10). On the other hand, CGS has a surpris-
ingly faster convergence rate among the nonstationary algo-
rithms. Although in [24] CGS is reported to have highly
irregular convergence behavior, it has converged consistently
with a reasonable good convergence rate in all cases con-
sidered in this paper. Especially, for higher σ/Lc ratios, n0

values are significantly lower than the other nonstationary algo-
rithms. Therefore, when electromagnetic wave scattering from
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Fig. 5. (a) Geometry of a deterministic dielectric reentrant surface profile.
(b) Comparison of monostatic NRCS values of MoM, CGS, QMR, and Bi-
CGSTAB for the reentrant surface profile illustrated at (a) for HH polariza-
tion. Frequency is 300 MHz, and relative dielectric constant εr = 15 − j4.
(c) Comparison of monostatic NRCS values of MoM, CGS, QMR, Bi-
CGSTAB, and FBM for the reentrant surface profile illustrated at (a) for VV
polarization. Frequency is 300 MHz, and εr = 15 − j4.

dielectric random rough surface profiles is investigated, CGS
might be considered among the best candidates. One final
observation is that n0 values for VV polarization are generally
less than the n0 values for HH polarization. This is mainly due
to the different coupled IEs used for HH and VV polarization
cases. Magnetic field IE (MFIE) is used for VV polarization,
whereas electric field IE (EFIE) is used for HH polarization and
is known to exhibit poorer conditioning for interaction matrices
when perfectly conducting and impedance rough surfaces have
been considered [15]. Similarly, for dielectric rough surfaces,
HH polarization examples yield more ill-conditioned systems
than VV polarization cases for the same surface profiles.

C. More General Cases and Advantages of
Nonstationary Algorithms

Finally, it has been shown that nonstationary algorithms
are very suitable for more general dielectric rough surfaces.
Therefore, a deterministic reentrant (i.e., multivalued) rough
surface profile, which resembles a section of a natural terrain,
is considered in Fig. 5(a) with εr = 15 − j4 and a frequency of
300 MHz. The monostatic NRCS values evaluated using
iterative techniques are compared with the conventional MoM
results for both HH and VV polarizations as illustrated in
Fig. 5(b) and (c), respectively. Similar to the monostatic NRCS
comparisons, bistatic NRCS comparisons have been performed
for this geometry for both polarizations as shown in Fig. 6,
where the incident angle is set to 75◦. Finally, in Fig. 7,

Fig. 6. Comparison of the bistatic NRCS values of the iterative methods with
the numerically exact solution, MoM, for the reentrant profile given in Fig. 5(a).
εr = 15 − j4, frequency = 300 MHz, and incident angle is set to 75◦.
(a) HH polarization. (b) VV polarization.

the magnitude of the surface electric current density |Js|,
[n̂× H = Js (in amperes per meter)] and the magnitude of the
total electric field |E| (in volts per meter) versus the surface
length are obtained for the HH polarization case and compared
with the conventional MoM results for the angle of incidence
ranging from 0◦ to 60◦ with 20◦ steps. A similar plot is given for
the VV polarization in Fig. 8, where the iteratively obtained re-
sults for the magnitude of the surface magnetic current density
|Ks| [n̂× E = −Ks (in volts per meter)] and the magnitude
of the total magnetic field |H| (in amperes per meter) along the
same surface length are compared with the conventional MoM
results for the same angle of incidence values. In all results,
excellent agreement is observed for both polarizations such
that the rms error is less than 0.05 dB. The convergence rate of
each considered iterative method in terms of n0 (i.e., minimum
number of iterations) for different angles of incidence, when
a predetermined error criterion r(n0) < 0.01 is satisfied, is
tabulated in Table V. Although CGS and Bi-CGSTAB methods
have similar convergence rates for the HH polarization, CGS
method convergences significantly faster for the VV polariza-
tion. On the other hand, both CGS and Bi-CGSTAB methods
perform better than the QMR method, in particular as the angle
of incidence approaches to the grazing angle. An interesting
result is the convergence of FBM for VV polarization, although
the investigated surface is a reentrant one. FBM is known
to have convergence problems for perfectly and imperfectly
conducting reentrant surface profiles, where the IBC is used for
the latter one. Besides the fact that for VV polarization MFIE
is used, which is better suited for FBM, one way to explain its
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Fig. 7. Comparison of the magnitude of electric current distribution |Js| (in amperes per meter) and the total electric field |E| (in volts per meter) for angles
of incidence 0◦−60◦ with 20◦ steps calculated by MoM, CGS, QMR, and Bi-CGSTAB for HH polarization. The reentrant surface profile is the same as
in Fig. 5(a). Frequency is 300 MHz, and εr = 15 − j4. (a) θi = 0◦. (b) θi = 20◦. (c) θi = 40◦. (d) θi = 60◦. (e) θi = 0◦. (f) θi = 20◦. (g) θi = 40◦.
(h) θi = 60◦.

convergence for dielectric reentrant surfaces is to consider the
cavity type issues that cause problems for FBM with reentrant
surfaces. Essentially, cavities are hard to handle since they can
contain lots of bounces. However, they are greatly reduced
in the dielectric case. In particular if the dielectric constant
is low and there is no conductivity, the bounces will die off
quickly. This is easily verified by increasing the conductivity
values of the complex dielectric constant. When conductivity
is increased, the dielectric medium can be represented by an
imperfectly conducting surface (and hence, corresponding
IE is obtained using IBC). In the limiting case, where
conductivity approaches to infinity, a perfectly conducting
medium is achieved. As a result, when the conductivity is
slightly increased, the convergence rate of FBM decreases, and
finally, it does not converge at all. Furthermore, for the VV
polarization, the Brewster effect may make the bounces die off
quicker than in HH polarization.

IV. CONCLUSION

Stationary and nonstationary iterative methods are applied
to the problem of electromagnetic wave scattering from

dielectric rough surfaces. Both random and deterministic sur-
face profiles are considered. Accuracy, efficiency, and conver-
gence issues of FBM as a stationary iterative method and CGS,
QMR and Bi-CGSTAB as nonstationary iterative methods are
investigated by comparing both the far-field and surface field
results with those obtained from a conventional MoM solution
for various random and deterministic surface profiles. Similar
to the perfectly conducting and imperfectly conducting surface
profiles, FBM has the quickest convergence rate if it converges.
However, nonstationary methods are inherently more robust,
and they converge for many different surface profiles where
FBM fails to converge. Interestingly, among the nonstationary
techniques, CGS appears to be the most suitable nonstationary
algorithm for dielectric rough surface scattering calculations
considered in this paper. On the other hand, unlike other
nonstationary iterative methods, convergence problems have
been observed for Bi-CGSTAB method for HH polarization
when a Jacobi preconditioner is used. Thus, a block-diagonal
preconditioner is used to obtain convergent results. Finally,
as opposed to the perfectly and imperfectly conducting rough
surface cases, FBM works fairly well for dielectric reentrant
surface profiles for the VV polarization case.
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Fig. 8. Comparison of the magnitude of the magnetic current distribution |Ks| (in volts per meter) and the total magnetic field |H| (in amperes per meter) for
angles of incidence 0◦−60◦ with 20◦ steps calculated by MoM, CGS, QMR, Bi-CGSTAB, and FBM for VV polarization. The reentrant surface profile is the
same as in Fig. 5(a). Frequency is 300 MHz, and εr = 15 − j4. (a) θi = 0◦. (b) θi = 20◦. (c) θi = 40◦. (d) θi = 60◦. (e) θi = 0◦. (f) θi = 20◦. (g) θi = 40◦.
(h) θi = 60◦.

APPENDIX

Full expressions of the coefficients of (6) are given [17],
[21], i.e.,

S0mn =
1
2
δmn +

∫
∆ln

n̂′ · ∇φ0 dl
′

∼=




1
2 − (d2z/dx2)n∆x

4π[1+(dz/dx)2n] , m = n
jk0
4 (n̂n · R)H(2)

1 (k0|rm − rn|)
×√

1 + (dz/dx)2n∆x, m �= n

(11)

Z0mn = jωµ0

∫
∆ln

φ0 dl
′

∼= jωµ0




−j
4

(
1− 2j

π ln γk0

√
1+(dz/dx)2n∆x

4e

)

×√
1 + (dz/dx)2n∆x, m = n

−j
4H

(2)
0 (k0|rm − rn|)

×√
1 + (dz/dx)2n∆x, m �= n

(12)

S1mn =
1
2
δmn −

∫
∆ln

n̂′ · ∇φ1 dl
′

∼=




1
2 + (d2z/dx2)n∆x

4π[1+(dz/dx)2n] , m = n

− jk1
4 (n̂n · R)H(2)

1 (k1|rm − rn|)
×√

1 + (dz/dx)2n∆x, m �= n

(13)

Z1mn = − jωµ0

∫
∆ln

φ1 dl
′

∼= jωµ0




j
4

(
1 − 2j

π ln γk1

√
1+(dz/dx)2n∆x

4e

)

×√
1 + (dz/dx)2n∆x, m = n

j
4H

(2)
0 (k1|rm − rn|)
×√

1 + (dz/dx)2n∆x, m �= n.

(14)

In (11)–(14), γ = exp(0.5772 . . .), i.e., the exponential of
Euler’s constant, and R = (rm − rn)/|rm − rn|, with rm and
rn representing position vectors from the origin to the surface
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TABLE V
NUMBER OF ITERATIONS n0 SUCH THAT r(n0) < 0.01 IS SATISFIED FOR

DIFFERENT ANGLES OF INCIDENCE FOR DIELECTRIC REENTRANT

SURFACE GIVEN IN FIG. 5(a). RELATIVE DIELECTRIC CONSTANT:
εr = 15 − j4. FREQUENCY IS 300 MHz

points at xm and xn, respectively. Note that in (11) and (13), the
second term for m = n is small and, hence, can be ignored in
the numerical computation. Furthermore, if a linear approxima-
tion of the surface contour is used, this term is zero. All of the
equations for the HH polarization case, in view of the duality
theorem, should be modified in a sense that electric fields
and current densities must be replaced by magnetic ones. In
addition, µ0 must be replaced by ε0 through Z0mn calculation,
and µ0 must be replaced by ε1 through Z1mn calculation.
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