
J. Parallel Distrib. Comput. 67 (2006) 77–99
www.elsevier.com/locate/jpdc

Adaptive decomposition and remapping algorithms for object-space-parallel
direct volume rendering of unstructured grids�

Cevdet Aykanata,∗, B. Barla Cambazoglua, Ferit Findikb, Tahsin Kurcc

aComputer Engineering Department, Bilkent University, TR 06800 Bilkent, Ankara, Turkey
bMicrosoft Corporation, Redmond, WA 98052-6399, USA

cThe Ohio State University, Biomedical Informatics Department, Columbus, OH 43210, USA

Received 4 December 2005; received in revised form 31 March 2006; accepted 6 May 2006
Available online 24 July 2006

Abstract

Object space (OS) parallelization of an efficient direct volume rendering algorithm for unstructured grids on distributed-memory architectures
is investigated. The adaptive OS decomposition problem is modeled as a graph partitioning (GP) problem using an efficient and highly accurate
estimation scheme for view-dependent node and edge weighting. In the proposed model, minimizing the cutsize corresponds to minimizing
the parallelization overhead due to the data communication and redundant computation/storage while maintaining the GP balance constraint
corresponds to maintaining the computational load balance in parallel rendering. A GP-based, view-independent cell clustering scheme is
introduced to induce more tractable view-dependent computational graphs for successive visualizations. As another contribution, a graph-
theoretical remapping model is proposed as a solution to the general remapping problem and is used in minimization of the cell-data migration
overhead. The remapping tool RM-MeTiS is developed by modifying the GP tool MeTiS and is used in partitioning the remapping graphs.
Experiments are conducted using benchmark datasets on a 28-node PC cluster to evaluate the performance of the proposed models.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Direct volume rendering; Object space parallelization; Adaptive decomposition; Unstructured grids; Graph partitioning; Remapping

1. Introduction

The increasing complexity of scientific and engineering sim-
ulations necessitates more powerful tools for interpretation of
the acquired results. Scientific visualization algorithms are uti-
lized for detailed interpretation of the resulting datasets to reach
useful conclusions. Volume rendering is a very important branch
of scientific visualization, which makes it possible for scientists
to visualize 3D volumetric datasets.

The data used in volume rendering is in the form of a grid
superimposed on a volume. The nodes (data points) of the
grid contain the scalar values that represent the simulation
results. Volumetric grids can be classified as structured and

� This work is partially supported by The Scientific and Technical Research
Council of Turkey under Grant EEEAG-103E028.

∗ Corresponding author. Fax: +90 312 266 4047.
E-mail addresses: aykanat@cs.bilkent.edu.tr (C. Aykanat),

berkant@cs.bilkent.edu.tr (B.B. Cambazoglu),
feritf@microsoft.com (F. Findik), kurc-1@medctr.osu.edu (T. Kurc).

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2006.05.005

unstructured. Structured grids are topologically equivalent to
integer lattices and hence can easily be represented by a 3D
array. In unstructured grids, distribution of the data points does
not follow a regular pattern, and there may be voids in the
grid. These grids are represented by a list of cells in which
each cell contains pointers to its data points. The cell-to-cell
connectivity information is provided explicitly. With advances
in generating high-quality adaptive meshes, unstructured grids
became popular in simulating the scientific and engineering
problems that have complex geometries.

Volume rendering methods can be classified as direct and
indirect. Direct methods differ from indirect methods in that
they do not use any intermediate representation of the data.
They are more general, flexible and have the potential to provide
more complete information about the data being visualized.
However, direct methods are slow due to massive computations,
and visualizing the vast amounts of volumetric data produced by
simulations requires large computer memory. Hence, direct vol-
ume rendering (DVR) is a good candidate for parallelization on
distributed-memory architectures. In addition, most simulations

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52922385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jpdc
mailto:aykanat@cs.bilkent.edu.tr
mailto:berkant@cs.bilkent.edu.tr
mailto:feritf@microsoft.com
mailto:kurc-1@medctr.osu.edu

78 C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99

internal face

data points

front−facing external face back−facing external face

ray

sampling points along the ray

screen

tetrahedral cell

Fig. 1. Ray-casting-based DVR of an unstructured dataset.

are conducted on general-purpose multicomputers. Visualizing
the results on the parallel machine where the simulations are
done avoids the overhead of transporting large amounts of data.

Research on DVR of unstructured grids started in the early
1990s [1,8,10,11,14,15,17,26,27,43,44,47,50,53]. DVR meth-
ods can be classified as projection-based and ray-casting-
based. In projection-based methods, cells are projected onto
the screen, in visibility order, to find their contributions and
composite them. In ray-casting-based methods, for each pixel
on the screen, a ray is cast and followed through the volume
in front-to-back order. Samples are computed along the ray
and are composited to generate the color of the pixel. For non-
convex datasets, the rays may enter and exit the volume more
than once. The parts of the rays that lie inside the volume,
which in fact determine the contributions of the dataset to the
screen, are called ray segments. Fig. 1 displays some concepts
in ray-casting-based DVR. Ray casting is a desirable choice for
DVR due to its capability of rendering non-convex and cyclic
grids and its power of generating high-quality images. In this
work, Koyamada’s [26] algorithm, being one of the outstand-
ing algorithms in ray casting, is selected for parallelization.
Some basic concepts in DVR and an overview of Koyamada’s
DVR algorithm is provided in Appendix A.

1.1. Approaches and issues in parallel DVR

A DVR application contains two interacting domains: object
space (OS) and image space (IS). The OS is a 3D domain (vol-
ume) containing the data to be visualized. The IS is a 2D domain
(screen) containing the pixels from which rays are shot into
the 3D object domain. Based on these domains, there are basi-
cally two approaches in parallel DVR: IS and OS parallelism.
In IS parallelism, the screen is decomposed into regions, and
each region is assigned to a separate processor. The cells are re-
distributed among the processors such that each processor has
all the cells whose projection areas intersect the screen region
assigned to it. Then, each processor performs local rendering
operations to generate the complete image for its local screen
region. In OS parallelism, the object domain is decomposed
into disjoint subvolumes, and each subvolume is concurrently
rendered by a separate processor. At the end of this local ren-
dering phase, full screen but partial images are created at each
processor. In the pixel merging phase, the partial images are

composited over the interconnection network. OS parallelism
is a promising approach offering excellent scalability in terms
of the number of cells it can handle.

An important factor in decomposition is spatial coherency.
There are two closely interrelated types of spatial coherency:
IS coherency and OS coherency. IS coherency (pixel-to-pixel
coherency) relies on the observation that the rays shot from
nearby pixels of the screen are likely to pass through the same
and/or nearby cells of the volume. OS coherency (cell-to-cell
coherency) relies on the observation that nearby cells contribute
to the same and/or nearby pixels. Disturbing the spatial co-
herency due to decomposition incurs parallelization overheads
in the forms of communication, redundant computation, and
redundant storage. For example, in OS decomposition, assign-
ing the neighbor cells which contribute to the same pixel(s) to
separate processors incurs communication in the pixel merging
phase. Furthermore, the state-of-the-art DVR algorithms try to
exploit the spatial coherency as much as possible to speed up
rendering operations. Disturbing the spatial coherency utilized
by the underlying sequential DVR algorithm may incur redun-
dant computation. Hence, decomposition algorithms should try
to preserve the spatial coherency as much as possible to mini-
mize the total parallelization overhead.

Both IS- and OS-parallel approaches can be classified as
static, dynamic, and adaptive. The static approach is a view-
independent scheme, where the decomposition remains static
for multiple visualizations of the same dataset for different
viewing parameters. This approach has the advantage of avoid-
ing the decomposition overhead for each visualization instance.
But, it fails to maintain the load balance and spatial coherency
together. In the dynamic approach, atomic rendering tasks are
assigned to processors on a demand-driven basis. Although the
dynamic approach solves the load balancing problem in a nat-
ural way, it suffers from disturbing the spatial coherency since
neighbor pixels and/or cells may be processed by different pro-
cessors. Furthermore, each task assignment incurs communica-
tion on distributed-memory architectures. Adaptive decompo-
sition is a view-dependent scheme in which the decomposition
and task assignment are adapted according to the changes in
parameters of successive visualizations. The adaptive approach
is promising because it explicitly handles both the load balanc-
ing and spatial coherency problems.

1.2. Previous work on parallel DVR

Several works exist on parallel DVR of unstructured grids
on shared-memory architectures [5,6,48,49]. Challinger [5,6]
presented IS parallelization of a hybrid DVR algorithm [7].
Wilhelms et al. [48] presented IS parallelization of a hierarchi-
cal DVR algorithm for irregular and multiple grids. Williams
[49] presented OS parallelization of a projection-based DVR
algorithm. The adaptive approach was investigated in IS par-
allelization for distributed-memory architectures [3,28,38].
Cambazoglu and Aykanat [3] developed an adaptive, IS-
parallel DVR algorithm based on hypergraph partitioning.
Kutluca et al. [28] presented a comparison of 12 adaptive IS

C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99 79

decomposition algorithms. Palmer and Taylor [38] presented
adaptive IS parallelization of a ray-casting-based DVR algo-
rithm. Two recent works exist for distributed-shared-memory
architectures [12,19]. Farias and Silva [12] presented paral-
lelization of their ZSWEEP algorithm [10]. Hofsetz and Ma
[19] presented multithreaded parallelization of a projection-
based DVR algorithm. Several recent works exist on parallel
polygon rendering [29,34,39,40].

OS parallelization on distributed-memory architectures was
investigated in two works [31,32], where the static task assign-
ment approach was adopted. In the former work [31], Ma pre-
sented parallelization of the ray-casting-based DVR algorithm
of Garrity [14]. Ma formulated the static OS decomposition
problem as a graph partitioning (GP) problem. In this model,
nodes of the graph represent the cells, and edges represent the
connectivity between the cells. Thus, minimizing the cutsize in
partitioning is an effort towards preserving the OS coherency.
Unit node and edge weighting is used so that the GP tool Chaco
[18] generates subvolumes containing equal number of cells.
But, due to the large cell-size variation in unstructured grids,
having subvolumes with equal number of cells is not adequate
to maintain the load balance. A similar situation holds for the
unit edge weighting scheme due to the large face area variation
in unstructured grids.

In the latter work [32], which is reelaborated in [33], Ma and
Crockett adopted scattered cell assignment to achieve static load
balancing in OS parallelization of a projection-based DVR al-
gorithm. In the scattered cell assignment approach, assignment
of neighbor cells to different processors results in a total loss of
spatial coherency. This may cause a considerable performance
degradation in local rendering computations if the underlying
sequential DVR algorithm exploits the spatial coherency. For
example, Koyamada’s ray-casting-based DVR algorithm, which
is the underlying DVR algorithm in our work, exploits OS co-
herency during the ray segment traversal through connectivity
information. The DVR algorithm used in [32] exploits neither
OS nor IS coherency, so its performance is not affected by the
lack of spatial coherency in the local rendering phase. However,
the ray segments generated for each local cell of each processor
must be saved until the pixel merging phase, and each such ray
segment incurs an extra volume of communication in the data
migration phase. Ma and Crockett [32] proposed a depth order-
ing for local rendering and PM computations by partitioning the
volume along orthogonal coordinate planes through the use of
a hierarchical spatial data structure. This computational order-
ing through spatial partitioning restores some amount of spatial
coherency, which is totally destroyed due to the scattered as-
signment, and also reduces the memory requirement due to the
storage of the generated ray segments. In order to decrease the
communication overhead in the PM phase, the local rendering
and pixel merging phases are multiplexed and communication
is overlapped with local rendering computations.

Wittenbrink [51] investigated parallelization of the projection-
based DVR algorithm of Shirley and Tuchman [43] on Pix-
elFlow [9], which is a special-purpose graphics architecture
providing hardware for both IS and OS parallelism for polygon
rendering. Special-purpose architectures are out of the scope

of this paper. In this paper, we investigate OS parallelization
for general-purpose distributed-memory architectures assum-
ing that the visualization process is performed on the parallel
machine where the simulations are done. A survey of parallel
volume rendering algorithms can be found in [52].

1.3. Contributions

In this work, we propose a novel GP-based approach, which
consists of a view-independent and a view-dependent step,
for adaptive OS decomposition. The objective of the view-
independent step is to minimize the view-dependent decom-
position overhead to make adaptive decomposition affordable.
For the view-independent step, we propose an efficient top-
down cell clustering scheme, formulated as a GP problem, to
generate the atomic tasks, i.e., clusters of connected cells. We
approximate the average-case computational structure for mul-
tiple visualizations of a dataset V by a computational graph
GV . The nodes and edges of GV , which represent the cell-to-
cell connectivity information of a given volumetric dataset V ,
are weighted with the volumes and areas of the respective cells
and faces in V . Partitioning this weighted graph induces cell
clusters of roughly equal volume while minimizing the sum of
the boundary areas between cluster pairs.

The view-dependent OS decomposition problem is modeled
as K-way partitioning of the coarse computational graph ob-
tained by contracting GV according to the clustering solution
found in the view-independent step. A highly accurate and ef-
ficient estimation scheme is proposed for view-dependent node
and edge weighting of the coarse computational graph, where
the weight of a node accounts for the computational load of
the respective cell cluster and the weight of an edge accounts
for the number of common rays intersecting the respective pair
of cell clusters. In this model, maintaining the balance among
part sizes corresponds to maintaining the computational load
balance in the local rendering phase, and minimizing the cut-
size corresponds to minimizing the total number of local ray
segments to be generated due to the virtual non-convexities in-
troduced by the decomposition. Thus, minimizing the cutsize
corresponds to minimizing the total overhead due to the redun-
dant computation and storage during the local rendering phase
and the total communication in the pixel merging phase. The
consistency of this correspondence can be maintained by an ef-
ficient implementation of the local rendering phase, which con-
siders the set of local cell clusters of each processor as a single
subvolume.

In adaptive OS decomposition, each new decomposition and
mapping may incur an excessive amount of cluster data migra-
tion due to the differences in the new and previous mappings
of cell clusters. Therefore, an adaptive decomposition model
should also consider minimization of this data redistribution
overhead as well as minimization of the communication volume
and the amount of redundant computation to incur because of
assigning interacting clusters to different processors. This prob-
lem constitutes a typical case of a general problem known as
the remapping problem. In this work, we also propose a novel

80 C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99

Table 1
The summary of important abbreviations and symbols

bf face/ff face Back-facing/front-facing face
NPCS The normalized projection coordinate system: V transformed into the IS
p-node/t-node Processor/task node in a remapping graph
pt-edge/tt-edge Processor-to-task/task-to-task edge in a remapping graph
WCS The world coordinate system: V defined in the OS
C = {C1, . . . ,C�} An �-way clustering of the cells of V
Ci The subvolume of V determined by the set of cells in the ith cluster of C
Ẽpt/Ẽtt The set of pt-edges/tt-edges in a remapping graph
�v The volume of a unit cube of the WCS in the NPCS for a given v

G = (N , E, w) The computational graph
(G, M, T) The remapping 3-tuple
G̃ = (Ñ , Ẽ, w̃) The remapping graph
G̃� The �th level coarser remapping graph obtained by the coarsening phase of RM-MeTiS
G̃m The coarsest remapping graph obtained by the coarsening phase of RM-MeTiS
GV = (NV , EV) The graph representing the cell-to-cell connectivity information of V
GVk

The graph representing the cell-to-cell connectivity information of a subvolume Vk of V
Gv

V = (NV , EV , wv
V) The fine visualization graph representing the computational structure of rendering (V, v)

Gavg
V = (NV , EV , w

avg
V) The clustering graph representing an average-case computational structure for V

GC = (NC, EC) The coarse graph representing the cluster-to-cluster connectivity information of V
Gv

C = (NC, EC, wv
C) The coarse visualization graph representing the computational structure of rendering (V, v)

according to cell clustering C
(Gv

C, MC, TC) The remapping 3-tuple for adaptive OS decomposition
G̃v

C = (ÑC, ẼC, w̃v
C) The coarse remapping graph for adaptive OS decomposition

I v
i The number of ray–face intersections performed in subvolume Ci of V for a given v

K The number of processors
M/MC The current task-to-processor/cluster-to-processor mapping functions
M̃/M̃C The task-to-processor/cluster-to-processor mapping functions obtained after remapping
Ñp/Ñt The set of p-nodes/t-nodes in a remapping graph
� = {P1, . . . ,PK } A K-way partition of a graph G/GV
�̃ = {P̃1, . . . , P̃K } A K-way partition of a remapping graph G̃/G̃v

C satisfying the mapping constraint (Eq. (3))

�̃� A K-way partition of the �th level coarser remapping graph G̃� obtained during the uncoarsening phase of RM-MeTiS
Pk The set of nodes in the kth part of � (it determines a subvolume Vk of V)

P̃k The kth part of �̃ containing a single p-node and a set of t-nodes
Rv

i The number of ray segments generated for subvolume Ci of V for a given v

Sv
i The number of samples taken in subvolume Ci of V for a given v

tI /tR/tS The time cost of a ray–face intersection/ray-segment generation/sampling operation
T /TC The task/cluster migration cost function
T v

i The sequential rendering time of a subvolume Ci of V for a given v

(V, v) A visualization instance: rendering a volumetric dataset V for a given viewing parameter set v

1/�z The sampling rate in equidistant sampling
(z, s) The depth (z) and scalar (s) values computed at a ray–face intersection point

GP-based model as a solution to the general remapping prob-
lem. The proposed model generates a remapping graph, aug-
menting the computational graph by adding processor nodes
and processor-to-task edges. In the literature, the idea of mak-
ing such augmentations appears in a different manner in the
context of the task assignment problem in heterogeneous dis-
tributed systems [25,30,45]. In this work, a remapping tool,
herein referred to as ReMapping-MeTiS (RM-MeTiS), is also
developed for partitioning the remapping graph by modifying
the GP tool MeTiS [23] and is used in adaptive OS decompo-
sition.

The remapping problem has received close attention in the
literature. In general, scratch-remap [36,42] and diffusion-based
[37,41,42,46] approaches are followed as GP-based solutions
to this problem. Oliker and Biswas [36] proposed a scheme
in which the workload graph is repartitioned from scratch us-
ing MeTiS, and the parts are assigned to processors in a sepa-

rate step to minimize the data movement. Two improvements
for the scratch-remap scheme are proposed by Schloegel et al.
[42]. Ou and Ranka [37] developed a method which optimally
minimizes the one-norm of the diffusion solution using linear
programming. Walshaw et al. [46] proposed an iterative opti-
mization technique which incrementally modifies the existing
mapping to construct a new mapping. Schloegel et al. [41] per-
formed diffusion of tasks in a multilevel framework with two
algorithms that try to minimize data movement without sig-
nificantly compromising the cutsize. In [42], the same authors
proposed improvements over their diffusion-based remapping
algorithms.

The rest of the paper is organized as follows. Table 1 displays
some abbreviations and the notation used in the paper. The
proposed adaptive OS decomposition approach is discussed in
Section 2. Section 3 presents the proposed remapping model.
Our remapping tool RM-MeTiS is presented in Section 4. The

C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99 81

OS-parallel DVR algorithm is discussed in Section 5. Section 6
gives the experimental results obtained on a 28-node PC cluster.
Finally, conclusions are presented in Section 7.

2. Creating view-dependent coarse-grain visualization
graph

2.1. Fine-grain decomposition model

The cell-to-cell connectivity information of a volumetric
dataset V is represented as an undirected graph GV = (NV , EV).
The nodes of GV represent the cells of V , and there exists an
edge between two nodes if the respective cells share a face.
Only internal faces incur edges in GV . In a partition of a graph,
an edge is said to be cut if its nodes are in different parts, and
uncut otherwise. Consider a cut edge eij ∈ EV corresponding
to internal face fij shared between the pair of cells ci and cj

which are mapped to separate processors. In the tetrahedral cell
model, the set of rays intersecting internal face fij determines
the set of common rays intersecting both ci and cj . Without
loss of generality, assume that cj is behind ci , in front-to-back
visibility ordering, for a given viewing parameter set v. This
also denotes that fij is a back-facing (bf) face of ci , whereas it
is a front-facing (ff) face of cj . Since the composition operation
is associative, the processor holding cj can generate ray seg-
ments for the rays intersecting ff face fij of cj and initiate the
traversal and composition of these ray segments without wait-
ing for the composition results of the respective rays from the
processor holding ci . However, these partial composition re-
sults should be merged according to the visibility order. Hence,
each cut edge eij in a partition of GV incurs communication
because of the merging operations, and the volume of com-
munication is proportional to the number of rays intersecting
fij . Each cut edge eij also disturbs the OS coherency utilized
by Koyamada’s sequential algorithm. In this algorithm, for any
ray intersecting face fij , the exit-point (z, s) values computed
for cell ci are directly used as the entry-point (z, s) values for
cell cj for sampling and composition operations. So, cut edge
eij incurs the redundant computation of the (z, s) values for
cj from scratch for each ray intersecting fij during the ray-
segment generation. Furthermore, cut edge eij incurs the re-
dundant storage of the ray segments generated and composited
for ff face fij of cj in the processor holding cj . The amounts
of both types of redundancies are proportional to the number
of rays intersecting fij .

The computational structure of rendering a visualization in-
stance (V, v) can be represented by a weighted graph Gv

V =
(NV , EV , wv

V), herein referred to as the visualization graph.
wv

V denotes the weighting function to be defined on the nodes
and edges of GV to create Gv

V for a given v. Each node of Gv
V

should be assigned a weight proportional to the rendering com-
putations associated with the respective cell. Each edge of Gv

V
should be assigned a weight proportional to the number of rays
intersecting the respective internal face. Thus, an OS decom-
position of a visualization instance (V, v) can be obtained by
K-way partitioning of visualization graph Gv

V . Each part Pk in a
K-way partition � = {P1, P2, . . . ,PK} of Gv

V corresponds to a

subvolume Vk to be rendered simultaneously and independently
by a distinct processor Pk , for k = 1, 2, . . . , K . Maintaining the
balance constraint in GP corresponds to maintaining the com-
putational load balance among the processors during the local
rendering calculations. The cutsize of a partition � is exactly
equal to the increase (�R) in the number of ray segments gen-
erated, processed, and stored because of the OS decomposition.
That is, the cutsize is equal to �R = R′ − R, where R′ and R
denote the total number of ray segments generated by the par-
allel and sequential DVR algorithms, respectively. Hence, the
cutsize plus R determines the worst-case communication vol-
ume to incur during the pixel merging phase. The worst case
occurs if the ray segment(s) generated for each active pixel are
merged by a processor different than the processor(s) which
generated those ray segments. Since R is a constant value for
a given visualization instance, minimizing the cutsize corre-
sponds to minimizing both the upper bound on the total volume
of communication and the total amount of redundant computa-
tion and storage.

We identify two types of computational interactions between
the cells: internal and external interactions. An internal inter-
action occurs between two neighbor cells if they share an inter-
nal face. An external interaction occurs between two external
cells if the projection areas of their ff external faces overlap.
If an internal interaction exists between two cells, then this
interaction exists throughout the visualization, but its magni-
tude is subject to change with the varying viewing parameters.
However, in the case of external interactions, both interactions
and their magnitudes are subject to change with the varying
viewing parameters. In the proposed model, only the internal
interactions induce edges in Gv

V , where the edge weights repre-
sent the magnitudes of the interactions between the respective
cells for the given v. Since external interactions exist only in
non-convex meshes, the proposed model provides a full cover-
age for cell-to-cell interactions. In meshes having a high rate
of convexity, the total amount of external interactions is much
less than that of internal interactions. So, omission of external
interactions in the model is not expected to degrade the quality
of decompositions in such datasets.

2.2. View-independent cell clustering for coarsening

OS decomposition is performed at the beginning of each
visualization instance. So, this overhead must be minimized
as much as possible to make it affordable. We apply a view-
independent clustering on cells of V to induce more tractable
visualization graph instances for the following view-dependent
OS decompositions. That is, instead of individual cells, the cell
clusters constitute the atomic tasks for the rendering compu-
tations. V is decomposed into a set C = {C1, C2, . . . , C�} of �
disjoint cell clusters. The total number of clusters should be
both considerably smaller than the number of cells and suffi-
ciently larger than K to enable a large search space for the GP
tool during the view-dependent OS decomposition.

A view-independent graph Gavg
V = (NV , EV , w

avg
V) is con-

structed for top-down clustering through GP. Here, w
avg
V

82 C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99

Fig. 2. (a) A 7-way clustering C = {C1, C2, . . . , C7} of a sample dataset V containing 97 cells. (b) A coarse visualization graph GC obtained by contracting
GV according to clustering C and a 2-way partition � = {P1 = {C1, C2, C3, C4}, P2 = {C5, C6, C7}} of GC for v1. Numbers inside the circles show the cell
counts that the respective clusters have. Numbers beside the edges show the number of pseudo-boundary faces shared by the respective pairs of cell clusters.
(c) The decomposition and mapping of V according to �.

denotes the weighting function defined on the nodes and edges
of GV for estimating an average-case computational structure
for multiple visualizations of V . Each node of Gavg

V is assigned
a weight proportional to the volume of the respective cell.
The rationale is that the number of samples to be taken in a
cell is proportional to its volume. Furthermore, more rays are
likely to hit a cell with a large volume. Thus, the volume of
a cell in the world coordinate system (WCS) approximates a
view-independent load for the cell, relative to other cells. Sim-
ilarly, more rays are likely to intersect a face with a large area.
So, the area of a face approximates the amount of interaction
between the two cells sharing that face. Hence, each edge of
Gavg

V is weighted with the area (in the WCS) of the respective
face. The �-way partitioning of Gavg

V serves our purpose for
view-independent �-way cell clustering by inducing cell clus-
ters of approximately equal volume while minimizing the sum
of the boundary areas between neighbor clusters.

Fig. 2(a) illustrates a 7-way clustering of a sample dataset
V . In Fig. 2(a), due to the 2D representation, each triangle
represents a tetrahedral cell, and each triangle edge represents
the respective face of the cell. In a cluster, a face is called a
pseudo-boundary face if it is shared by two cells belonging to
two different clusters. In Fig. 2(a), the dotted lines represent
internal faces of a cluster, and the solid lines determine cluster
boundaries. Each solid line shared by two triangles represents
a pseudo-boundary face.

Graph GV representing V is contracted according to cluster-
ing C to obtain a coarser graph representation GC = (NC, EC)

for V . In GC , NC = C, and there exists an edge eij between
the nodes representing clusters Ci and Cj if and only if these
clusters share at least one pseudo-boundary face. Graph GC rep-
resents the cluster-to-cluster connectivity information of V for
the given clustering C. Fig. 2(b) illustrates the contraction of
GV according to the 7-way clustering C given in Fig. 2(a) to
obtain GC with seven nodes and 11 edges.

A pseudo-boundary face may become a boundary face after
a decomposition if it is shared by two cells belonging to two
different clusters which are mapped to different processors. In
Fig. 2(b), the cut edges (n2, n5), (n2, n6), (n3, n6), (n3, n7),
and (n4, n7) respectively, represent 3, 4, 3, 1, and 1 pseudo-

boundary faces, which become boundary faces after the decom-
position. These boundary faces represented by the cut edges in-
cur redundant computation and storage during the local render-
ing phase and communication during the pixel merging phase.
Fig. 2(c) displays the 2-way decomposition and mapping of V
induced by bipartition � given in Fig. 2(b). In Fig. 2(c), the
shaded and unshaded cell clusters show the sets of clusters P1
and P2 assigned to processors P1 and P2, respectively. The bold
lines determine the boundaries of the local subvolumes formed
by local cell clusters, and each bold line segment represents a
boundary face.

2.3. View-dependent node and edge weighting

The computational structure of each successive visualization
instance (V, v) is represented by a coarse visualization graph
Gv

C = (NC, EC, wv
C), where wv

C denotes the weighting function
to be computed for the nodes and edges of GC to construct Gv

C .
Clearly, the topology of Gv

C does not change with changing v.
To simplify the discussion, we assume that the entire volume
is visible on the screen. Extensions to the proposed weight
estimation schemes when the volume is partially visible are
presented in Appendix B.

2.3.1. Node weight estimation
The rendering time T v

i of a cell cluster Ci of V for a given
v can be dissected into three major components: ray-segment
generation, ray–face intersection, and sampling times. Ray-
segment generation involves scan converting ff external and ff
pseudo-boundary faces of Ci to compute the intersections of
ray segments with these faces and the (z, s) values at the inter-
section points. Ray–face intersection involves finding the inter-
sections of ray segments with the bf faces of Ci and computing
the scalar values and gradients at the intersections. Sampling
involves computing the scalar values at sampling points inside
Ci , mapping the scalar values to colors and opacities, and com-
positing these. Hence,

w(ni) = T v
i = Rv

i tR + I v
i tI + Sv

i tS, (1)

C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99 83

where Rv
i , I v

i , and Sv
i denote the numbers of ray segments

generated for Ci , ray–face intersections performed, and sam-
ples taken in Ci , respectively. In Eq. (1), tR , tI , and tS
represent the unit costs of respective computations. These
unit costs cannot be determined by measurement due to the
highly interleaved execution manner of the respective types of
computations. Hence, we estimated these unit costs statistically
using the least-squares approximation method. Our experi-
mental analysis in Section 6.2 shows that the average error in
estimating the rendering time of a subvolume/volume using Eq.
(1) with correct Rv , I v , and Sv counts is below 4%. Hence, the
computational load estimation to determine the weight w(ni)

of a node ni of Gv
C reduces to estimation of the I v

i , Sv
i , and Rv

i

counts associated with the rendering of Ci for a given v.
I v
i can be calculated by summing the number of pixels cov-

ered by the projection areas of bf faces in Ci . But, this exact
computation scheme requires scan conversion of all bf faces
and is a costly operation. Hence, we approximate the pixel cov-
erage count of a face f by its projection area af in the normal-
ized projection coordinate system (NPCS) as

af = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2), (2)

where xi and yi denote the x and y coordinates (in the NPCS)
of the ith node of face f, respectively. The per face errors due
to the discretization of the projection screen are not reflected to
the total estimate for I v

i due to the summation of floating-point
area values of faces with contiguous projection areas.

In mid-point sampling, Sv
i is simply equal to I v

i since each
ray–face intersection incurs a single sampling. In equidistant
sampling, Sv

i can be estimated by multiplying the volume of a
cluster in the NPCS by the fixed sampling rate 1/�z. Because,
the volume of the cluster in the NPCS denotes the number of
unit cubes in that volume, and the number of samples to be
taken in each unit cube in the NPCS is equal to 1/�z. As the
NPCS is dependent on v, a straightforward implementation re-
quires the computation and summation of the volumes (in the
NPCS) of the individual cells of the cluster for each visualiza-
tion instance. However, we adopt a much more efficient scheme
which exploits the idea that there exists a constant scaling be-
tween any volume in the view-independent WCS and the view-
dependent NPCS for a given v in parallel projection. This scale
factor �v can be easily determined by computing the volume of
a unit cube of the WCS in the NPCS for a given v. The total
volume of each cluster in the WCS is computed only once so
that estimation of Sv

i for a cluster Ci reduces to multiplying its
volume by �v/�z. The estimation errors due to the discretiza-
tion of the sampling volume are just at boundary surfaces of
clusters.

Rv
i can be approximated by the sum of the projection areas

of ff external and ff pseudo-boundary faces of Ci using Eq.
(2). However, as it will be described in Section 5.3, our local
rendering scheme considers the whole set of local clusters of
a processor as a single subvolume during the rendering, so ray
segments are generated only for the ff external and ff boundary
faces of the subvolume. As the ray segment generation cost of
a cluster depends on the partitioning of Gv

C , incorporation of
this cost to an existing GP tool is quite difficult. Furthermore,

partitioning of Gv
C involves minimization of the number of ray-

segment generations due to boundary faces. Hence, the ray-
segment generation cost is ignored in node weighting of Gv

C .

2.3.2. Edge weight estimation
The weight w(ni, nj) of an edge eij , which indicates the

amount of interaction between clusters Ci and Cj , is computed
as follows. Each face shared by two neighbor cells in clusters
Ci and Cj contributes its pixel coverage count to edge weight
w(ni, nj). The pixel coverage counts of these pseudo-boundary
faces between Ci and Cj are approximated by the projection
areas of these faces, which are computed using Eq. (2). The
source of errors in this approximation is due to the discretiza-
tion of the projection screen similar to that of ray–face inter-
section estimation. If clusters Ci and Cj are mapped to different
processors, then these pseudo-boundary faces become bound-
ary faces of the local subvolumes of the respective processors,
thus incurring computation and storage overheads due to ray-
segment generation and communication overhead due to pixel
merging. The magnitudes of these overheads are proportional
to edge weight w(ni, nj).

3. Remapping model for adaptive decomposition

3.1. General remapping model

In the remapping problem, the computational structure of an
application changes from one instance of the computation to
another. The task mapping should be adapted in accordance
with the changes in the computational structure, and this neces-
sitates migration of computational tasks together with their as-
sociated data structures. The objective in each remapping step
is to preserve the load balance while minimizing the total over-
head due to both task migration and the interactions between
the tasks mapped to different processors. A remapping prob-
lem instance is defined by a 3-tuple (G, M, T). Here, G =
(N , E, w) denotes the computational graph [4] representing the
modified computational structure of the application. The nodes
of this graph represent atomic computations. The weight w(ni)

of node ni denotes the computational load of the respective
task. The weight w(ni, nj) of edge eij represents the amount of
communication and redundant computation to incur when the
tasks represented by ni and nj are mapped to different proces-
sors. M denotes the current K-way task-to-processor mapping
function, where M(ni) =k means that the respective task cur-
rently resides in processor Pk . T denotes the task migration
cost function, where T (ni) is the cost of migrating the respec-
tive task from its current processor PM(ni) to another processor
due to remapping.

In the proposed model, we construct a remapping graph
G̃ = (Ñ , Ẽ, w̃) by augmenting computational graph G, adding
a node pk for each processor Pk . That is, Ñ = Ñp ∪Ñt , where
Ñp = {p1, p2, . . . , pK} and Ñt = N . The added and orig-
inal nodes are called as processor-nodes (p-nodes) and task-
nodes (t-nodes), respectively. To obtain the edge set Ẽ of G̃, we
augment edge set E by connecting each p-node to the t-nodes

84 C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99

Fig. 3. (a) The remapping graph G̃v
C constructed after rendering visualization instance (V, v1) in Fig. 2(c). The circles and squares represent the t-nodes and

p-nodes, respectively. The dashed bold curve shows the cut, which represents bipartition � = {{p1, n1, n2, n3, n4}, {p2, n5, n6, n7}} for (V, v1). The solid bold
curve shows the cut, which represents repartitioning �̃ = {{p1, n3, n4, n7},{p2, n1, n2, n5, n6}} of G̃v

C for (V, v2). (b) The 2-way decomposition and mapping

of V induced by �̃ for rendering of (V, v2). (c) The remapping graph G̃v
C to be constructed after rendering (V, v2) for the next visualization instance (V, v3).

that correspond to the tasks residing in the respective proces-
sor according to the current mapping M. That is, Ẽ = Ẽpt ∪ Ẽtt ,
where Ẽpt = {(ni, pk) : ni ∈ Ñt , pk ∈ Ñp, M(ni) = k} and
Ẽtt = E . The added and original edges are called processor-to-
task edges (pt-edges) and task-to-task edges (tt-edges), respec-
tively. In node weighting, t-node weights remain the same, and
p-nodes are assigned zero weights. In edge weighting, tt-edge
weights remain the same, and each pt-edge is assigned the task
migration cost of the respective task.

A K-way partition �̃ = {P̃1, P̃2, . . . , P̃K} of G̃ is said to be
feasible if it satisfies the mapping constraint,

|P̃k ∩ Ñp| = 1 for k = 1, 2, . . . , K, (3)

i.e., each part P̃k of �̃ contains exactly one p-node. Then, a
feasible partition �̃ of G̃ induces remapping M̃ in which tasks
(t-nodes) in each part are all assigned to the same processor cor-
responding to the unique p-node in that part. That is, M̃(ni) =
k if both t-node ni and p-node pk are in the same part of �̃.

Consequently, the remapping problem can be formulated as
finding a K-way partition of G̃ satisfying the mapping con-
straint (Eq. (3)). Maintaining the GP balance corresponds to
maintaining the computational load balance. Minimizing the
cutsize corresponds to minimizing the total overhead due to the
task migration and the interactions between the tasks mapped
to different processors. A cut tt-edge eij incurs communication
between processors PM̃(ni)

and PM̃(nj)
due to the interactions

between the tasks corresponding to t-nodes ni and nj . The cut
tt-edges may also incur redundant computation. A cut pt-edge
eik incurs communication due to the migration of the task cor-
responding to t-node ni from processor Pk to PM̃(ni)

. The task
migration cost function T must have an appropriate scaling be-
tween the weights of tt-edges and pt-edges.

3.2. Remapping model in OS-parallel DVR

Each visualization instance (V, v) is identified by a 3-tuple
(Gv

C, MC, TC). Gv
C represents the computational structure of

(V, v). MC is the current cluster-to-processor mapping. TC is
constructed through a scaling which considers only the commu-

nication volume overhead. That is, TC(ni) is taken to be equal
to the ratio of the data size of cluster Ci to the data size of a sin-
gle ray segment. In the remapping graph G̃v

C , tt-edges represent
the interactions between clusters as in Gv

C , and pt-edges repre-
sent the current processor mapping of clusters. TC determines
the weights of pt-edges. So, K-way partitioning of G̃v

C accord-
ing to the mapping constraint (Eq. (3)) induces a remapping
for the clusters of V with the desired properties for the new v.

Fig. 3(a) illustrates the remapping graph G̃v
C for the case in

Fig. 2. Partition � determines the current mapping MC(C1) =
MC(C2) = MC(C3) = MC(C4) = 1 and MC(C5) =
MC(C6) = MC(C7) = 2 for (V, v1). There are no cut pt-
edges in � as expected. �̃ in Fig. 3(a) determines the remap-
ping M̃C(C3) = M̃C(C4) = M̃C(C7) = 1 and M̃C(C1) =
M̃C(C2) = M̃C(C5) = M̃C(C6) = 2 for (V, v2) as shown in
Fig. 3(b). Cut pt-edges (p1, n1) and (p1, n2) in �̃ incur migra-
tion of clusters C1 and C2 from processor P1 to P2 before the
rendering of (V, v2). Cut pt-edge (p2, n7) incurs migration of
C7 from P2 to P1. Cut tt-edges (n1, n3), (n2, n3), (n3, n6), and
(n6, n7) represent the sets of boundary faces shared between
the respective cluster pairs that will incur communication and
redundant computation during the rendering of (V, v2).

4. RM-MeTiS: MeTiS-based remapping heuristic

We exploit the state-of-the-art GP tool MeTiS [23] (kMeTiS
option) for partitioning the remapping graph G̃. This section
presents our modifications and enhancements to the MeTiS
package that make it support the mapping constraint (Eq. (3)).
MeTiS consists of three phases: multilevel coarsening, initial
partitioning (referred to as initial remapping in RM-MeTiS),
and multilevel refinement.

4.1. Multilevel coarsening

In this phase, the given graph G̃ = G̃0 is coarsened into
a sequence of smaller graphs G̃1, G̃2, . . . , G̃m until the coars-
est graph G̃m becomes sufficiently small. This coarsening is
achieved by coalescing disjoint node pairs of graph G̃� into

C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99 85

Fig. 4. 2-level coarsening of a sample remapping graph for a 3-processor system. (a) The original remapping graph G̃ = G̃0 with the current mapping
� = {{p1, n6, n9, n11, n15, n16}, {p2, n4, n5, n8, n10, n14}, {p3, n7, n12, n13, n17, n18}} and the randomized heavy-edge matching (the set of bold edges) in
G̃0. (b) The coarser remapping graph G̃1 and the matching in G̃1. (c) The coarsest remapping graph G̃2.

supernodes of the next level graph G̃�+1 through various ran-
domized matching schemes in which nodes are visited in a ran-
dom order. Among various matching criteria, the heavy-edge
matching scheme is selected for RM-MeTiS. In heavy-edge
matching, a node ni is matched with a node nj if the weight of
the edge between these two nodes is maximum over all valid
edges incident to node ni .

At each level �, G̃� effectively induces an |Ñ�|-way partition
of G̃0. RM-MeTiS maintains the mapping constraint in a rela-
tively relaxed manner such that each supernode of G̃� contains
at most one p-node of G̃0. Two unmatched nodes are considered
for matching only if at least one of them is a t-node. Match-
ing two t-nodes in G̃� creates a t-supernode in G̃�+1, whereas
matching a t-node with a p-node creates a p-supernode. So,
the constituent nodes of a t-supernode are all t-nodes, whereas
the constituent nodes of a p-supernode are all t-nodes except
one p-node. There exist exactly K p-supernodes in G̃� at each
level �.

Fig. 4 shows 2-level coarsening of a sample remapping
graph G̃ containing 15 t-nodes and three p-nodes. In Fig.
4(a), the circles and squares denote t-nodes and p-nodes, re-
spectively. In Figs. 4(b) and (c), the circles/ellipses represent
t-supernodes, and each ellipse with a rectangle inside repre-
sents a p-supernode. The numbers inside the circles/ellipses
represent the indices of the nodes constituting the respective
nodes/supernodes. The numbers beside the edges denote their
weights. For simplicity, unit weights are assumed for t-nodes.
Recall that p-nodes have zero weights. Hence, the current 3-
way mapping, shown by the dashed curve in Fig. 4(a), achieves
perfect load balance by assigning five t-nodes to each proces-
sor. In Figs. 4(a) and (b), decimal ordering is assumed to be the
random node visit order used during the matching. In Fig. 4(b),
the node visit order is determined by the index of the smallest-
indexed node in a supernode. The matching shown in Fig. 4(a)
contains eight edges of G̃0, where nodes n11 and n13 remain
unmatched. Fig. 4(b) shows the coarser graph G̃1 obtained by
contracting G̃0 according to the matching in Fig. 4(a).

In Fig. 4(c), the two dashed edges incident to p-supernode
[p3, n12, n13] denote the two pp-edges of G̃2. Although G̃0 does

not contain any pp-edges, coarser graphs may contain such
edges because of merging two adjacent t-nodes with different
p-nodes. These edges are not considered during the coarsening
phase since two p-supernodes cannot be matched due to the
mapping constraint. They are not considered during the initial
partitioning and refinement phases since p-supernodes are not
allowed to move as described in the following sections. The
pp-edges always remain on the cut during the initial partitioning
phase and continue to remain on the cut during the uncoarsening
phase until they disappear due to node expansions.

4.2. Initial remapping

In RM-MeTiS, the objective of the initial partitioning phase
is to find a K-way partition of G̃m satisfying the mapping and
GP balance constraints. We adopt a direct K-way initial par-
titioning scheme instead of the recursive bisection scheme of
pMeTiS [22] adopted in kMeTiS [21] since it is harder to main-
tain the mapping constraint during the recursive bisection and
the intrinsic features of G̃m can be efficiently exploited in direct
K-way initial partitioning. The greedy graph growing partition-
ing (GGGP) algorithm is extended for K-way initial partition-
ing. GGGP starts from an initial bipartition, where a randomly
selected node and all remaining nodes form the growing and
shrinking parts, respectively. Then, the boundary nodes of the
shrinking part are moved to the growing part according to their
Fiduccia–Mattheyses (FM) [13] gains until the balance con-
straint is satisfied. The FM gain of a move is the change in the
cutsize if the move is realized.

Extension of GGGP to K-way partitioning requires selection
of K − 1 such nodes for determining the growing parts. For-
tunately, the property that G̃m contains exactly K p-supernodes
and |Ñm|−K t-supernodes can be considered as inducing a
(K + 1)-way initial partition of G̃m such that each p-supernode
constitutes a p-part and all t-supernodes constitute a single
t-part. The K p-parts are the natural candidates for K −1 grow-
ing parts, and the remaining p-part together with the t-part con-
stitute the shrinking part. So, the problem is the selection of
a good shrinking part, which is, in fact, finding a good p-part

86 C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99

Fig. 5. The initial remapping phase. (a) The attraction values for the t-part. (b) The t-part is assigned to the most attractive p-part P2 constituting the shrinking part.
t-supernode {n6, n11, n14} with the maximum move gain of +1 moves from P2 to P1, reducing the cutsize from 56 to 55. (c) t-supernode {n10, n18} with the max-
imum move gain of +2 moves from P2 to P3, reducing the cutsize to 53. (d) Remapping �̃2 = {{[p1, n7, n9, n16], [n6, n11, n14]}, {[p2, n4, n5, n17], [n8, n15]},
{[p3, n12, n13], [n10, n18]}} on G̃2.

assignment for all t-supernodes. In RM-MeTiS, all t-supernodes
are assigned to the most attractive p-part. The attraction of a
p-part is defined as the sum of all pt-edges between the respec-
tive p-supernode and all t-supernodes.

Each t-supernode in the shrinking part is associated with
K−1 moves since it can move to K−1 different growing parts.
So, K − 1 FM move gains for each boundary t-supernode are
computed, and those t-supernodes are inserted into a max-heap
priority queue according to their maximum move gains. At each
step, the move with the maximum gain is realized if the size
of the destination growing part does not exceed the maximum
allowed part size after the move. If that move violates the size
constraint at the destination part, the new maximum move gain
of the same t-supernode to the remaining shrinking parts is
computed and reinserted into the priority queue. If all moves
associated with a t-supernode violate the maximum part-size
constraint, the node is not considered for further moves and
remains in the shrinking part. After each move, the maximum
move gains of the t-supernodes in the shrinking part which are
adjacent to the moved t-supernode are updated. These moves
are realized even if their gains are negative until the size of
the shrinking part drops below the maximum allowed part size.
Then, only the moves with positive gains are permitted so that
the algorithm terminates when either a move with a negative
gain is encountered or the weight of the shrinking part decreases
below the minimum allowed part size. Fig. 5 illustrates the

algorithm on the partition obtained in Fig. 4(c) for the coarsest
graph G̃2. In Fig. 5, the imbalance ratio is assumed to be 10%
so that the maximum and minimum part sizes allowed are 6
and 4, respectively.

4.3. Multilevel refinement

At each level �, for � = m, . . . , 1, partition �̃� found on G̃�

is projected back to a partition �̃�−1 on G̃�−1 by assigning the
constituent nodes of each supernode of G̃� to the part of their
supernode. Obviously, �̃�−1 has the same cutsize with �̃�. As
the finer graph G̃�−1 has more freedom in possible node moves,
�̃�−1 is refined using an iterative improvement heuristic based
on boundary node moves. In RM-MeTiS, a modified version of
the global Kernighan–Lin refinement (GKLR) algorithm [24] is
used. GKLR iterates a number of passes until a locally optimum
solution is found. All nodes are unlocked at the beginning of
each pass. At each step in a pass, the move with the maximum
FM gain (even if it is negative) which does not disturb the
balance constraint is tentatively performed. The node associated
with the move is locked so that it cannot move again during
the same pass. At the end of a pass, the moves in the prefix
subsequence of moves with the maximum gain sum are realized
if the maximum prefix sum is positive, and the next pass starts
from this resulting partition. Allowing moves with negative
gains brings hill climbing ability to the algorithm.

C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99 87

Fig. 6. The multilevel refinement phase. (a) Projection of �̃2 on G̃2 to a partition �̃1 on G̃1. t-node n11 with the maximum move gain of +6 moves from
part P1 to part P3, reducing the cutsize from 53 to 47. (b) The refined remapping �̃1 = {{[p1, n9], [n7, n16], [n6, n14]}, {[p2, n5], [n4, n17], [n8, n15]},
{[p3, n12], [n10, n18], n11, n13}} found on G̃1. (c) Projection of �̃1 to �̃0 = {{p1, n6, n7, n9, n14, n16}, {p2, n4, n5, n8, n15, n17}, {p3, n10, n11, n12, n13, n18}}
on the original graph G̃0 = G̃.

The locking mechanism employed in GKLR is efficiently
exploited in RM-MeTiS to maintain the feasibility of all parti-
tions obtained during the uncoarsening phase by simply keep-
ing all p-supernodes always in a locked state. As partition �̃m

obtained for the coarsest graph G̃m is a feasible partition satis-
fying the mapping constraint, this simple locking mechanism
on p-supernodes maintains the feasibility of further refinements
by preventing the p-supernodes from moving to other parts.
Fig. 6 illustrates the uncoarsening phase. Remapping �̃0 ob-
tained in Fig. 6(c) for G̃ reduces the cutsize of the previous
mapping � given in Fig. 4(a) from 80 to 47 while maintain-
ing the perfect balance. Remapping �̃0 achieves this cutsize
reduction by decreasing the tt-edge component of the cutsize
from 80 to 35 through migration of the six tasks corresponding
to nodes n7, n10, n11, n14, n15, and n17 with a total migration
cost of 2 + 1 + 3 + 1 + 3 + 2 = 12.

5. Parallel DVR algorithm

Our OS-parallel DVR algorithm consists of four consecu-
tive phases: clustering, remapping, local rendering, and pixel
merging. The clustering phase is executed only once at the very
beginning. The last three phases are effectively executed for
each successive visualization instance.

5.1. Clustering phase

Since V is produced in a distributed manner by a parallel
simulation application, construction of the global graph GV for
partitioning requires a high volume of communication. So, we
adopt a local clustering scheme concurrently performed at each
processor to reduce the view-independent preprocessing over-
head. In this scheme, each processor Pk constructs its local por-
tion GVk

of GV . Then, each Pk computes the view-independent
weights for the nodes and edges of its local GVk

to construct its
local clustering graph Gavg

Vk
according to the weighting scheme

in Section 2.2. Finally, each Pk performs �k-way partitioning
of its local Gavg

Vk
using MeTiS. The local number �k of the re-

sulting clusters in each Pk is selected to be proportional to the
total node weight in its local Gavg

Vk
such that

∑K
k=1 �k = �.

This scheme is an effort towards reducing the variation in clus-
ter weights for better performance in partitioning the coarse
remapping graphs.

After the local clustering, each processor constructs a Clus-
terData structure for each of its local cell clusters. The two
major components of the ClusterData structure are the VtxAr-
ray and CellArray structures (see Appendix A), which store the
tetrahedral cell data associated with the respective cluster. Lo-
cal cell and node indexing is utilized within the CellArray and
VtxArray structures of each cell cluster. To maintain the con-
nectivity information between the cell clusters, within this lo-
cal indexing scheme, the four global neighbor-cell identifiers of
each cell in the CellArray structures are replaced by the global
cluster identifiers and local indices of the respective neighbor
cells. Each ClusterData structure also maintains the total vol-
ume (in the WCS) of the respective local cell cluster, computed
as the sum of the volumes of the constituent cells of the cell
cluster. As described in Section 2.3, this view-independent vol-
ume information is utilized in estimating the view-dependent
computational weights of the cell clusters during the remapping
phase.

The final step of this phase is the construction of the view-
independent portions of the view-dependent remapping graph
G̃v

C determined by the 3-tuple (Gv
C, MC, TC) to reduce the over-

head of the repeated remapping phases. Recall that the topology
of Gv

C does not change with changing v and is identical to that
of the view-independent coarse graph GC . So, each processor
concurrently constructs the adjacency list representation of its
local portion of GC by contracting its local GVk

according to C.
Then, a copy of the topology of the global graph GC is repli-
cated at each processor by an all-to-all broadcast [16] opera-
tion. Another view-independent component of the remapping

88 C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99

tuple is the cluster migration cost function TC . Each processor
computes the sizes of the ClusterData structures of its local
clusters to determine their migration costs.

5.2. Remapping phase

This phase consists of three steps: graph update, graph par-
titioning, and cluster migration. In the graph-update step, each
processor concurrently computes the node and edge weights of
its local portion of Gv

C for a given v according to the weight es-
timation schemes described in Section 2.3. Then, an all-to-all
broadcast operation is performed on these local node and edge
weights so that each processor gathers a copy of the weighted
global graph Gv

C . Finally, processors complete G̃v
C by adding

the weighted pt-edges using the current cluster mapping MC .
In the GP step, all processors concurrently execute RM-MeTiS
for K-way partitioning of their copies of remapping graph G̃v

C
using different random seeds. Then, the best partition is deter-
mined by performing a global-minimum operation on the cut-
size values of the local partitioning solutions, and the proces-
sor which produced the best solution broadcasts its part vector,
which corresponds to the new mapping M̃C . This scheme is an
effort towards avoiding the worst-case behavior of RM-MeTiS,
which is a randomized algorithm. In the cluster migration step,
the ClusterData structures of the clusters of which new map-
pings differ from their current mappings migrate to their new
home processors.

5.3. Local rendering phase

In GP, minimizing the cutsize is equivalent to maximizing
the sum of the weights of uncut edges. The uncut tt-edges in a
partition of the remapping graph represent the pseudo-boundary
faces which are shared between two local clusters of a proces-
sor. Hence, after the remapping, each processor has a set of
highly interacting clusters for local rendering. Thus, rendering
the local clusters independently by considering them as individ-
ual subvolumes incurs substantial amount of redundant compu-
tation and storage because of the ray segments to be generated
for the ff pseudo-boundary faces. Our implementation consid-
ers the local clusters of each processor as a single local sub-
volume to be rendered by Koyamada’s sequential algorithm.

In the local rendering phase, processors concurrently traverse
the local CellArray structures and check each face f of each lo-
cal cell ci to determine whether it is an external or a boundary
face. A face f is identified as an external face if cell ci does not
have a neighbor cell through face f. A face f is identified as a
boundary face if cell ci is neighbor to a cell cj in cluster Cq

through face f such that Cq is a non-local cluster of Pk . Each
of the ff external and ff boundary faces is scan converted, and
a ray segment is generated for each pixel covered by the face.
Each ray segment is followed through the local subvolume us-
ing Koyamada’s algorithm until it exits from a bf external face
or a bf boundary face, and then it is inserted into the list of
the respective pixel in the local RayBuffer structure, in sorted
order, according to its exit z value. The efficient ray traversal
scheme of Koyamada’s algorithm is not disturbed even if two

ray segments

sc
re

en

pixel 4

pixel 2

pixel 3

pixel 1

ray

ray

ray

ray

P1

P2

1

2

3

4

Fig. 7. The local rendering of the shaded subvolume (consisting of four cell
clusters) by processor P1.

successive cells on the route of a ray belong to two different
local clusters since ClusterData structures preserve the con-
nectivity information between the cells despite the clustering.
For example, in Fig. 7, ray r2, which passes through four local
clusters, is processed by processor P1 as a single ray segment
as in the sequential algorithm.

Our implementation of Koyamada’s algorithm requires a
RayBuffer structure since multiple ray segments may be gen-
erated for pixels in non-convex datasets. However, even if a
dataset is convex, OS decomposition may generate local sub-
volumes with virtual non-convexities despite the explicit ef-
fort towards minimization in remapping. These virtual non-
convexities increase the number of local ray segments. For ex-
ample, in Fig. 7, processor P1 generates two ray segments for
pixel 1 due to the non-convexity of the volume as in the se-
quential algorithm. However, although the sequential algorithm
generates only one ray segment for pixel 3, P1 and P2, respec-
tively, generate four and five local ray segments due to the vir-
tual non-convexities.

5.4. Pixel merging phase

Since the composited ray segments residing in the local Ray-
Buffer structures of different processors may contribute to the
same pixels, a global merge operation is needed to obtain the
final image. For example, in Fig. 7, the ray segments gener-
ated by processors P1 and P2 for pixel 3 must be gathered and
composited to determine the final color of pixel 3. The pixel
merging phase consists of three steps: pixel assignment (PA),
ray-segment migration (RSM), and local pixel merging (LPM).

5.4.1. Pixel assignment step
In the PA step, the screen is partitioned into K subregions

such that each processor is held responsible for producing the
final image of a distinct subregion through LPM. The problem
in this step can be considered as the independent task assign-
ment problem where merging of the ray segments belonging to
individual pixels constitute the independent atomic tasks. The
objective is to minimize the communication overhead due to
RSM and to maintain the load balance in the following LPM
step. The overhead of this step must be kept minimal because
of the fine granularity of the pixel merging operations. For that

C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99 89

reason, a 2D coarse mesh is imposed on the screen and mesh
cells are used as atomic pixel merging tasks.

The following definitions are provided for the sake of the
clarity of the presentation. For a mesh cell m, �m denotes the
subset of processors which generated ray segments for the pix-
els in m during the local rendering phase. The local ray seg-
ment count rkm of a processor Pk for m denotes the number of
ray segments generated by Pk for m. The global ray segment
count Rm = ∑

Pk∈�m
rkm of m denotes the total number of

ray segments produced by all processors for m. The computa-
tional load of a mesh cell m during the LPM step is propor-
tional to Rm. In this work, three PA schemes are tried: scat-
tered assignment (SA), minimum-communication assignment
(MCA), and balanced-load minimized-communication assign-
ment (BLMCA).

5.4.1.1. Scattered assignment (SA). In this scheme, mesh cells
are assigned to processors in a scattered fashion for load balanc-
ing in the LPM step. The performance of this scheme depends
on the assumption that the neighbor mesh cells are likely to
have equal workload since they have similar views of the vol-
ume. The main advantage of this scheme is the simplicity. The
major deficiency of this scheme is the lack of an explicit min-
imization effort for the communication overhead of the RSM
step. However, the SA scheme can be expected to achieve a
balance on the communication requirements of individual pro-
cessors, thus reducing the concurrent communication volume
during the RSM step.

5.4.1.2. Minimum-communication assignment (MCA). In the
MCA scheme, it is assumed that the bottleneck in global pixel
merging is the RSM step rather than the LPM step. Hence,
the total volume of communication in the RSM step is mini-
mized while totally ignoring the load balancing for the LPM
step. The MCA scheme is based on the following simple ob-
servation. Assigning a mesh cell m to a processor Pk incurs
the migration of the respective ray segments from each pro-
cessor P� ∈ (�m − {Pk}) to Pk , while avoiding the migration
of the respective local ray segments of processor Pk . That is,
this assignment incurs a communication volume of Rm − rkm.
Hence, the greedy assignment of each mesh cell m to the pro-
cessor Pq ∈ �m, which has the maximum local ray segment
count for m, produces an assignment with a globally minimum
communication volume.

The MCA scheme is performed in parallel as follows. Each
processor concurrently traverses its local RayBuffer structure
to construct a local workload (WL) matrix, whose size is equal
to the coarse mesh size such that each entry of the WL matrix
contains the local ray segment count for the respective mesh
cell. Then, a global-maximum operation is performed on the
local WL matrices through a fold and expand communication
step so that, for each mesh cell, the processor with the maximum
local ray segment count is determined, and the mesh cell is
assigned to that processor.

5.4.1.3. Balanced-load minimized-communication assignment
(BLMCA). This scheme considers both the volume of commu-

nication in the RSM step and the load balance in the LPM step.
The MCA scheme constitutes an optimal solution to the for-
mer objective, whereas the latter one corresponds to the K-way
number partitioning problem, which is NP-hard. The numbers
in the number partitioning problem correspond to the global
ray segment counts of the mesh cells. The best-fit-decreasing
(BFD) heuristic used in solving the K-feasible bin-packing
problem [20] can be effectively used for the solution of the
number partitioning problem and hence the pure load balanc-
ing problem. In the BFD-based load balancing, mesh cells are
considered for assignment in decreasing order of their global
ray segment counts. The best-fit criterion is the assignment of
the mesh cells to the minimally loaded bins (processors), and
the bin capacity is the maximum allowable part size.

The BLMCA scheme incorporates the greedy assignment
criterion of the MCA scheme to the BFD-based load balancing
heuristic by replacing its best-fit criterion by the criterion of the
MCA scheme for feasible assignments. The proposed heuristic
starts with initializing the workloads of all processors to zero.
Then, a mesh cell m, considered in the sorted order, is assigned
to processor Pk having the maximum local ray-segment count
rkm for m if the current load of Pk remains below the maximum
part size after the assignment. Otherwise, the mesh cell m is
assigned to the minimally loaded processor, where this assign-
ment criterion corresponds to the best-fit criterion used in the
BFD-based pure load balancing heuristic. After the assignment,
the load of the respective processor is incremented by Rm. A
good property of the BLMCA heuristic is that the maximum
amount of communication volume that can be avoided by the
assignment of a heavily loaded mesh cell is likely to be larger
than that of a lightly loaded mesh cell. Hence, delaying the as-
signment of lightly loaded mesh cells minimizes the deviation
from both the minimal communication cost to be found by the
MCA algorithm and the load balance quality to be found by the
pure BFD-based load balancing heuristic. The parallelization
of the BLMCA scheme is similar to that of the MCA scheme
with an additional global-sum operation carried out together
with the global-max operation on the local WL matrices.

5.5. Ray-segment migration step

In the RSM step, processors concurrently traverse their lo-
cal RayBuffer structures and packetize the ray segment lists
that belong to the mesh cells assigned to other processors into
the respective send buffers. Then, these buffers are sent to the
respective processors so that each processor gathers all the ray
segments belonging to the pixels assigned to itself.

5.6. Local pixel merging step

In LPM, each processor concurrently composites the gath-
ered ray segments for each of its assigned pixels in the
visibility order. This composition operation for each local
pixel involves merging of k sorted ray-segment lists, where k
denotes the number of distinct processors that generated ray
segments for that particular pixel. A binary heap is used for
K-way merging. At the end of this step, each processor holds
the final color of each pixel assigned to itself.

90 C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99

6. Experimental results

The sequential and parallel DVR algorithms are developed
on a 28-node PC cluster interconnected by a Gigabit Ether-
net switch. Each node of the cluster contains an Intel Pen-
tium IV 2.6 GHz processor with 1 GB of RAM and runs the
Debian/GNU Linux operating system. The parallel DVR algo-
rithms are implemented in C using the LAM/MPI library [2]
as the communication interface.

Table 2 summarizes the properties of the volumetric datasets
used in the experiments. These datasets, obtained from
NASA Ames Research Center [35], are commonly used by
the researchers in the volume rendering field. All datasets
are originally curvilinear in structure, and they represent the
results of some CFD simulations. The raw datasets consist of
hexahedral cells, and they are converted into the unstructured
tetrahedral data format by dividing each hexahedral cell into
five tetrahedral cells [14,43]. In Table 2, the datasets are listed
in the increasing order of both the number of nodes and cells.
This order is maintained in all the following tables and figures.
In Table 2, each COV value represents the coefficient of varia-
tion of cell sizes in terms of the cell volumes of the respective
dataset. The COV value of a dataset can be considered as
an indication of the level of irregularity in the dataset such
that larger COV values mean more irregular datasets. Fig. 8
displays the rendered images of the datasets.

As these datasets are the results of CFD simulations, a par-
allel CFD simulation on K processors can be modeled by de-
composing each dataset into K subvolumes by partitioning its
associated CFD computational graph using MeTiS and assign-
ing the data structures associated with each subvolume to a
distinct processor. In CFD applications, both the computational
costs of cells and the amount of interactions through the shared
faces between neighbor cells are equal. Thus, the computational
graph has unit node and edge weights, and its topology is iden-
tical to that of the view-independent visualization graph GV . In
all of our experiments, the execution of the proposed parallel
DVR algorithm starts from such initial decompositions.

Seven different viewing directions, including the standard
viewing direction, are used in the experiments to measure the
average-case performance. In the standard view, the datasets are
viewed along the z-axis in the positive z direction in the WCS.
The other six views are obtained by successively rotating the
volume 30◦ around all axes. The experiments are carried out for
three different screen sizes: 400×400, 600×600, and 900×900.
The window on the view plane is selected such that the whole
volume is visible through the window, and a thin margin exists
between the borders of the window and the projected volume.
As RM-MeTiS is a randomized algorithm, the parallel DVR
algorithm is executed 10 times for each parallel visualization
instance, and the average performance results are displayed in
the tables and figures.

6.1. Clustering

Table 3 illustrates the variation of the average performance
of the parallel DVR algorithm with the number � of clusters

to be generated in the clustering phase. The parallel rendering
time Tpar of a visualization instance is expected to decrease with
increasing � because of the expected increase in the quality of
the partitions to be found by RM-MeTiS due to the increase in
the size of the solution space. On the contrary, Tpar is expected
to increase with increasing � because of the increase in the
view-dependent remapping overhead. Hence, Tpar is expected
to decrease with increasing � until a turnover value after which
Tpar begins to increase. This behavior can easily be seen in Table
3. As also seen in the table, �avg =�/K values leading to the best
parallel performance decrease with increasing K as expected. In
all of the following experiments, � = 1200 is used in clustering,
and hence we obtain �avg = 300, 150, 100, 75, 60, 50, 43 for
K = 4, 8, 12, 16, 20, 24, 28 processors, respectively.

Fig. 9 displays the view-independent clustering time TCL
as a percent of the parallel rendering time. As seen in Fig.
9, the percent clustering overhead %TCL is at most 60% of a
single parallel rendering time. As TCL is independent of the
screen size, %TCL decreases with increasing screen size for
a fixed (dataset, K) pair and it is always below 20% for the
screen size 900 × 900. Moreover, %TCL remains almost con-
stant with increasing K for a fixed (dataset, screen size) pair.
The results show that the local clustering scheme proposed in
Section 2.2 makes the view-independent clustering overhead
negligible after only a few successive parallel visualizations.
Hence, the performance results are obtained by considering the
view-dependent parallel execution times, which involve remap-
ping, local rendering, and pixel merging phases.

6.2. Adaptive decomposition and remapping

Table 4 illustrates the performance of the proposed estima-
tion schemes used for the node and edge weighting of the view-
dependent coarse visualization graph Gv

C . As seen in Table 4,
estimation errors in both ray–face intersection counts (I) and
sampling counts (S) are extremely low, where %Serr values are
drastically lower than %I err values as expected. Because, in es-
timation of the I count of a cluster, the discretization errors in
estimation of the pixel counts of the faces that have overlapping
projection areas accumulate, whereas the discretization errors
in estimation of the S count is just on the boundary surfaces
of clusters. The percent errors in estimation of local rendering
times are considerably larger than both %I err and %Serr val-
ues, but %T err

LR values still remain around 3%. This experimen-
tal finding stems from the additional errors introduced due to
estimation of unit computational costs tI and tS . Fortunately,
the estimation errors in TLR are not reflected to the estimated
load imbalance values because of the cancelation effects. Note
that %I err also determines the estimation error in edge weight-
ing of graph Gv

C since estimation of I in node weighting and
estimation of edge weights both involve the same kind of face
area computations.

Table 5 displays the performance results for the static de-
composition, adaptive repartitioning (RP), and adaptive repar-
titioing with remapping (RM) schemes on 28 processors. As
seen in Table 5, the proposed remapping scheme yields the
best speedup in all cases. The static scheme [31] already

C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99 91

Table 2
The characteristics of the volumetric datasets used in the experiments

Datasets # of nodes # of cells # of internal faces # of external faces COV

The blunt fin (BF) 40,960 187,395 368,032 13,516 5.50
The combustion chamber (CC) 47,025 215,040 422,272 15,616 0.42
The oxygen post (OP) 109,744 513,375 1,012,912 27,676 4.26

Fig. 8. The rendered images of the volumetric datasets used in the performance analysis: (a) the blunt fin, (b) the combustion chamber, and (c) the oxygen post.

Table 3
The variation of the average parallel rendering time with �avg = �/K

K �avg

25 50 100 200 300

4 1.000 0.939 0.922 0.915 0.914
8 1.000 0.974 0.972 0.977 0.978

16 1.000 0.984 0.989 1.008 1.032
24 1.000 0.999 1.019 1.070 1.117

The view-dependent parallel execution times including remapping, local rendering, and pixel merging times are normalized with respect to those of the
�avg = 25 case. The averaging is over all datasets and the medium screen size 600 × 600.

400x400 600x600 900x900 400x400 600x600 900x900 400x400 600x600 900x900

Image size

0

10

20

30

40

50

60

70

C
lu

st
er

in
g

 o
ve

rh
ea

d
 (

%
)

K=8
K=16
K=24

CCBF OP

Fig. 9. The clustering overhead as a percent of the view-dependent parallel rendering time.

achieves good speedup values for the CC dataset, which has
almost equal-sized cells. However, it results in drastically
small speedup values as low as 3.26 on the BF and OP datasets
(with high COV values) because of the extremely large load
imbalance values reaching as high as 636%. This shows that,

as the cell-size variation is inherently high in unstructured
grids, adaptive decomposition is crucial for parallel DVR of
unstructured grids.

The performance results of the RP scheme are also dis-
played in Table 5 to justify the need for considering the cluster

92 C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99

Table 4
Performance of the estimation schemes proposed for view-dependent node/edge weighting

Datasets Screen sizes % Error in estimates % Load imbalance

%I err %Serr %T err
LR %LIe %LIm

BF 400 × 400 1.316 0.016 3.329 4.753 8.694
600 × 600 1.330 0.008 3.383 4.719 7.177
900 × 900 1.335 0.005 3.499 4.919 6.743

CC 400 × 400 1.441 0.007 3.022 3.258 5.354
600 × 600 1.447 0.003 3.053 2.916 4.833
900 × 900 1.449 0.002 3.144 2.613 4.604

OP 400 × 400 1.128 0.023 3.280 3.968 8.613
600 × 600 1.131 0.019 2.915 3.589 7.413
900 × 900 1.135 0.017 2.809 3.239 5.792

%I err , %Serr , and %T err
LR denote the average percent errors in estimation of ray–face intersection counts, sampling counts, and local rendering times, respectively,

of local subvolumes rendered by distinct processors. %LIe and %LIm denote the estimated and measured percent load imbalance values, respectively.

Table 5
Performance comparison on K = 28 processors

Datasets Screen sizes

400 × 400 600 × 600 900 × 900

Decomposition schemes Decomposition schemes Decomposition schemes

Static Adaptive Static Adaptive Static Adaptive

RP RM RP RM RP RM
BF SK 3.26 10.37 13.13 3.56 14.00 16.25 3.32 15.26 17.20

VCM 0.00 10.32 1.86 0.00 10.36 2.29 0.00 10.32 2.94
VRSM 9.07 10.45 12.03 20.43 23.60 26.46 45.99 53.10 58.25
%LIm 636 21.45 12.81 643 22.08 10.99 649 21.68 11.88

CC SK 17.15 13.62 15.97 18.07 17.17 18.07 18.05 18.63 18.63
VCM 0.00 11.72 0.84 0.00 11.82 1.31 0.00 11.64 2.67
VRSM 10.82 10.90 11.48 24.36 24.52 25.50 54.85 55.19 56.97
%LIm 21.46 5.11 8.14 20.28 4.30 5.56 20.14 5.40 6.67

OP SK 6.85 12.38 16.95 6.81 15.51 19.07 6.74 18.99 20.19
VCM 0.00 26.87 4.17 0.00 26.51 4.49 0.00 27.12 5.30
VRSM 10.36 10.76 13.06 23.33 24.22 28.33 52.53 54.52 62.72
%LIm 300 11.80 12.12 303 9.39 9.73 305 9.19 8.03

In the static scheme, parallel rendering is conducted according to the OS decomposition inherited from the K-way partitioning of the unit node/edge weighted
view-independent visualization graph, and hence this scheme is effectively equivalent to [31]. In the repartitioning (RP) scheme, the view-dependent coarse
visualization graph Gv

C is partitioned using MeTiS without considering the cluster migration cost. The RM scheme is the proposed remapping scheme. SK

represents the speedup at K = 28 processors, VCM and VRSM denote the communication volume (in Mbytes) due to cluster and ray-segment migration,
respectively. %LIm denotes the measured percent load imbalance.

migration cost in adaptive decomposition. The comparison of
the average performances of the adaptive schemes RP and RM
shows that the decompositions produced by RM require 82%
less cluster migration, whereas they incur only 10% more RSM,
which corresponds to a 23% decrease in the total volume of
communication. This experimental finding is expected since
RM considers both cluster migration and ray-segment gener-
ation costs for minimization, whereas RP considers only the
ray-segment generation cost for minimization. As seen in Ta-
ble 5, the speedup difference between RM and RP on 28 pro-
cessors is 2.2 on the overall average. Hence, the task migration
cost should also be considered in adaptive OS decomposition
for better parallel performance.

6.3. Overall performance

Fig. 10 shows the percent dissection of the view-dependent
parallel rendering time. As seen in Fig. 10, the percent view-
dependent preprocessing overhead (%TGU + %TGP) decreases
with increasing screen size for a fixed (dataset, K) pair, and both
%TGU and %TGP decrease almost below 1.5% in all visualiza-
tions using the largest screen size 900 × 900. This monotonic
decrease is because both TGU and TGP are independent from
the screen size. However, both %TGU and %TGP increase with
increasing K for a fixed (dataset, screen size) pair, where the
rate of increase in %TGP is larger than that of %TGU. As node
and edge weighting is performed in parallel, local graph-update

C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99 93

Number of processors (K) / Image size

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

t
p

ar
al

le
l r

en
d

er
in

g
 t

im
e

(%
)

T_PM

T_CM

T_GP

T_GU

T_LR

OPBF CC

400x400 400x400400x400600x600 600x600 600x600 900x900900x900 900x900
16 24816 24816 24816 24816 24816 248 16 248 16 248 16 248

Fig. 10. The percent dissection of parallel rendering time into local rendering TLR, graph update TGU, graph partitioning TGP, cluster migration TCM, and
pixel merging TPM times.

computations do not contribute to the increase in %TGU. The
communication overhead due to the all-to-all broadcast opera-
tion in the graph-update step is the source for this increase. The
increase in %TGP with increasing K is because RM-MeTiS is
run serially on each processor.

Fig. 11 shows the communication volumes due to RSM
(VRSM) and cluster migration (VCM). The following observa-
tions can be extracted from Fig. 11 for the variation of the pixel
merging overhead. For a fixed (dataset, screen size) pair, VRSM
increases by almost a factor of 2 when K increases by a factor
of 3 (from K = 8 to 24). For a fixed (dataset, K) pair, VRSM in-
creases with increasing screen size, where the rate of increase
is similar to the rate of increase in the screen size. Note that in-
creasing the screen size from 400×400 to 900×900 increases
the screen size by a factor of approximately 5.

Table 6 shows the average rendering times, speedups, and
percent efficiencies. As expected, the speedup and efficiency
increase with increasing screen size for a fixed (dataset, K)
pair. As seen in Table 6, the efficiency decreases slowly with
increasing K for a fixed (dataset, screen size) pair, especially
for the larger datasets CC and OP, and the larger screen sizes
600 × 600 and 900 × 900. For OP, the efficiency values remain
above 60%, 68%, and 72% for screen sizes 400×400, 600×600,
and 900 × 900, respectively, for all K.

Table 7 displays performance comparison of the PA schemes
on the parallel pixel merging phase. In this table, TPM denotes
the total execution time of the pixel merging phase, and TPA,
TRSM and TLPM represent the dissection of TPM into PA, RSM
and LPM times, respectively. VRSM denotes the total volume
of communication during the RSM step. The mesh size is the
size of the 2D coarse mesh imposed on the screen.

As seen in Table 7, the SA scheme achieves the best load bal-
ance in the LPM step for sufficiently large mesh sizes, whereas
it incurs the worst communication volume. Note that TLPM ef-
fectively shows the load balancing quality of the respective
PA scheme since the local RayBuffer structures of the proces-
sors are identical along each row of the table. On the other

hand, the MCA scheme achieves the lowest communication
volume while incurring the worst load balance in the LPM step
as expected. The BLMCA scheme shows in-between perfor-
mance such that it almost achieves the load balancing qual-
ity of the SA scheme, and it approaches the communication
volume quality of the MCA scheme. It is interesting to note
that although the total communication volumes for both MCA
and BLMCA schemes are considerably less than those of the
SA scheme, the communication time values of the SA scheme
are smaller than or equal to those of the MCA and BLMCA
schemes. This is due to the fact that the scattering approach
in the SA scheme achieves the balancing of communication
requirements of individual processors, thus reducing the con-
current communication volume. Hence, the SA scheme, which
does not involve any PA overhead, achieves the best overall
performance in TPM for all instances displayed in the table. The
SA scheme with a coarse mesh size of 50 × 50 is used in all
experiments.

6.4. Comparison with an IS-parallel DVR algorithm

We also conducted experiments to compare the performance
of our OS-parallel DVR algorithm (RM) with our recently pro-
posed IS-parallel DVR algorithm (IS) [3]. In this algorithm,
the interaction between the image and OS is modeled as a hy-
pergraph, where nets correspond to cell clusters and vertices
correspond to pixel blocks assigned to processors for render-
ing. The remapping problem in IS parallelization is formu-
lated as a hypergraph partitioning with fixed vertices problem.
In this formulation, balancing the part weights corresponds to
balancing the rendering loads of processors and minimizing
the cutsize of the partition corresponds to minimizing the total
volume of data communication due to the remapping of pixel
blocks to processors. The details of this algorithm are provided
in [3].

Table 8 provides dataset-specific speedups for varying
numbers of processors and screen resolutions. According to

94 C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99

Number of processors (K) / Image size

0

10

20

30

40

50

60

C
o

m
m

u
n

ic
at

io
n

 v
lu

m
e

(M
by

te
s) V_CM

V_RSM

OPBF CC

400x400 400x400400x400600x600 600x600 600x600 900x900900x900 900x900
16 24816 24816 24816 24816 24816 248 16 248 16 248 16 248

Fig. 11. The total communication volume (in Mbytes) and its dissection into ray-segment migration VRSM and cluster migration VCM components.

Table 6
Average rendering times (TR) in seconds, speedups (SK), and percent efficiency values (%EK)

Datasets K Screen sizes

400 × 400 600 × 600 900 × 900

TR SK %EK TR SK %EK TR SK %EK

BF 1 3.94 1.00 100 9.10 1.00 100 20.3 1.00 100
4 1.19 3.31 82.8 2.63 3.46 86.5 5.82 3.49 87.3
8 0.66 5.97 74.7 1.43 6.36 79.5 3.14 6.45 80.6

12 0.48 8.21 68.4 1.01 9.01 75.1 2.21 9.16 76.3
16 0.39 10.10 63.1 0.81 11.23 70.2 1.75 11.56 72.3
20 0.35 11.26 56.3 0.68 13.38 66.9 1.47 13.81 69.0
24 0.32 12.31 51.3 0.61 14.92 62.2 1.30 15.58 64.9
28 0.30 13.13 46.9 0.56 16.25 58.0 1.18 17.20 61.4

CC 1 4.63 1.00 100 10.3 1.00 100 23.1 1.00 100
4 1.35 3.42 85.5 2.98 3.46 86.5 6.56 3.52 88.0
8 0.71 6.46 80.6 1.55 6.65 83.1 3.47 6.66 83.3

12 0.50 9.13 76.1 1.08 9.55 79.6 2.39 9.67 80.6
16 0.41 11.29 70.6 0.88 11.72 73.3 1.88 12.29 76.8
20 0.35 13.01 65.0 0.72 14.32 71.6 1.57 14.71 73.5
24 0.31 14.60 60.8 0.64 16.11 67.1 1.39 16.62 69.3
28 0.29 15.97 57.0 0.57 18.07 64.5 1.24 18.63 66.5

OP 1 6.44 1.00 100 14.3 1.00 100 31.9 1.00 100
4 1.84 3.50 87.5 3.97 3.59 89.6 8.78 3.64 91.0
8 0.99 6.51 81.4 2.09 6.84 85.5 4.61 6.94 86.6

12 0.69 9.33 77.8 1.44 9.89 82.4 3.17 10.09 84.1
16 0.55 11.71 73.2 1.16 12.32 77.0 2.47 12.95 80.9
20 0.47 13.70 68.5 0.96 14.88 74.4 2.05 15.60 78.0
24 0.41 15.71 65.5 0.82 17.29 72.0 1.77 18.07 75.3
28 0.38 16.95 60.5 0.75 19.07 68.1 1.58 20.19 72.1

Table 8, RM scales better than IS with increasing dataset size.
On the other hand, for the datasets at hand, the performance of
IS seems to be relatively independent of the dataset size. This
can be explained with the fact that, in IS, the task decomposi-
tion and load balancing is on the IS and hence is not affected
much by the dataset size. However, for the cases where data
replication overhead is relatively important (e.g., small screen

resolution or low network speed), increasing dataset size is
supposed to be a bottleneck on scalability of IS.

Another important observation that can be made using Table
8 is about performance variation on dataset regularity, which is
determined by the degree of variation among the cell sizes in
a dataset. According to Table 8, IS seems to perform better on
the regular dataset, which has low cell-size variation. As shown

C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99 95

Table 7
Performance comparison of pixel assignment schemes on the parallel pixel merging (PM) phase

K Screen sizes Pixel assignment schemes

SA MCA BLMCA

Mesh sizes Mesh sizes Mesh sizes

252 502 752 1002 252 502 752 1002 252 502 752 1002

8 4002 TPM 0.133 0.131 0.134 0.128 0.142 0.142 0.152 0.167 0.140 0.141 0.153 0.165
TPA 0.000 0.000 0.000 0.000 0.067 0.067 0.076 0.091 0.066 0.067 0.079 0.088

TRSM 0.126 0.123 0.126 0.120 0.073 0.074 0.074 0.074 0.070 0.069 0.070 0.073
TLPM 0.008 0.008 0.009 0.009 0.013 0.013 0.013 0.013 0.010 0.010 0.011 0.011
VRSM 5.769 5.758 5.772 5.743 4.003 3.959 3.948 3.949 4.322 4.259 4.242 4.261

8 9002 TPM 0.587 0.593 0.591 0.588 0.598 0.606 0.601 0.626 0.594 0.601 0.606 0.619
TPA 0.000 0.000 0.000 0.000 0.263 0.274 0.269 0.299 0.260 0.262 0.271 0.285

TRSM 0.554 0.559 0.556 0.551 0.338 0.333 0.334 0.328 0.325 0.329 0.328 0.326
TLPM 0.040 0.039 0.040 0.040 0.054 0.055 0.055 0.055 0.047 0.048 0.049 0.050
VRSM 26.64 26.63 26.72 26.63 18.16 17.98 17.92 17.83 19.63 19.50 19.39 19.38

24 4002 TPM 0.097 0.094 0.104 0.100 0.130 0.133 0.148 0.161 0.121 0.126 0.132 0.151
TPA 0.000 0.000 0.000 0.000 0.050 0.057 0.069 0.082 0.051 0.059 0.062 0.081

TRSM 0.092 0.089 0.098 0.094 0.076 0.073 0.075 0.076 0.068 0.066 0.068 0.068
TLPM 0.007 0.006 0.007 0.006 0.017 0.016 0.017 0.017 0.009 0.008 0.009 0.009
VRSM 11.17 11.19 11.18 11.21 9.087 8.941 8.913 8.959 9.659 9.454 9.430 9.417

24 9002 TPM 0.409 0.394 0.408 0.413 0.524 0.511 0.511 0.549 0.482 0.484 0.493 0.524
TPA 0.000 0.000 0.000 0.000 0.159 0.163 0.165 0.195 0.155 0.159 0.168 0.198

TRSM 0.384 0.370 0.384 0.388 0.363 0.351 0.348 0.354 0.326 0.325 0.323 0.324
TLPM 0.034 0.030 0.029 0.029 0.052 0.048 0.049 0.048 0.038 0.034 0.035 0.036
VRSM 54.30 54.40 54.34 54.43 43.58 43.21 43.04 42.90 46.53 45.62 45.34 45.11

Table 8
Performance comparison of the RM and IS [3] algorithms

Algorithm Datasets Screen sizes

1200 × 1200 1800 × 1800 2400 × 2400

K = 8 K = 16 K = 32 K = 8 K = 16 K = 32 K = 8 K = 16 K = 32

RM BF 6.49 11.74 19.21 6.54 11.97 19.39 6.57 12.11 20.61
CC 6.64 12.14 20.18 6.68 12.40 20.93 6.76 12.58 21.37
OP 7.11 13.12 22.58 7.18 13.44 22.86 7.20 13.48 23.02

IS BF 6.97 12.73 19.95 7.27 13.75 22.82 7.48 13.75 23.36
CC 6.99 13.03 22.21 7.42 13.98 25.49 7.55 14.51 26.70
OP 6.92 12.37 20.83 7.15 13.54 22.98 7.20 13.97 24.17

by the coefficients of variations provided in Table 2, the BF
and OP datasets are rather irregular, whereas the CC dataset is
a regular one. Performance of RM seems to be independent of
the dataset regularity. This is basically because, in RM, the task
decomposition and load balancing is on the data space. Further
experimental results, which can be found in [3], indicate that
high screen resolutions favor the IS algorithm, whereas RM
performs better at low screen resolutions.

7. Conclusion

An efficient object space (OS)-parallel direct volume ren-
dering (DVR) algorithm was developed for visualization of

unstructured grids on distributed-memory architectures. A fast
ray-casting-based DVR algorithm was selected as the underly-
ing sequential algorithm. The adaptive OS decomposition prob-
lem was modeled as a graph partitioning (GP) problem to min-
imize both the amount of redundant computation/storage and
volume of interprocessor communication while maintaining the
computational load balance. An effective view-independent cell
clustering scheme was introduced to induce more tractable,
contracted view-dependent computational graphs for succes-
sive visualizations. An efficient and highly accurate estima-
tion scheme was proposed for view-dependent node and edge
weighting of the coarse computational graphs. A GP-based
model was proposed for the solution of the general remapping

96 C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99

problem to enhance the adaptive OS decomposition model
and make it also consider minimization of the task migration
overhead for better performance in successive visualizations.
The remapping tool RM-MeTiS was developed by modifying
and enhancing the original MeTiS package for partitioning the
remapping graphs. Performance of the proposed parallel DVR
algorithm was tested on a 28-node PC cluster over three bench-
mark volumetric datasets.

Acknowledgment

The computational resources used in this work are provided
by the TUBITAK ULAKBIM High Performance Computing
Center.

Appendix A. Koyamada’s DVR algorithm

In the tetrahedral cell model, each cell contains four nodes
and four triangular faces. The face normal is defined to be
oriented outward from the parent cell. If a face of a cell is
shared by two cells, that face is called internal. Otherwise, it is
called external. The visualization of a volumetric dataset V for a
given viewing parameter set v is called a visualization instance
and is denoted by the 2-tuple (V, v). v consists of the view-
direction vector, view-up vector, view-reference point, view-
plane window, and screen size. The nodes of V are initially in
the WCS, and they are transformed into the NPCS by using v.
In the NPCS, V is viewed in the positive z direction, and the
(x, y) coordinate values of the nodes of V are, in fact, their
(x, y) coordinate values on the image plane. In a visualization
instance (V, v), a face of a cell of V is an ff face or a bf face if
the z component of the face normal (in the NPCS) is negative
or positive, respectively. A ray enters a cell through an ff face
and exits the cell through a bf face.

In Koyamada’s [26] algorithm, the tetrahedral cell data is
stored in two arrays: VtxArray and CellArray. VtxArray keeps
the scalar values and the original x, y, z coordinate values (in
the WCS) of the nodes of V . It also maintains a view-dependent
NPCS component for each node to keep the transformed and
projected x, y, z values. CellArray stores the identifiers of the
four nodes of each cell of V . It also stores the indices of the four
neighbors of each cell through its four faces and also identifies
each of its internal faces by its index in the respective neighbor
cell to avoid the search for finding the entry face of the ray to
the next cell during the ray traversal. Moreover, the algorithm
uses a RayBuffer structure that holds a linked list of composited
ray segments for each pixel of the screen. Each item of a linked
list stores the composited RGB color values, the composited
opacity value, and the exit-point z value of the respective ray
segment. The lists are maintained in sorted increasing order
according to the exit-point z values.

The first step of Koyamada’s algorithm is to generate the ray
segments to be traced. In the original algorithm, ff external faces
are sorted in increasing order with respect to the z coordinates
of their centroids. This, in fact, is an approximate order, which
may be wrong in some cases. As the objective in this work is
producing high-quality and correct images in a fast way, this

step of the original algorithm is slightly modified. Instead of
sorting the external faces at the beginning, we scan convert
them one by one in any order. For each pixel covered by the
projection area of an ff external face, we generate a ray segment,
and traverse it through the volume for composition starting from
the ff external face until it exits from a bf external face. Finally,
we insert the composited ray segment into the respective list in
the RayBuffer structure, in sorted order, according to its exit z
value.

Each ray is followed in the volume utilizing the cell-to-cell
connectivity information. To trace a ray inside the volume, a
few things have to be known for each cell that is hit by the ray:
the entry face, the (z, s) values at the entry point to the cell, the
exit face and the (z, s) values at the exit point from the cell.
Since the exit-point values from a cell can be used as the entry-
point values to the next cell, and the first entry-point values are
determined for each ray segment during the scan conversion of
ff external faces, the problem of tracing a ray segment reduces
to the problem of determining its exit point Q from a cell where
its entry point P to the cell is given.

Koyamada proposes a ray–face intersection test that directly
determines if the face is intersected by the ray. After identifying
the exit face, the (z, s) values (zQ, sQ) at the exit point Q
are computed through 2D inverse-distance interpolation of the
(z, s) values of the nodes of the exit face with respect to point
Q. As the exit-point (zQ, sQ) values are computed and the
entry-point (zP , sP) values are already known, the next step
is to take samples and composite them along the ray between
the entry and exit points P and Q. Our sequential and parallel
DVR implementations support both mid-point and equidistant
sampling schemes. In mid-point sampling, a new sample is
generated in the middle of the line segment formed by the entry
and exit points of the ray intersecting the cell. In equidistant
sampling, samples are generated at fixed intervals of length �z,
and hence, for some cells, more than one sample is generated.

Koyamada’s algorithm exploits the fact that the change of the
scalar in any direction is linear in a tetrahedral cell to speed up
interpolation operations through the utilization of linear sam-
pling method. That is, scalar value sX at each sampling point
X along line segment PQ is efficiently computed through 1D
inverse-distance interpolation of (zP , sP) and (zQ, sQ) values
with respect to point X. Then, scalar value sX is mapped to a
color value CX and an opacity value OX by applying a transfer
function fT, which converts numerical value sX to color and
opacity values to represent the characteristics of the simulation
results. Finally, these color and opacity values are composited
in front-to-back order as

(CX, OX) = fT(sX), Oi+1 = Oi + OX(1 − Oi),

Ci+1 = (CiOi + CXOX(1 − Oi))/Oi+1,

where (Ci, Oi) and (Ci+1, Oi+1) values are the composited
(color, opacity) values before and after processing the sam-
pling point X, respectively, and C0 and O0 are initially set to
zero [14].

At the end of this process, the RayBuffer structure contains
all composited ray segments. Lengths of the individual ray lists

C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99 97

in the RayBuffer structure depend on the visualization instance.
In convex datasets, the length of each ray list structure is either
0 or 1. Hence, the color field of the single ray segment of each
active pixel contains the final color of the respective pixel of
the image. However, in non-convex datasets, a ray may enter
and exit the volume multiple times, thus generating multiple
ray segments. For example, the ray shown in Fig. 1 generates
two ray segments. Hence, non-convex datasets necessitate a
final composition process over the ray segment lists of multiple
length.

The good features of Koyamada’s DVR algorithm are as fol-
lows. It exploits the OS coherency during ray-segment traver-
sal through connectivity information. It performs two ray–
face intersection tests per cell on the average, whereas the
conventional approach [14] always checks three faces. It per-
forms 1D inverse-distance interpolation for each sampling and
2D inverse-distance interpolation for each ray–cell intersec-
tion, whereas the conventional approach performs expensive
3D inverse-distance interpolation for each sampling. Moreover,
it uses the results of the ray–face intersections to reduce the
cost of 2D interpolation operations.

Appendix B. Extensions for close-up visualization
instances

The validity of the node and edge weighting scheme pro-
posed in Section 2.3 depends on the assumption that the whole
volume is visible on the screen. However, after a number of
visualizations, the simulation scientist may want to see some
details about a particular area of the volume from different
viewing directions. He may select a window on the view plane
such that only a particular area of the volume is visible through
the screen. In such close-up visualization instances, some cells
and possibly some cell clusters will become invisible and hence
will not incur any rendering computations. Here, we propose
an extension of our node and edge weighting scheme to handle
close-up visualization instances.

For a given v, each cluster of V is classified as off-screen, on-
screen, or partially on-screen through a preculling operation if
its bounding box is totally outside, totally inside, or partially in-
side the viewing frustum, respectively. The nodes correspond-
ing to the off-screen clusters are deleted from Gv

C together with
all edges incident to those nodes. The weights of the nodes cor-
responding to the on-screen clusters are computed as described
in Section 2.3.1. The node weight estimation heuristic is mod-
ified for the partially on-screen clusters as follows. Consider a
node ni of Gv

C corresponding to a partially on-screen cluster Ci

of V . After the node transformation phase, each face (and each
cell in equidistant sampling) of Ci is classified as off-screen, on-
screen, or partially visible if the rectangular box bounding of
its projection area on the image plane is totally outside, totally
inside, or partially inside the screen boundaries, respectively.
The off-screen bf faces of Ci do not contribute to the ray–face
intersection count (I v

i) of Ci (Eq. (1)). Each on-screen bf face f
of Ci contributes to I v

i by its projection area estimate af , com-
puted according to Eq. (2) as described in Section 2.3.1. Each
partially on-screen bf face f of Ci contributes to I v

i by �v
f ×af ,

where �v
f denotes the visibility ratio of the screen-space bound-

ing box of face f. Recall that the sampling count (Sv
i) of Ci

is equal to I v
i in mid-point sampling. In equidistant sampling,

the constant-time scheme proposed for estimating Sv
i cannot be

used for a partially on-screen cluster Ci . Instead, the volumes
of all cells in the WCS are pre-computed once during the view-
independent preprocessing phase. The volume of each partially
on-screen cell multiplied by the visibility ratio �v of its screen-
space bounding box and the volume of each on-screen cell are
added to obtain an approximation to the total visible volume
of Ci in the WCS. Then, multiplying the result by �v/�z gives
an estimate for Sv

i as mentioned in Section 2.3.1.
In edge weighting, the weight of each edge between a pair

of on-screen clusters is computed as described in Section 2.3.2.
Each edge incident to an at least one off-screen cluster is already
deleted as mentioned above. The weight w(ni, nj) of each edge
eij between a pair of partially on-screen clusters (a pair of on-
screen and partially on-screen clusters) is computed as follows.
Off-screen faces shared between Ci and Cj do not contribute to
w(ni, nj). Each on-screen and partially on-screen face f shared
between Ci and Cj contribute to w(ni, nj) by af and �v

f × af ,
respectively.

References

[1] H. Berk, C. Aykanat, U. Güdükbay, Direct volume rendering of
unstructured grids, Comput. Graphics 27 (3) (2003) 387–406.

[2] G. Burns, R. Daoud, J. Vaigl, LAM: an open cluster environment for
MPI, in: Proceedings of the Supercomputing Symposium ’94, 1994,
pp. 379–386.

[3] B.B. Cambazoglu, C. Aykanat, Hypergraph-partitioning-based remapping
models for image-space-parallel direct volume rendering of unstructured
grids, IEEE Trans. Parallel Distributed Systems, in press.

[4] W. Camp, S. Plimpton, B. Hendrickson, R. Leland, Massively parallel
methods for engineering and science problems, Comm. ACM 37 (1994)
31–41.

[5] J. Challinger, Parallel volume rendering for curvilinear volumes, in:
Proceedings of the IEEE Scalable High Performance Computing
Conference, April 1992, pp. 14–21.

[6] J. Challinger, Scalable parallel volume raycasting for nonrectilinear
computational grids, in: Proceedings of the IEEE/ACM Parallel
Rendering Symposium ’93, October 1993, pp. 81–88.

[7] J. Challinger, Scalable parallel direct volume rendering for nonrectilinear
computational grids, Ph.D. Thesis, University of California, 1993.

[8] J. Comba, J.T. Klosowski, N. Max, J.S.B. Mitchell, C.T. Silva, P.L.
Williams, Fast polyhedral cell sorting for interactive rendering of
unstructured grids, Comput. Graphics Forum 18 (3) (1999) 369–376.

[9] J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Lastra, N. England,
L. Westover, PixelFlow: the realization, in: Proceedings of the
Siggraph/Eurographics Workshop on Graphics Hardware, August 1997,
pp. 57–68.

[10] R. Farias, J. Mitchell, C.T. Silva, ZSWEEP: an efficient and exact
projection algorithm for unstructured volume rendering, in: ACM/IEEE
Volume Visualization and Graphics Symposium, October 2000, pp.
91–99.

[11] R. Farias, C.T. Silva, Out-of-core rendering of large unstructured grids,
IEEE Comput. Graphics Appl. 21 (4) (2001) 42–50.

[12] R. Farias, C.T. Silva, Parallelizing the ZSWEEP algorithm for distributed-
shared memory architectures, in: International Volume Graphics
Workshop, 2001, pp. 181–192.

[13] C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving
network partitions, in: Proceedings of the 19th ACM/IEEE Design
Automation Conference, 1982, pp. 175–181.

98 C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99

[14] M.P. Garrity, Raytracing irregular volume data, IEEE Comput. Graphics
Appl. 24 (5) (1990) 35–40.

[15] C. Giertsen, Volume visualization of sparse irregular meshes, IEEE
Comput. Graphics Appl. 12 (2) (1992) 40–48.

[16] A. Grama, A. Gupta, G. Karypis, V. Kumar, Introduction to Parallel
Computing, Design and Analysis of Algorithms, second ed., Addison-
Wesley Publishing Company, Harlow, 2003.

[17] S. Guthe, S. Roettger, A. Schieber, W. Strasser, T. Ertl, High-quality
unstructured volume rendering on the PC platform, in: Proceedings
of the Siggraph/Eurographics Workshop on Graphics Hardware, 2002,
pp. 119–125.

[18] B. Hendrickson, R. Leland, The Chaco user’s guide: version 2.0,
Technical Report, SAND94-2692, Sandia National Laboratories, 1994.

[19] C. Hofsetz, K.-L. Ma, Multi-threaded rendering unstructured-grid volume
data on the SGI Origin 2000, in: Proceedings of the Third Eurographics
Workshop on Parallel Graphics and Visualization, September 2000.

[20] E. Horowitz, S. Sahni, Fundamentals of Computer Algorithms, Computer
Science Press, Rockville, MD, 1978.

[21] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular
graphs, J. Parallel Distributed Comput. 48 (1) (1998) 96–129.

[22] G. Karypis, V. Kumar, A fast and high quality multilevel scheme
for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1) (1998)
359–392.

[23] G. Karypis, V. Kumar, MeTiS: a software package for partitioning
unstructured graphs, partitioning meshes and computing fill-reducing
orderings of sparse matrices, Technical Report, Department of Computer
Science and Engineering, University of Minnesota, 1998.

[24] B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning
graphs, Bell System Tech. J. 49 (1970) 291–307.

[25] Y. Kopidakis, M. Lamari, V. Zissimopoulos, On the task assignment
problem: two new efficient heuristic algorithms, J. Parallel Distributed
Comput. 42 (1) (1997) 21–29.

[26] K. Koyamada, Fast traversal of irregular volumes, in: T.L. Kunii
(Ed.), Visual Computing, Integrating Computer Graphics with Computer
Vision, Springer, New York, 1992, pp. 295–312.

[27] K. Koyamada, T. Nishio, Volume visualization of 3d FEM results, IBM
J. Res. Develop. 35 (1/2) (1991) 12–25.

[28] H. Kutluca, T. Kurc, C. Aykanat, Image-space decomposition algorithms
for sort-first parallel volume rendering of unstructured grids, J.
Supercomput. 15 (1) (2000) 51–93.

[29] W.-S. Lin, R.W.H. Lau, K. Hwang, X. Lin, P.Y.S. Cheung, Adaptive
parallel rendering on multiprocessors and workstation clusters, IEEE
Trans. Parallel Distributed Systems 12 (3) (2001) 241–258.

[30] V.M. Lo, Heuristic algorithms for task assignment in distributed systems,
IEEE Trans. Parallel Distributed Systems 37 (11) (1988) 1384–1397.

[31] K.-L. Ma, Parallel volume ray-casting for unstructured-grid data on
distributed-memory architectures, in: Proceedings of the IEEE/ACM
Parallel Rendering Symposium ’95, 1995, pp. 23–30.

[32] K.-L. Ma, T.W. Crockett, A scalable cell-projection volume rendering
algorithm for unstructured data, in: Proceedings of the IEEE/ACM
Parallel Rendering Symposium ’97, 1997, pp. 95–104.

[33] K.-L. Ma, S. Parker, Massively parallel software rendering for visualizing
large-scale data sets, IEEE Comput. Graphics Appl. 21 (4) (2001)
72–83.

[34] K. Moreland, B. Wylie, C. Pavlakos, Sort-last parallel rendering for
viewing extremely large data sets on tile displays, in: Proceedings of the
IEEE 2001 Symposium on Parallel and Large-Data Visualization and
Graphics, October 2001, pp. 85–92.

[35] NASA dataset archive. 〈http://www.nas.nasa.gov/Research/Datasets/
datasets.html〉.

[36] L. Oliker, R. Biswas, PLUM: parallel load balancing for adaptive
unstructured meshes, J. Parallel Distributed Comput. 52 (2) (1998)
150–177.

[37] C.-W. Ou, S. Ranka, Parallel incremental graph partitioning, IEEE Trans.
Parallel Distributed Systems 8 (8) (1997) 884–896.

[38] M.E. Palmer, S. Taylor, Rotation invariant partitioning for concurrent
scientific visualization, in: Parallel Computational Fluid Dynamics ’94,
1994.

[39] R. Samanta, T. Funkhouser, K. Lai, Parallel rendering with k-way
replication, in: Proceedings of the IEEE Symposium on Parallel Graphics,
October 2001, pp. 75–84.

[40] R. Samanta, T. Funkhouser, K. Lai, J.P. Singh, Hybrid sort-first and
sort-last parallel rendering with a cluster of PCs, in: Proceedings of the
Siggraph/Eurographics Workshop on Graphics Hardware, August 2000,
pp. 97–108.

[41] K. Schloegel, G. Karypis, V. Kumar, Multilevel diffusion schemes for
repartitioning of adaptive meshes, J. Parallel Distributed Comput. 47 (2)
(1997) 109–124.

[42] K. Schloegel, G. Karypis, V. Kumar, Wavefront diffusion and LMSR:
algorithms for dynamic repartitioning of adaptive meshes, IEEE Trans.
Parallel Distributed Systems 12 (5) (2001) 451–466.

[43] P. Shirley, A. Tuchman, A polygonal approximation to direct scalar
volume rendering, IEEE Comput. Graphics Appl. 24 (5) (1990) 63–70.

[44] C.T. Silva, J.S.B. Mitchell, The lazy sweep ray casting algorithm for
rendering irregular grids, IEEE Trans. Visualization Comput. Graphics
3 (2) (1997) 142–157.

[45] H.S. Stone, Multiprocessor scheduling with the aid of network flow
algorithms, IEEE Trans. Software Eng. 3 (1) (1977) 85–93.

[46] C. Walshaw, M. Cross, M.G. Everett, Parallel dynamic graph partitioning
for adaptive unstructured meshes, J. Parallel Distributed Comput. 47 (2)
(1997) 102–108.

[47] J. Wilhelms, A. Van Gelder, A coherent projection approach for
direct volume rendering, IEEE Comput. Graphics Appl. 25 (4) (1991)
275–284.

[48] J. Wilhelms, A. Van Gelder, P. Tarantino, J. Gibbs, Hierarchical and
parallelizable direct volume rendering for irregular and multiple grids,
in: Proceedings of the Visualization ’96, 1996, pp. 57–64.

[49] P.L. Williams, Interactive direct volume rendering of curvilinear and
unstructured data, Ph.D. Thesis, University of Illinois at Urbana-
Champaign, 1992.

[50] P.L. Williams, N.L. Max, C.M. Stein, A high accuracy volume renderer
for unstructured data, IEEE Trans. Visualization Comput. Graphics 4 (1)
(1998) 37–54.

[51] C.M. Wittenbrink, Irregular grid volume rendering with composition
networks, in: Proceedings of SPIE Visual Data Exploration and Analysis
V, February 1998, pp. 284–294.

[52] C.M. Wittenbrink, Survey of parallel volume rendering algorithms,
in: Proceedings of the PDPTA’98 Parallel and Distributed Processing
Techniques and Applications, July 1998, pp. 1329–1336.

[53] R. Yagel, D. Reed, A. Law, P.-W. Shih, N. Shareef, Hardware assisted
volume rendering of unstructured grids by incremental slicing, in:
Proceedings of the 1996 Symposium on Volume Visualization, November
1996, pp. 55–62.

Cevdet Aykanat received the BS and MS de-
grees from Middle East Technical University,
Ankara, Turkey, both in electrical engineering,
and the PhD degree from Ohio State University,
Columbus, in electrical and computer engi-
neering. He was a Fulbright scholar during his
PhD studies. He worked at the Intel Supercom-
puter Systems Division, Beaverton, Oregon, as
a research associate. Since 1989, he has been
affiliated with the Department of Computer En-
gineering, Bilkent University, Ankara, Turkey,
where he is currently a professor. His research
interests mainly include parallel computing,

parallel scientific computing and its combinatorial aspects, parallel computer
graphics applications, parallel data mining, graph and hypergraph partitioning,
load balancing, neural network algorithms, high performance information re-
trieval systems, parallel and distributed web crawling, parallel and distributed
databases, and grid computing. He has (co)authored about 40 technical pa-
pers published in academic journals indexed in SCI. He is the recipient of
the 1995 Young Investigator Award of The Scientific and Technological Re-
search Council of Turkey. He is a member of the ACM and the IEEE Com-
puter Society. He has been recently appointed as a member of IFIP Working
Group 10.3 (Concurrent Systems) and INTAS Council of Scientists.

http://www.nas.nasa.gov/Research/Datasets/datasets.html
http://www.nas.nasa.gov/Research/Datasets/datasets.html

C. Aykanat et al. / J. Parallel Distrib. Comput. 67 (2006) 77–99 99

Berkant Barla Cambazoglu graduated from
Bursa Erkek Lisesi. He received his BS, MS,
and PhD degrees all in computer engineering
from the Computer Engineering Department of
Bilkent University in 1997, 2000, and 2006,
respectively. He has worked in two research
projects funded by The Scientific and Techno-
logical Research Council of Turkey and a project
funded by the European Union Sixth Framework
Program. His research interests include parallel
computing, scientific visualization, information
retrieval, data mining, and grid computing.

Ferit Findik received his BS (1995) and MS
(1997) degrees in Computer Engineering from
Bilkent University, Ankara, Turkey. He currently
works at Microsoft Corp. at Redmond as a soft-
ware design engineer. His area of expertise is
commercial software design and development in
systems and operations management.

Tahsin Kurc is an Assistant Professor in the
Department of Biomedical Informatics at the
Ohio State University. His research interests in-
clude runtime systems for data-intensive com-
puting in parallel and distributed environments,
and scientific visualization on parallel comput-
ers. He received his PhD in computer science
from Bilkent University, Turkey, in 1997 and
his BS in electrical and electronics engineering
from Middle East Technical University, Turkey,
in 1989.

