
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 4, NO. 3, JULY 2007 435

Multihoist Cyclic Scheduling With
Fixed Processing and Transfer Times

Yun Jiang and Jiyin Liu

Abstract—In this paper, we study the no-wait multihoist cyclic
scheduling problem, in which the processing times in the tanks and
the transfer times between tanks are constant parameters, and de-
velop a polynomial optimal solution to minimize the production
cycle length. We first analyze the problem with a fixed cycle length
and identify a group of hoist assignment constraints based on the
positions of and the relationships among the part moves in the
cycle. We show that the feasibility of the hoist scheduling problem
with fixed cycle length is consistent with the feasibility of this group
of constraints which can be solved efficiently. We then identify all
of the special values of the cycle length at which the feasibility
property of the problem may change. Finally, the whole problem
is solved optimally by considering the fixed-cycle-length problems
at these special values.

Note to Practitioners—Automated electroplating lines are com-
monly used in the production of many products, such as printed-
circuit boards. The productivity of these systems depends heavily
on effective scheduling of the material handling hoists that move
the products between the processing tanks. This paper studies the
hoist scheduling problem in systems where the processing times in
the tanks and the intertank move times are fixed parameters. An
efficient optimal algorithm is developed to solve the problem with
any number of hoists. The resulting schedule can be programmed
as programmable logic controller codes to directly control the hoist
operations. The algorithm can also be used to develop heuristic so-
lutions for multihoist scheduling in systems where the processing
times may vary in given intervals.

Index Terms—Hoist scheduling, multiple hoists, no-wait,
optimization.

I. INTRODUCTION

ELECTROPLATING is a common process in the produc-
tion of many products, such as printed-circuit boards

(PCBs). An electroplating system is an automated production
line with a series of tanks that contain the required chemical so-
lutions. Tanks are also called processing stations. Fig. 1 shows
a sample electroplating line. The parts to be processed must
visit a given sequence of tanks according to the technological
requirements. The required processing time in a tank may be
a fixed parameter or a flexible parameter within given limits
(the limits define a feasible window for the processing time).
Hoists mounted on a common track are used to move the parts

Manuscript received September 30, 2005; revised January 16, 2006. This
paper was recommended for publication by Associate Editor K. Saitou and
Editor N. Viswanadham upon evaluation of the reviewers’ comments.

Y. Jiang is with Bilkent University, Ankara 06800, Turkey (e-mail:
jiangyun@bilkent.edu.tr).

J. Liu is with Loughborough University, Leicestershire LE11 3TU, U.K.
(e-mail: J.Y.Liu@lboro.ac.uk).

Digital Object Identifier 10.1109/TASE.2006.884057

Fig. 1. Sample electroplating line.

Fig. 2. Sample of a time-way diagram.

between the tanks. Effective operations of the hoists are vital to
achieve high productivity of the line.

An electroplating line normally produces identical parts
cyclically. In each cycle, one part enters the line and another
leaves the line after completing all of the required processing
steps. Without loss of generality, we take the time point at
which a part starts moving to the first tank as the starting point
of a cycle. The duration of a cycle is called the cycle length.
Since there can be a number of parts being processed at the
same time in different tanks of the system, each part can stay
in the system for several cycles. Each hoist repeats a sequence
of part moves in every cycle. The cyclic production can be
illustrated by a “time-way diagram” such as the one in Fig. 2. A
time-way diagram is a special type of Gantt Chart emphasizing
the hoist movements. The horizontal axis represents time and
the vertical axis represents positions along the electroplating
line. We use horizontal thin gray lines to show the station
positions and use solid lines to indicate the part moves between
stations, where a horizontal segment indicates either lifting up
or dropping off of a part at a station and an inclined segment
indicates the travel between two stations. The processing time
of a part at a station is the duration between the ending point of
the move to this station and the starting point of the move away
from the same station. Dotted inclined lines are used to show
empty hoist moves while a dotted horizontal line indicates hoist

1545-5955/$25.00 © 2007 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52922379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

436 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 4, NO. 3, JULY 2007

waiting at a position. All of the loaded and empty moves of a
hoist form the route of that hoist. Since the hoists cannot run
across each other on the track, the routes of any two hoists will
never have intersection in the time-way diagram. The symbols
on the diagram in Fig. 2 will be explained and used later.

The hoist scheduling problem is to allocate the hoists to per-
form all of the required part moves in a cycle to maximize the
production throughput (i.e., minimize the cycle length).

Most previous research on hoist scheduling focuses on the
problem that considers only one hoist and that requires the pro-
cessing time in each tank to take a value within a given window.
Reference [1] proved that such a single-hoist problem was NP
complete. To find optimal cyclic hoist schedules, researchers
tried integer programming models (e.g., [2], [3], and [4]) and
branch-and-bound algorithms (e.g., [5]–[7] and [8]). For the
special case where the hoist route (the sequence of the moves) is
given, [9] developed a pseudopolynomial algorithm. Reference
[10] presented a polynomial search algorithm for the no-wait
single-robot scheduling problem in manufacturing cells, which
is equivalent to the no-wait single-hoist scheduling problem.
The no-wait condition indicates that the part processing times
in the tanks and the transfer times between tanks are all fixed
and that, upon completion of the processing in a tank, a part
needs to be moved immediately to the next tank.

The multihoist problem is more complicated and has received
less research. It involves new decisions on hoist assignment and
has to avoid hoist crossings and collisions as more than one
hoist runs on the same track. Reference [11] provided a re-
view of research on a broader problem class of cyclically sched-
uling transporters, including hoists, robots, and other vehicles
in flowshops. Reference [12] proposed a mathematical model
for general periodical scheduling problems and presented some
relevant applications. It can be seen from these references that
studies on multitransporter problems are limited and most of
them do not consider the common-track constraint. Reference
[13] considered two hoists in a special system where parts visit
the tanks one by one in one direction from the loading sta-
tion to the unloading station. They partitioned the line into two
nonoverlapping zones and then assigned one hoist to perform
the intertank part moves in each zone. The optimal schedule was
then determined by solving the two single-hoist problems alter-
nately. Reference [14] studied a multidegree cyclic two-robot
scheduling problem in a no-wait flowshop without the common-
track constraint. A different problem but related to multihoist
cyclic scheduling is to determine the minimum number of hoists
for a system. References [15] and [16] proposed heuristics for
minimizing the number of hoists in electroplating lines. Ref-
erences [17] and [18] studied the problem of minimizing the
number of transporters in other systems without the common-
track constraint.

For the no-wait two-hoist cyclic scheduling problem with
fixed processing and transfer times, [19] developed a polyno-
mial solution algorithm that allows any part flow pattern. They
identified and searched over the threshold values of the cycle
length. The optimal cycle length was then obtained by checking
the feasibility of each threshold cycle length. An optimal
schedule was constructed by considering many different com-
binations in assigning hoists to a pair of moves. The method is

quite efficient for the problem with two hoists. However, such
analysis is difficult to be extended to multiple hoists because
the hoist-assignment combinations will be too complicated to
handle efficiently. To solve the no-wait multihoist problem,
new approaches are needed.

In this paper, we study the no-wait multihoist cyclic sched-
uling problem with any number of hoists and an arbitrary
part flow pattern, and develop a polynomial optimal solution
algorithm. We first describe this problem formally, analyze the
basic relationships between the cycle length and the timing
of the moves in the cycle, and present a lowerbound and an
upperbound of the cycle length (Section II). For any fixed cycle
length, we identify a group of hoist assignment constraints
in Section III. In Section IV, we prove that the feasibility of
this constraint group is consistent with the feasibility of the
corresponding cycle length. Based on this, the hoist scheduling
problem for any given cycle length can be solved using an
efficient algorithm. In Section V, a set of special cycle lengths,
that may cause feasibility change, is identified. Section VI
summarizes all of these developments and presents a com-
plete algorithm that searches for the optimal cycle length and
constructs an optimal schedule. An example is also given.
Section VII concludes the paper.

II. PROBLEM DEFINITION AND ANALYSIS

In a similar way as defining the no-wait two-hoist problem
in [19], we formally describe the no-wait multihoist scheduling
problem as follows. Consider an electroplating system with sta-
tions arranged in a line from left to right: the loading station
(station 0), processing stations (stations), and pos-
sibly an unloading station (station). The position of sta-
tion is , . Some systems do not have
a separate unloading station. In these systems, loading and un-
loading are performed at the same station (station 0) and, there-
fore, . Each station can process, at the most, one
part at a time. There are hoists on the same track over the
line for moving parts between stations. The hoists cannot travel
across each other. We denote the hoists from left to right as

. The leftmost position that can reach is
and the rightmost position that can reach is . The range

covers the positions of all stations. To avoid collision,
any two adjacent hoists must maintain at least a safety distance

between them.
The sequence of stations to be visited by each part, also called

part flow pattern, is given as ,
where is the loading station, is the unloading sta-
tion, and , is the station for the th processing
stage of the part. The required processing time at processing sta-
tion is a given parameter , . After processing
at station , the part must be immediately moved to station
by a hoist. We denote this move as . The move consists of
lifting up the part from station , carrying the part from station

to station , and dropping off the part into station .
The time needed for the hoist to lift up or drop off a part at a sta-
tion is (the developments of this paper can be easily extended
to situations where liftup time and dropoff time are different).
The traveling speed of a hoist carrying a part is , and the max-
imum speed of an empty hoist is .

JIANG AND LIU: MULTIHOIST CYCLIC SCHEDULING WITH FIXED PROCESSING AND TRANSFER TIMES 437

As described in Section I, the hoist moving in one cycle is
exactly the same as those in any other cycle. There is one part
entering the system at the beginning of each cycle. For the part
entering the system at time 0, the starting time and ending time
of move for this part can be calculated from the parameters
using the following formulas:

starting points (1)

ending points (2)

For the example shown in Fig. 2, the moves for the part that
enters the system at time 0 are drawn in gray solid lines (lighter
than the moves of other parts), and the starting and ending points
of these moves are marked. In each production cycle, a move

starting from each station , , is performed
exactly once. For a given cycle length , the starting times of
all the required moves in a cycle can be calculated from as
follows:

(3)

For convenience in later discussions, we define the ending time
of moves, with respect to , as follows:

(4)

Let , then

(5)

(6)

The relationships among , , , and can be seen in Fig. 2.
Definition 1: A feasible hoist schedule is a cyclic schedule in

which each part move is assigned to a hoist; between any two
part moves assigned to the same hoist, there is enough time for
the empty move of the hoist; and the distance between any two
hoists is not shorter than at any time.

Definition 2: A cycle length is said to be feasible if a fea-
sible cyclic hoist schedule exists with this cycle length.

The no-wait multihoist cyclic scheduling problem can then
be defined as to find the shortest feasible cycle length and a
corresponding feasible schedule.

Since each station can process, at most, one part at a time,
a feasible cycle length cannot be shorter than the processing
time of any station plus the time for moving the finished part
away from this station and moving a new part into it. The two
moves may be performed by different hoists but the hoists have
to keep the safety distance. This provides a method to determine
a lowerbound of the optimal cycle length. On the other hand, if
a feasible solution exists for the problem, the total time spent
by a part in the system provides an upperbound of the optimal
cycle length. The above discussion is valid for systems with any
number of hoists and directly leads to the following result.

Proposition 1: If there is a feasible solution for the no-wait
multihoist scheduling problem, then

is a lowerbound and
is an upperbound for the optimal

cycle length.

III. HOIST ASSIGNMENT CONSTRAINTS

FOR A FIXED CYCLE LENGTH

For any given cycle length , , the starting and
ending times of all moves in a cycle are fixed in the time-way di-
agram and can be calculated from (1)–(4). The problem then be-
comes verifying the feasibility of the cycle length by searching
for a feasible assignment of the moves to the hoists. In this sec-
tion, we identify necessary conditions that must be satisfied by
a feasible assignment compatible with the value of the cycle
length.

We define the following variables for the hoist assignment
decisions.

: the hoist number assigned to perform ,
, in every cycle.

A. Constraints by Positions of Individual Moves

Recall that the hoists run on the same track and are numbered
from left to right. If the distance from the position of a tank to
the track’s leftmost position is less than the safety distance ,
then this tank can only be reached by , and any move from or
to this tank must be performed by . Similarly, if the distance
of a tank to is less than , then the moves involving this
tank can only be performed by or . Considering the value
range of , , such restrictions can be represented
by

Similarly, the track’s rightmost position imposes the fol-
lowing constraint:

These constraints set tighter bounds for . Denoting
and

, we can
write them in the following form:

(7)

Fig. 3 illustrates these constraints for a move. Note that these
constraints are independent of . Therefore, if they are infea-
sible, then the hoist scheduling problem is infeasible.

B. Constraints From Hoist Assignment of One Move

Since the hoists cannot be very close to each other, the hoist
assignments of a pair of moves are also restricted by the rela-

438 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 4, NO. 3, JULY 2007

Fig. 3. Illustration of constraints by the position of an individual move.

tionship of the two moves in time and in position. As prepa-
ration for presenting these move–pair relation constraints con-
cisely (in Section III-C), we first discuss here the constraints
imposed by the hoist assignment of one move on positions of
all hoists. Consider a move and an arbitrary point
in the time-way diagram. Suppose is assigned to hoist ,
then the hoists that can reach the point are restricted by
this assignment. We denote a hoist that can reach this point as
and identify the constraints that limit the possible values of .
The diagram in Fig. 4 illustrates the move and the bounding
lines around it. For point being in different areas sep-
arated by these lines, the bounds for are different and
marked in the diagram. From the diagram, we can see that the
format of the constraints may be different when the point is at
different positions with respect to move . In the following,
we discuss these different situations.

For the case , we denote the position of hoist at
time as . Since is performed by , the position of at
time will be . Due to the safe distance between
two adjacent hoists, we have for

(i.e., for is the same as or is a hoist below on
the diagram), and for (i.e., for

is the same as or is a hoist above on the diagram). To
reach the point from , hoist should be able
to arrive at position on or before the time in the maximum
empty move speed . Therefore, we have

for

for

Considering that and are integers, the first inequality
above (for) can be written as

for

With the condition , this constraint can be satisfied only
when . Reversely, when

(i.e., the point
is above the top upwards-sloped dotted line on the right part
of Fig. 4), the condition cannot be satisfied (i.e., it
is impossible for hoist or any hoist below it to reach point

) and, thus, we must have or, equivalently,
considering again the integer values of and

. This analysis leads to the following constraint which is valid

Fig. 4. Relation between a point and a move in a time-way diagram.

both for and for . In the case , it is
equivalent to the first inequality above

In a similar way, we can also transform the second inequality
(for) to the following equivalent constraint which is
always valid regardless of the relations between and :

Combining the above two constraints, we know that is
bounded by

(8)

Similarly, is restricted by the constraint below in the
case of

(9)

In the case of (is within the duration of move
), the possible value of depends on the vertical distance

between the point and the move .
A move consists of three line segments in the time-way di-

agram. It has a starting point, an ending point, and two corner
points in between (one close to starting point and the other close
to the ending point). To simplify later presentations, we define
the position of a move (position of as well) as a function
of time , in the range between and , as shown in the equa-
tion at the bottom of the next page.

During the period from to , is performing and the
distance between it and any other hoist cannot be closer than .

JIANG AND LIU: MULTIHOIST CYCLIC SCHEDULING WITH FIXED PROCESSING AND TRANSFER TIMES 439

Fig. 5. Relations between two moves.

Therefore, if (the shaded area in Fig. 4),
there will be no feasible value for .

If (the point is below), to ensure safe
distance between the hoists, we must have

.
Similarly, if , we must have

.
The constraints in the above three situations for

can be summarized as shown below

if

if

infeasible if
(10)

C. Constraints From Move Pairs

We now come back to a pair of moves and in the cycle
(; ; ;). If any one
of them is assigned to a hoist, then the hoist assignment of the
other is restricted. As shown in Fig. 5, such restrictions may
exist between and in the same cycle and between in
one cycle and in the next cycle. But they can be handled in
the same way.

We consider the two moves in the same cycle first. Based on
the discussions in the last subsection, if the hoist assignment
constraint between one of the two moves and some point of
the other is infeasible, then the cycle length is infeasible. Note
that the constraint is in the format of inequality (8), (9), or (10),
depending on the relative positions of the move and the point. If
the constraints between one move and every point of the other
are all feasible, then feasible hoist assignments for this pair of
moves exist. In fact, as we will show below, there is no need to
consider the constraints between one move and every point of
the other.

Fig. 6. Examples of relative positions betweenm andm .

Proposition 2: For a pair of moves and , the
hoist assignment variables and satisfy all of the constraints
between one move and every point of the other if and only if they
satisfy all of the constraints between one move and the starting,
ending, and corner points of the other.

Proof: The condition is clearly necessary because if the
constraint between a move and a point of the other is not satis-
fied, then the two hoists will violate the safety distance require-
ment at the time of that point.

We now prove that the condition is sufficient by considering
different cases for the relative positions of a move pair and

(e.g., different positions of relative to in Fig. 6). For
simplicity, we will refer to the constraint from the relation be-
tween a point of one move and the other move as the constraint
for that point. This will not cause confusion as there are only
two moves involved.
Case 1) the two moves do not overlap in time (e.g., is in

position 5 for the example in Fig. 6). If and satisfy
the constraint for , the starting point of , then
they satisfy inequality (8), with as and
as the point in the formula. That is, is
bounded as follows:

if
if and
if and
if

440 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 4, NO. 3, JULY 2007

Since (i.e., the line segments of are flatter
than or with the same slope as the bounding lines on the
right of), we have for every
point on other than the starting point. Then,
if we replace and in the above bounds with
and , respectively, the lowerbound will be unchanged
or become smaller, the upperbound will be unchanged
or become larger, and, hence, will be still within
the resulting new bounds. That is, if and satisfy the
constraint for the starting point of , they also satisfy
the constraints between and all other points on .
Therefore, it is enough to consider only the constraint
for the start point of . Equivalently, it is enough to
consider only the ending point of .

Case 2) the two moves overlap in time. We discuss this case in
two more detailed cases.

2.1) the two moves cross each other (e.g., is in po-
sition 1 in Fig. 6). This is a definitely infeasible
case. Since the two moves cross each other, they
overlap in time. Point , the starting point
of , is on the left boundary of the overlapping pe-
riod. On the right boundary is either or

, the ending point of or . If the dis-
tance from the point on either boundary to the other
move is less than , then the infeasibility is identi-
fied by constraint (10) for this point. Otherwise, if

is on the right boundary, the two points
and must be on different sides

of due to the crossing. Then, constraint (10) for
the point above requires but an-
other constraint (10) for the point below requires

, which indicates infeasibility. Sim-
ilarly, if is on the right boundary, then
one constraint (10) for and another con-
straint (10) for will conflict with each
other. Therefore, when the two moves cross each
other, the infeasibility can always be identified by
the constraints between a move and the starting and
ending points of the other.

2.2) the two moves do not cross each other (e.g., is
in positions 2, 3, or 4 in Fig. 6). If part of is on
the right of the vertical line as in situation
3 or 4 in Fig. 6, the constraint for the point of
at the time will also be satisfied for all of the
points of on its right, as can be proved in the
same way as for Case 1) (because). For
the same reason, all of the constraints for the points

outside the two moves’ overlapping period need not
be considered. The hoist assignment constraint from
the two moves is then defined by the closest vertical
distance of the two moves in the overlapping period.
Now, we prove that the closest distance between the
two moves in the overlapping period is reached at
one of the starting, ending, or corner points. Suppose
the closest distance occurs between a midpoint on a
segment of one move and a midpoint on a segment
of the other move, then these two segments of the
two moves must be parallel. Then, moving from this
point to right (or to the left), the vertical distance
between the two parallel line segments is always the
closest distance until, and including, the end of one
of these two segments. This end of the line segment
must be an ending point (or starting point, if moving
to the left) or a corner point of a move. Hence, it
is sufficient to consider only the constraints for the
starting, ending, and corner points.

The above discussions on the sufficiency of the condition
have included all possible cases. The proof is complete.

From the proof of Proposition 2, we can see that, for and
in the same cycle, it is enough to consider only

the constraints between and the start point of if there is
no overlapping in time between the two moves ; and if
there is overlapping in time between them, it is enough to con-
sider only the constraints between each move and the starting,
ending, and corner points of the other in the overlapping time
period. Altogether, we have the following constraints for the re-
strictions between and in the same cycle.
Case 1) Between and the starting point of , if

Case 2) Between and the starting point of , if ,
as shown

if

if

infeasible if

if

if

infeasible if

JIANG AND LIU: MULTIHOIST CYCLIC SCHEDULING WITH FIXED PROCESSING AND TRANSFER TIMES 441

Case 3) Between and the corner point of
, if , as shown in the first equation at

the bottom of the previous page.
Case 4) Between and the corner point of

, if , as shown in the first equation at
the bottom of the page.

Case 5) Between and the ending point of , if ,
as shown in the second equation at the bottom of the
page.

Case 6) Between and the corner point of
, if , as shown in the third

equation at the bottom of the page.
Case 7) Between and the corner point of

, if , as shown in the fourth
equation at the bottom of the page.

Case 8) Between and the ending point of , if
, as shown in the fifth equation at the bottom of the

page.

if

if

infeasible if

if

if

infeasible if

if

if

infeasible if

if

if

infeasible if

if

if

infeasible if

442 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 4, NO. 3, JULY 2007

Case 1) corresponds to the situation where there is no over-
lapping in time between the two moves . Cases 2)–8)
are for the situations where there is overlapping in time between
the two moves.

For the restrictions between in one cycle and in the
next cycle , we can get the constraints in the same
way. For simplicity, we use to mean “ in the next cycle.”
The case where they do not have overlapping is
similar to case 1) from before, and the constraints can be easily
written

We change the sign of this inequality to make it as a constraint
on

Similarly, we can obtain constraints for the restrictions be-
tween and in all cases. These are listed in Appendix A
as Cases a)–h). Case a) corresponds to the situation where there
is no overlapping in time between and .
Cases b)–h) are for the situations where there is overlapping in
time between the two moves.

When the cycle length is fixed, for any pair of moves and
(; ; ;), a set of

hoist assignment constraints based on the relationship between
the two moves can be obtained as discussed before. Note that
some of the cases may not be relevant for a particular move pair.
According to the relative positions of the two moves, we can
list all of the relevant constraints by checking the Cases 1)–h).
If any of the constraints is infeasible, then the cycle length is
infeasible. Otherwise, it is easy to see that all of the constraints
are in the format . Calculating

and , we can combine these
constraints into one .

Considering all move pairs, we have the following hoist
assignment constraints. Each constraint is a “difference con-
straint” that sets lower and upperbounds for the difference of
two variables

(11)

IV. HOIST SCHEDULING WITH A GIVEN CYCLE LENGTH

A. Problem Transformation

When the cycle length is given, our problem becomes to
check whether this cycle length is feasible. To solve this

problem, we first transform it to a problem of solving a group
of difference constraints.

Proposition 3: A cycle length is feasible if and only if a
feasible integer solution exists for the group of constraints (7)
and (11) corresponding to .

Proof: From the process of deriving the constraints in the
last section, it is obvious that all of the constraints are necessary
conditions for a cycle length being feasible. We only need to
show that this group of constraints is also sufficient for a cycle
length being feasible.

When the constraint group for a cycle length has a feasible
integer solution, to prove the cycle length is feasible, we need
to show: 1) that every move is assigned to a hoist and 2) that
there is a feasible route for each hoist in a complete cycle (i.e.,
the moves assigned to the same hoist can be feasibly linked in
the time-way diagram to form a route for the hoist and the routes
of any two adjacent hoists keep at least a safety distance from
each other all the time).

1) From an integer feasible solution of constraints (7)
and (11), we can get an integer value for each ,

. Constraint (7) ensures that the values
all satisfy . Therefore, every move is
assigned to one of the hoists for a feasible integer so-
lution. Note that different variables may take the same
value (i.e., a hoist may be assigned to perform several
moves). But the hoist assignment satisfies constraint
(11) between any pair of moves (i.e., after performing
one of the moves, there is enough time for the hoist to
travel to the next move and perform it).

2) Now we show the existence of a feasible schedule by
constructing a route for each hoist in the time-way dia-
gram and proving the feasibility of these routes. To con-
struct the routes, we order all moves in cycle in as-
cending order of their starting times. The corresponding
ordered moves are denoted by .
Without loss of generality, we define the moves
performed by hoist to be

where .
For each hoist , we need to prove that there is a feasible
route for it to travel for a complete cycle, including the
link that crosses the cycle boundary (starts in one cycle
and completes in the next) (e.g., from in cycle

to in cycle). For convenience, we
refer to the move in cycle as in the
current cycle .

We first construct a route for . To construct the route, we
only need to construct a link between each adjacent pair of
moves and , . We can con-
struct the link in the following way (see Fig. 7 for illustrations).
In the time-way diagram, starting from the ending point of
(point), draw a line downwards with slope , which in-
tersects the horizontal line at point . From the starting
point of (point), draw a line downwards with slope

, which intersects the horizontal line at point . If the
lines and do not intersect above or on the horizontal line

as shown in Fig. 7(a), the link is constructed using the
three line segments , , and . If the lines and

JIANG AND LIU: MULTIHOIST CYCLIC SCHEDULING WITH FIXED PROCESSING AND TRANSFER TIMES 443

Fig. 7. Hoist route betweenm andm .

intersect at a point above or on the horizontal line as
shown in Fig. 7(b), the link is constructed using the two line seg-
ments and . If point is overlapped with point or
as shown in Fig. 7(c), the link is constructed by connecting the
two points and directly. In all of the cases, the link is fea-
sible (i.e., the hoist can feasibly travel from to
along the link), because the hoist speeds required on the link
segments are all within the maximum empty hoist speed .

To show that this route of does not conflict with the moves
assigned to other hoists, we consider any move which is

assigned to a hoist . If any part of is in a time
interval that contains a move or the sloped link segments on the
route of , then from the above route construction method,
we know that the move–pair constraints ensure that is at

least distance vertically above the route of in this
interval. If any part on is in a time interval that contains a

horizontal link segment on the route of , then from
the individual move constraints, we know that is also at

least distance vertically above the route of in this
interval. In summary, any move is always at least

distance vertically above the route of (i.e., the route
of does not conflict with the moves assigned to other hoists).

Now, we imagine a path that is exactly distance above
the route of and then construct the route for by linking
each pair of moves and , (see
Fig. 8 for illustrations). Starting from the ending point of
(point), draw a line downwards with slope , which inter-
sects the path at point . From the starting point of
(point), draw a line downwards with slope , which in-
tersects the path at point . If the lines and do not
intersect above or on as shown in Fig. 8(a), the link is con-
structed using the line segment , path and line segment

. If the lines and intersect at a point above or on
as shown in Fig. 8(b), the link is constructed using the two line
segments and . If point is overlapped with point or

, as shown in Fig. 8(c), the link is constructed by connecting
the two points and directly. Clearly, the route of con-
structed this way keeps at least distance from the route of
because it never goes below path . Similar to the situation
for , it can be shown that the route of does not conflict
with moves assigned to hoists .

Imagining a path that is exactly distance above the route
of , we can construct the route for in the same way as
for . Similarly, we can construct the routes for other hoists,
one-by-one, and show that the routes for any adjacent hoists al-
ways keep at least a distance of . Now consider the route of

Fig. 8. Hoist route betweenm andm .

, the individual move constraints guaranteed that the moves
on the route are all below the line . From the route
construction method, we can see that the link between any two
moves is always lower than the highest point of the two moves.
Thus, the whole route of is below the line . In sum-
mary, the routes of the hoists constructed above are all within
the vertical range and always keep at least a distance

from each other. Therefore, the hoist routes are feasible (i.e.,
the corresponding cycle length is feasible).

The proof of this proposition provides a method to construct
a feasible schedule. Since each move needs to be linked to only
one other move on its right in the route of the hoist assigned to
them, we only need to construct move links. The number
of line segments for each link is proportional to the number of
moves of the hoist routes below it. Therefore, the com-
putational complexity for constructing a feasible schedule is

.
Note that the route construction method given in the above

proof is mainly for showing the existence of a feasible schedule
when the group of constraints (7) and (11) has a feasible integer
solution. In the resulting hoist routes, however, the empty hoist
moves may be unnecessarily long as can be seen from Figs. 7
and 8. With proven existence of a feasible schedule, schedules
can actually be constructed differently, in which most links be-
tween the loaded moves in the hoist routes can be straight lines.
For example, we can modified the schedule constructed in the
proof in the following way. Modify the routes of the hoists, one
by one from Hoist to Hoist 1: between each pair of adjacent
moves assigned to the hoist, let the empty hoist move along a
straight line on the time-way diagram; whenever it reaches a
point that has a distance of to the route of an adjacent hoist,
detour along a path that keeps the safety distance of to the route
of that adjacent hoist until it comes back to the straight line. It
can be seen that with this modification step, the complexity for
constructing the schedule is still .

B. Problem Solution

For a given cycle length, we can construct constraints (7) and
(11). By introducing an auxiliary variable , we can trans-
form constraint (7) to the following difference constraint:

(12)

According to Proposition 3, the hoist scheduling problem with
a given cycle length becomes a problem to find whether there
exists an integral solution to the corresponding system of differ-
ence constraints (11) and (12).

444 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 4, NO. 3, JULY 2007

Fig. 9. Constructing a graph for the system of difference constraints.

Such a system of difference constraints can be represented by
a weighted directed graph such that the system is feasible if and
only if there exists no negative weight cycle in the graph ([20,
pp. 602–605]).

The graph , corresponding to constraints (11)
and (12), is as follows. There are nodes in the graph

, where is the source node corresponding
to and node corresponds to the decision variable

. The graph contains arcs, each
corresponding to one bound of a difference constraint. Between

and , there are two directed arcs from
to and from to , as shown in Fig. 9(a). The weights of

and are and , respectively. Between
any and (;), there
are also two directed arcs from to and from to

, as shown in Fig. 9(b). The weights of arcs and are
and , respectively. If a negative weight

cycle exists in the graph , there is no feasible solution
for constraints (11) and (12). Otherwise, the total weight of the
shortest path from to is the solution of .
Since all ’s are integer, it is guaranteed that the solution is
integer.

The problem of determining whether graph has a
negative weight cycle can be solved using the Bellman–Ford al-
gorithm (see [20]–[22]). Systems of difference constraints and
the Bellman–Ford algorithm have been used to solve some other
scheduling problems. For example, [16] used a system of dif-
ference constraints, with move starting times as variables, to
check the feasibility of a given sequence of moves for a single
hoist. Reference [23] used a modified Bellman–Ford algorithm
to minimize the cycle length for a given robot route.

The following is a procedure, based on the Bellman–Ford al-
gorithm, for solving the system of constraints (11) and (12).

Procedure 1: Feasibility Checking

Set and .

Set for .

While : {

If holds for some arcs , then {

For each arc : {

Correct and update if . }

Set . }

Else, {

Stop. ’s are a feasible solution. }}

There is a negative cycle and the constraint system is infeasible.

The computational complexity of the algorithm is .
Since , , the complexity of
this procedure is .

V. SPECIAL VALUES OF THE CYCLE LENGTH

Although the cycle length may take any real value between
and , some of the values are infeasible (the corresponding

schedule is not feasible) and the feasibility changes only at some
special values when increases from to . In this section,
we identify all of the special values at which the feasibility may
potentially change.

Proposition 4: When the cycle length increases from to
, the feasibility may change (from infeasible to feasible or

from feasible to infeasible) only if there exists a pair of and
(;) such that the value of

or corresponding to the cycle length changes.
Proof: For a given cycle length, the feasibility can be

checked by solving constraints (11) and (12). As discussed in
Section III-A, constraints (12) are independent of cycle length
and are kept unchanged when cycle length changes. Therefore,
the feasibility may change only if there is at least one constraint
in constraint set (11) changes (i.e., one of the bounds in the
constraint changes). Therefore, feasibility may change only if
there exists at least one pair of and such that or
changes.

Recall that and are obtained by checking the Cases
1)–h) in Section III-C. We first discuss the changes of and

for Case 1) (assume).
If Case 1) in Section III-C dominates the other cases for ,

we have

and may change only when

where

Since , and , the cycle
lengths that may cause changes of are

if

Since the cycle length cannot be shorter than the processing time
at a station plus the move time to the next station, we have

and the above cycle lengths can be expressed
as

if

where and .

JIANG AND LIU: MULTIHOIST CYCLIC SCHEDULING WITH FIXED PROCESSING AND TRANSFER TIMES 445

Fig. 10. Special T values corresponding to the changes of L and U as an
example.

Similarly, if Case 1) in Section III-C dominates the other
cases for , we have

and may change only when

where

Since , and , the cycle
lengths corresponding to the changes of are

if

where and .
In a similar way, for a pair of moves and with , we can

find special values of the cycle length corresponding to possible
changes of and for all Cases 1)–h). Detailed formulas
for these special values are listed in Appendix B.

For each class of the above special cycle lengths, the value
of can be . Therefore, for a pair and , the
total number of these special cycle lengths corresponding to the
changes of and is bounded by .

The example shown in Fig. 10 gives an explanation of the
meanings of these special values. The example shows a pair
of moves and for a problem with three hoists.
Imagine we increase the cycle length continuously, will
move to the left with respect to . At the beginning, the
starting point of is to the right of point . When the cycle
length increases, passes through points , , , and
one by one. changes from 2 to 1 when the starting point of

passes through points . Similarly, changes from 1 to 0
and 0 to -1 when the starting point of passes through points

and , respectively. When the starting point of passes
through points and , changes from to and to
0, respectively. After its starting point passes through point ,

enters the shaded region and the corresponding cycle length
becomes infeasible. At this time, we have
to reflect the infeasibility.

When cycle length increases further, will leave the shaded
region and its ending point passes point . At this time, when

changes from 0 to , we have .
changes from to when the ending point of passes
point . Similarly, changes from to 0, 0 to 1, and 1
to 2 when the ending point of passes points , , and ,
respectively.

From the above analysis, we know that for this example, the
pair of moves and defines a total of 10 special cycle
length values, corresponding to points to , respectively.

VI. COMPLETE SOLUTION TO THE NO-WAIT PROBLEM

With all of the results of the previous sections, we know that
the no-wait multihoist scheduling problem under study can be
solved by generating the lowerbound, the upperbound, and all of
the special values of the cycle length, and then checking the fea-
sibility of these special values in ascending order starting from
the lowerbound. As the feasibility may only change at these
values, the first feasible value will be the optimal cycle length
and the corresponding hoist schedule is an optimal schedule.
The overall algorithm to obtain the optimal solution is summa-
rized as follows:

Procedure 2: Algorithm to solve the no-wait problem

Read problem data and calculate and .

For : {

.

If , the problem is infeasible. stop. }

Calculate the special values for each pair of moves according
to the formulas in Section V.

Order all of the special values in ascending order and get rid of
the duplicates and the values outside the interval . Call
the resulting ordered values “checking points” (cycle lengths)
and name them .

Set .

While : {

Let and calculate and for .

For ; : {

Construct and by checking Cases 1)–h) in
Section III-C. If , is infeasible, set ,
go back to step . }

Apply Procedure 1 to determine whether there is a feasible
solution to the constraints (11) and (12). If it is infeasible, set

, go back to step . Otherwise, is the optimal
cycle length; construct an optimal schedule using the method
described in Section IV-A; stop. }

All of the checking points are infeasible. Stop; the problem
is infeasible.

446 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 4, NO. 3, JULY 2007

Fig. 11. No-wait solution for the example.

Proposition 5: The no-wait multihoist cyclic scheduling
problem with fixed processing and transfer times is polynomi-
ally solvable.

Proof: Procedure 2 solves the problem because it generates
an optimal hoist schedule when the problem is feasible and it
indicates infeasibility otherwise.

In the procedure, for each pair of moves, and , the
number of checking points is bounded by . The total
number of checking points is then . The complexity
of Procedure 1 for checking feasibility of a checking point is

. Hence, the complexity to check all of the checking
points is . Ordering the special values is completed with
the complexity of before the checking process.
The optimal schedule is constructed with the complexity of

after the checking process. Therefore, the computational
complexity of the complete algorithm is .

Illustrative example
As an illustrative example, we apply the algorithm to the

following three-hoist problem . The system has 20
processing stations and a further station (station 0)
for both loading and unloading. The positions of the stations
are , . The position limits for the
hoists on the track are , . The safety
distance between hoists is 1.5. The loaded and empty
hoist speeds are and , respectively. The
time for lifting up or dropping off a part at a station is

. The order of stations (the ’s) that the parts visit is

. The processing times at the stations, in the above order, are

.
The algorithm takes only 0.025 s (on a Pentium III PC with

750 MHz CPU) to obtain an optimal no-wait schedule with
(see Fig. 11). From the results, we can see that the

algorithm is very efficient.
To observe the impact of system settings on the optimal cycle

length and to demonstrate the efficency of our algorithm in dif-
ferent situations, we change the above example data to gen-
erate more instances in the following two ways: 1) try different
number of hoists from 1 to 5; 2) change the range (the leftmost
and rightmost positions) that hoists can travel on the track. The
combination of these provides 25 different instances including

TABLE I
RESULTS FOR THE EXAMPLE WITH CHANGED PARAMETERS

the original one shown above. Table I shows the results of ap-
plying the algorithm to these instances. Two numbers are shown
for each problem instance. The first number is the resulting
optimal cycle length for that case and the second number (in
brackets) is the computation time used (in seconds on a Pen-
tium III PC with 750-MHz CPU).

From the results, we can see that, in general, the optimal
cycle length becomes shorter (e.g., the productivity of the elec-
troplating line becomes higher), when the number of hoists in-
creases. This is because more hoists mean more resource ca-
pacity while the material handling workload in a cycle is fixed.
However, when the system has adequate hoists (3 or 4 for this
example), adding more hoists will not reduce the optimal cycle
length further. In fact, too many hoists may increase the optimal
cycle length, as can be seen in the case of 5 hoists with a trav-
eling range from 0 to 20, because of the increased interference
among them.

The change of the hoist traveling range does not affect the
optimal cycle length when the number of hoists is small. With
a larger number of hoists, increasing the traveling range by a
safety distance (1.5) reduces the optimal cycle length due to
relaxed constraints. Furthermore, increasing the range at both
ends of the track results in more reduction in the optimal cycle
length compared to increasing at one end. The results also in-
dicate that increasing the traveling range by one safety distance
seems sufficient and a further increase does not affect the op-
timal cycle length for this example.

The computation time required increases as the number of
hoists increases due to the increasing number of hoist assign-
ment options. The change in the hoist traveling range has little
impact on the computation time when the number of hoists is not
large (up to 3 in this example). With a larger number of hoists,
the computation time decreases when the range increases. In
any of these cases, however, the computation time never exceeds
0.1 s, confirming that our algorithm is very efficient.

VII. CONCLUSION

In this paper, we have studied the multihoist no-wait cyclic
scheduling problem in which the tank processing times and
the part move times are fixed parameters, and developed a
polynomial algorithm to obtain an optimal schedule with min-
imum cycle length. The polynomial solution is based on the
following two developments: 1) For the problem with a fixed
cycle length, we analyzed the relationship between the part
moves and identified a group of hoist assignment constraints.
The problem with the fixed cycle length was then transformed
to a system of difference constraints on the hoist assignment

JIANG AND LIU: MULTIHOIST CYCLIC SCHEDULING WITH FIXED PROCESSING AND TRANSFER TIMES 447

variables. The constraint system can then be solved efficiently.
2) a set of special values of the cycle length that might cause
feasibility change was derived. The whole problem was then
solved by checking the feasibility of these special values in
ascending order. The computational complexity of the complete
algorithm is . An example was given demonstrating
that the algorithm is very efficient.

APPENDIX A
CONSTRAINTS FOR THE RESTRICTIONS BETWEEN IN ONE

CYCLE AND IN THE NEXT CYCLE (DENOTED AS)

Case a) Between and the starting point of , if

Case b) Between and the corner point of ,
if , as shown in the first equation
at the bottom of the page.

Case c) Between and the corner point of
, if , as shown in the second

equation at the bottom of the page.
Case d) Between and the ending point of , if

, as shown in the third equation at the bottom
of the page.

Case e) Between and the starting point of , if ,
as shown in the fourth equation at the bottom of the page.

Case f) Between and the corner point of
, if , as shown in the first equation at

the bottom of the next page.
Case g) Between and the corner point

of , if , as shown in the second equation
at the bottom of the next page.

if

if

infeasible if .

if

if

infeasible if .

if

if

infeasible if .

if

if

infeasible if .

448 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 4, NO. 3, JULY 2007

Case h) Between and the ending point of , if
as shown in the third equation at the bottom of the page.

APPENDIX B
SPECIAL VALUES OF THE CYCLE LENGTH

THAT MAY CAUSE CHANGES OF AND

1) For Case 1)

if

where

if

where

2) For Case a)

if

where

if

where

3) For Case 2)

if

if

where

4) For Cases 3) and b)

if

if

where

5) For Cases 4) and c)

if

if

if

infeasible if .

if

if

infeasible if .

if

if

infeasible if .

JIANG AND LIU: MULTIHOIST CYCLIC SCHEDULING WITH FIXED PROCESSING AND TRANSFER TIMES 449

if

where

6) For Cases 5) and d)

if

if

where

7) For Case e)

if

if

where

8) For Cases 6) and f)

if

if

where

9) For Cases 7) and g)

if

if

where

10) For Cases 8) and h)

if

if

where

REFERENCES

[1] L. Lei and T. J. Wang, “A proof: The cyclic hoist scheduling problem is
NP-complete,” in Working Paper 89-0016. Piscataway, NJ: Rutgers
Univ., 1989.

[2] L. W. Phillips and P. S. Unger, “Mathematical programming solution
of a hoist scheduling program,” AIIE Trans., vol. 28, pp. 219–225,
1976.

[3] W. Song, Z. B. Zabinsky, and R. L. Storch, “An algorithm for sched-
uling a chemical processing tank line,” Prod. Planning Control, vol. 4,
pp. 323–332, 1993.

[4] J. Liu, Y. Jiang, and Z. Zhou, “Cyclic scheduling of a single hoist in
extended electroplating lines: A comprehensive integer programming
solution,” IIE Trans., vol. 34, pp. 905–914, 2002.

[5] R. Armstrong, L. Lei, and S. Gu, “A bounding scheme for deriving the
minimal cycle time of a single-transporter n-stage process with time-
window constraints,” Eur. J. Oper. Res., vol. 78, pp. 130–140, 1994.

[6] L. Lei and T. J. Wang, “Determining optimal cyclic hoist schedules in
a single-hoist electroplating line,” IIE Trans., vol. 26, pp. 25–33, 1994.

[7] W. C. Ng, “A branch and bound algorithm for hoist scheduling of a
circuit board production line,” Int. J. Flexible Manuf. Syst., vol. 8, pp.
45–65, 1996.

[8] H. Chen, C. Chu, and J. M. Proth, “Cyclic scheduling of a hoist with
time window constraints,” IEEE Trans. Robot. Autom., vol. 14, no. 1,
pp. 144–152, Feb. 1998.

[9] L. Lei, “Determining the optimal starting time in a cyclic schedule with
a given route,” Comput. Oper. Res., vol. 20, pp. 807–816, 1993.

[10] V. Kats and E. Levner, “A strongly polynomial algorithm for no-wait
cyclic robotic flowshop scheduling,” Oper. Res. Lett., vol. 21, pp.
171–179, 1997.

[11] Y. Crama, V. Kats, V. Van de Klundert, and E. Levner, “Cyclic sched-
uling in robotic flowshops,” Ann. Oper. Res., vol. 96, pp. 97–124, 2000.

[12] P. Serafini and W. Ukowich, “A mathematical model for periodic
scheduling problems,” SIAM J. Discrete Math., vol. 2, pp. 550–581,
1989.

[13] L. Lei and T. J. Wang, “The minimum common-cycle algorithm for
cyclic scheduling of two material handling hoists with time window
constraints,” Manage. Sci., vol. 37, pp. 1629–1639, 1991.

[14] A. Che and C. Chu, “Multi-degree cyclic scheduling of two robots in
a no-wait flowshop,” IEEE Trans. Autom. Sci. Eng., vol. 2, no. 2, pp.
173–183, Apr. 2005.

[15] L. Lei, R. Armstrong, and S. Gu, “Minimizing the fleet size with de-
pendent time-window and single-track constraints,” Oper. Res. Lett.,
vol. 14, pp. 91–98, 1993.

[16] R. Armstrong, S. Gu, and L. Lei, “A greedy algorithm to determine the
number of transporters in a cyclic electroplating process,” IIE Trans.,
vol. 28, pp. 347–355, 1996.

[17] J. B. Orlin, “Minimizing the number of vehicles to meet a fixed periodic
schedule,” Oper. Res., vol. 30, pp. 760–776, 1982.

[18] V. Kats and E. Levner, “Minimizing the number of robots to meet a
given cyclic schedule,” Ann. Oper. Res., vol. 69, pp. 209–226, 1997.

[19] J. Liu and Y. Jiang, “An efficient optimal solution to the two-hoist
no-wait cyclic scheduling problem,” Oper. Res., vol. 53, pp. 313–327,
2005.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.

[21] R. Bellman, “On a routing problem,” Quarterly of Applied Mathe-
matics, vol. 16, pp. 87–90, 1958.

[22] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:
Theory, Algorithms, and Applications. Upper Saddle River, NJ:
Prentice-Hall, 1993.

[23] V. Kats and E. Levner, “Polynomial algorithms for scheduling of
robots,” in Intelligent Scheduling of Robots and FMS, E. Levner,
Ed. Holon, Israel: CTEH, 1996, pp. 77–100.

450 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 4, NO. 3, JULY 2007

Yun Jiang received the Ph.D. degree in industrial
engineering from Hong Kong University of Science
and Technology (HKUST), Hong Kong, China, in
2003 and the B.S. degree in automatic control from
Hua Zhong University of Science and Technology,
Wuhan, China, in 1998.

He was a Research Associate and Research
Fellow with HKUST and the National University of
Singapore (NUS), respectively. Currently, he is an
Assistant Professor with Bilkent University, Ankara,
Turkey. His research interests include scheduling

and planning in production and logistics.

Jiyin Liu received the B.Eng. degree in industrial
automation and the M.Eng. degree in systems en-
gineering from Northeastern University, Shenyang,
China, in 1982 and 1985, respectively, and the Ph.D.
degree in manufacturing engineering and operations
management from the University of Nottingham,
Nottingham, U.K., in 1993.

Currently he is Professor of Operations Manage-
ment in the Business School at Loughborough Uni-
versity, Leicestershire, U.K. Prior to joining Lough-
borough University, he was with Northeastern Uni-

versity and Hong Kong University of Science and Technology, Hong Kong,
China. His research interests are in operations planning, scheduling, and supply
chain and logistics management. He has published papers in journals such as
the European Journal of Operational Research, IIE Transactions, International
Journal of Production Research, Journal of the Operational Research Society,
Naval Research Logistics, Operations Research, and Transportations Research.

