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Abstract

Recent experiments on two-dimensional (2D) electron systems have found a sharp increase in the effective mass of electrons

with decreasing electron density. In an effort to understand this behavior we employ the many-body theory to calculate the

quasiparticle effective mass in 2D electron systems. Because the low density regime is explored in the experiments we use the

GWG approximation where the vertex correction G describes the correlation effects to calculate the self-energy from which

the effective mass is obtained. We find that the quasiparticle effective mass shows a sharp increase with decreasing electron

density. Disorder effects due to charged impurity scattering plays a crucial role in density dependence of effective mass.
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There has been a large amount of experimental and

theoretical activity in recent years to understand the ground

state properties of homogeneous two-dimensional (2D)

electron systems. Advances in fabrication techniques have

made it possible to probe various quantities of interest in

high quality and very low density samples. Most notably,

the observation of a metal–insulator transition [1] in these

systems provides a major motivation to study the various

physical properties. In recent experiments the spin suscep-

tibility, Lande g-factor, and effective mass are measured for

2D electron systems made of Si-MOSFETS and GaAs

quantum-well structures [2–7]. In particular, Shashkin et al.

[3,4] reported a sharp increase of effective mass near the

critical density at which the system starts to show deviations

from the metallic behavior. At the same time, Pudalov et al.

[2] have also found similar enhancement of the spin

susceptibility in their samples.

There has been a number of calculations of the

quasiparticle properties including the effective mass of 2D

electron gas employing a variety of approximations [8].

More recent theoretical calculations of the effective mass of

2D electrons concentrated on the density, spin polarization

and temperature dependence [9–13].

In view of the different experimental results and their

controversial interpretation, we have addressed in this work

the density dependence of the effective mass in an

interacting electron system at T ¼ 0 in the presence of

charged impurities. We employ the GWG approximation

[14] which includes the vertex corrections in an approxi-

mate way to calculate the quasiparticle effective mass. The

local-field factor describing the correlation effects which

enters the vertex function G is obtained within the memory

function formalism and the self-consistent field method. We

had previously shown [15] that such an approach correctly

describes the anomalous behavior of the thermodynamic

compressibility of 2D electron systems as reported experi-

mentally [16]. In the present work, we extend our earlier

considerations to calculate the effective mass. We find that
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the quasiparticle effective mass is greatly enhanced at low

density in the same region when the compressibility

diverges.

In the following we first outline the theoretical frame-

work with which we calculate the quasiparticle effective

mass of 2D electron system. We next present our results

within various levels of approximations. We discuss the

results of our calculations in view of other theoretical

approaches and experimental findings. We conclude with a

brief summary.

We consider a 2D electron system interacting via the

long range Coulomb interaction Vq ¼ 2pe2=ðe0qÞ where e0

is the background dielectric constant. The system is

characterized by the dimensionless interaction strength rs ¼

1=ðpnap2
B Þ1=2; where n is the 2D electron density and apB ¼

"2e0=ðme2Þ is the effective Bohr radius defined in terms of

the band mass m of electrons in the semiconductor structure.

We use the theoretical framework developed by Thakur

et al. [17] employing the memory-function formalism and

the self-consistent field method to calculate the density–

density response function of a disordered electron system.

The effect of disorder is to dampen the charge–density

fluctuations and modify the response function. In a number-

conserving approximation the density–density response

function for noninteracting electrons is given by

x0ðq;v;gÞ ¼
x0ðq;vþ igÞ

1 2
ig

vþ ig
1 2

x0ðq;vþ igÞ

x0ðqÞ

� � ð1Þ

where g is the scattering rate. The correlation effects are

described by the generalized random-phase approximation

(RPA) for the interacting system density–density corre-

lation function

xðq;v; gÞ ¼
x0ðq;v; gÞ

1 2 Vq½1 2 GðqÞ�x0ðq;v; gÞ
ð2Þ

in which the static local-field factor GðqÞ embodies the

correlation effects. In this work we use the self-consistent

field method of Singwi et al. [18] to calculate GðqÞ: As a

simplified model we also consider the Hubbard local-field

factor given as GðqÞ ¼ q=2
ffiffiffiffiffiffiffiffiffiffi
q2 þ k2

F

q
:

Within the memory-function formalism the scattering

rate is expressed in terms of the screened disorder potential

and the relaxation function as [17,19]

ig ¼ 2
ni

2mn

X
q

q2 klUimpðqÞl
2l

12ðqÞ

f0ðq; igÞ

1 þ ig
f0ðq; igÞ

x0ðqÞ

ð3Þ

where UimpðqÞ ¼ Vqe2qd is the impurity potential for

charged impurities located at a distance d away from the

2D electron layer, and ni is the impurity concentration. The

relaxation function is given by [17,19] f0ðq; igÞ ¼ ½xðq;

igÞ2 x0ðqÞ�=ðigÞ and 1ðqÞ ¼ 1 2 Vq½1 2 GðqÞ�x0ðqÞ is the

static screening function. Because the scattering rate g

depends on the screening function 1ðqÞ which itself is

determined by the disorder included response function the

above set of equations are solved self-consistently.

The quasiparticle properties of the 2D electron system

are obtained from the self-energy function [14] Sðk;vÞ

which we calculate at zero temperature. Since we are

interested in exploring the interaction effects we include the

vertex corrections to the self-energy and employ the GWG

approximation [14]. The self-energy in the GWG approxi-

mation is written as a sum of two terms Sðk;vÞ ¼

Slineðk;vÞ þ Spoleðk;vÞ; where

Slineðk;vÞ ¼ 2
X

q

Vq

ð1

21

dv0

2p

Gðq; iv0Þ

1ðq; iv0Þ

�
1

vþ iv0 2 jkþq

ð4Þ

and

Spoleðk;vÞ ¼
X

q

Vq½uðv2 jkþqÞ2 uð2jkþqÞ�

£
Gðq; jkþq 2 vÞ

1ðq; jkþq 2 vÞ

ð5Þ

in which jk ¼ k2=2m 2 EF is the single-particle energy

measured relative to the Fermi energy. The vertex function

in the local-approximation is given as [14]

Gðq;vÞ ¼
1

1 þ VqGðqÞx0ðq;v; gÞ
ð6Þ

in terms of the local-field factor GðqÞ describing corre-

lation effects beyond the RPA. The dielectric function

appearing in Eqs. (4) and (5) is given by 1ðq;vÞ ¼

1 2 Vqx0ðq;v; gÞGðq;vÞ: The above expressions for the

self-energy reduce to the GW–RPA results when we set

GðqÞ ¼ 0: Furthermore, taking g ¼ 0; we recover the results

for a clean system.

We use the on-shell approximation to the self-energy in

the single particle spectrum Ek ¼ jk þ Sðk; jkÞ to obtain the

effective mass perturbatively [8,11,14]

mp

m
¼ 1 þ

›S

›v
þ

m

k

›S

›k

� �21

; ð7Þ

where the frequency and momentum derivatives of Sðk;vÞ

are evaluated at the Fermi surface. Such an approach is

argued to be more appropriate over solving the full Dyson’s

equation Ek ¼ jk þ Sðk;EkÞ; since the self-energy is

calculated using the noninteracting Green function. The

resulting scheme incorporates the higher order diagram

contributions better [8,11,14].

In the numerical calculations we specialize to GaAs

systems for which some measurements of the effective mass

are undertaken [6]. Since the dominant scattering mechan-

ism is known to be that due to the charged impurities we

take d ¼ 250 Å, for the setback distance in UimpðqÞ; and

consider ni to be of the order of , 1010 cm22. We first solve

the self-consistent equations for the scattering rate g and the
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local-field factor GðqÞ as a function of rs and impurity

density ni: These quantities determine the dynamic screen-

ing function 1ðq;vÞ and the vertex function Gðq;vÞ:

Afterward the self-energy and its derivatives are evaluated

to find the effective mass mp=m:

In Fig. 1 we show the effective mass mp=m as a function

of rs calculated in various theoretical approaches. We

observe that even at these relatively higher densities there

are notable differences between the GW and GWG

approximations indicating the importance of vertex correc-

tions. It appears that the correlation effects suppress the

effective mass renormalization. The disorder effects due to

charged impurity scattering tend to increase the effective

mass with respect to the clean system. There is still a

significant reduction in mp=m; however, compared to the

GW–RPA result.

We next display the quasiparticle effective mass at much

lower densities. Strictly speaking, GW approximation is

valid only in the high density limit, inclusion of the vertex

corrections in GWG approximation improves the regime of

validity. In any case, we wish to explore the effective mass

trends in the low density, strongly interacting region. Fig. 2

shows mp=m calculated in various theoretical approaches.

GW–RPA yields a modest enhancement for the whole

density range. The suppression found in Fig. 1 for the GWG

approximation reverses its behavior around rs < 4 and

shows an enhancement relative to the GW–RPA results at

lower densities. Qualitatively similar behavior is obtained

when we use the simple Hubbard local-field factor within

the GWG approximation. A notable feature of the GWG

approximation results is that effective mass exhibits a sharp

increase around rs , 8: That the strong interaction effects

would lead to a large enhancement in mp=m is also evident

when the Hubbard local-field factor is used within the GWG

approximation. Finally, when charged impurity scattering

effects are included in the calculation we find that a similar

sharp increase in mp=m occurs at a smaller rs value. We have

also calculated the effect of impurity scattering for different

parameter values of d and ni and found qualitatively similar

results.

Although the results of GW and GWG approximations at

large rs should be taken in with caution, the low density

trends of mp=m should be indicative. In this perspective our

calculations indicate that the effective mass enhancement in

2D electron systems can be accommodated within the Fermi

liquid theory when the vertex corrections describing the

strong correlation effects are taken into account. In

particular, a sharp increase in mp=m as shown in Fig. 2 is

quite suggestive in view of the recent experimental findings

[3,4]. Effective mass enhancement is also observed in 2D

neutral Fermi systems [20] and represented by a GW-type

calculation [21]. Our calculations also show that the rs value

at which mp=m exhibits a sharp increase can be controlled by

disorder effects. In a self-consistent scheme where remote

charged impurities are taken into account we find that the

large enhancement in mp=m occurs at a higher density

compared to the strongly interacting clean system.

Recent theoretical approaches [9,10] have modeled the

low density electron liquid as close to the Wigner crystal-

lization to obtain a strong increase in the effective mass. On

the other hand, Morawetz [12] found a divergent behavior in

mp=m at the metal–insulator transition by considering the

scattering from heavy impurity ions, and Galitski and

Khodel [13] attribute divergence of the effective mass to the

Fig. 1. The quasiparticle effective mass as a function of rs in the range 0 , rs , 2: The solid and dot-dashed lines indicate the GW–RPA and

GWG approximations, respectively. GWG approximation which uses the Hubbard local-field factor is indicated by the dotted line. GWG

approximation including the charged impurity scattering (with impurity concentration ni ¼ 0:5 £ 1010 cm22) is shown by the dashed line.
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density wave instability. Our theoretical scheme considers

the metallic regime, therefore we cannot distinguish the

nature of the possible new state beyond the critical rs value.

However, our earlier calculations [15] of the anomalous

behavior of the compressibility at around the same range of

rs values points to a possible metal–insulator transition

approaching from the metallic side. A related quantity of

interest would be the spin susceptibility or the g-factor for

which experimental results are available. These quantities

require the calculation of density–density response function

and the local-field factor as functions of the spin polarization

which were not undertaken in this work.

Our calculations were performed at T ¼ 0 and for

zero thickness 2D electron layers. It would be interesting

to extend our work to finite temperatures and to finite

width quantum wells to make better contact with

experiments. As the Coulomb interaction effects will be

less strong in quantum wells, it is expected that the

enhancement of mp=m will be less marked.

In summary, within a many-body approach which takes

the electron–electron and electron–impurity interaction

effects into account we have calculated the effective mass of

a 2D electron system at zero temperature. We have found

within the commonly used on-shell approximation that

mp=m is highly enhanced at larger values of the density

parameter rs as a result mainly of the correlation effects. The

interplay between the correlation effects and the impurity

scattering influences qualitative changes in this behavior.

Our comparative results should provide insight into the

workings of many-body methods in the strong interaction

regime.
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