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Abstract

The smooth Huber approximation to the non-linear ‘1 problem was proposed by Tishler and Zang (1982), and fur-
ther developed in Yang (1995). In the present paper, we use the ideas of Gould (1989) to give a new algorithm with rate
of convergence results for the smooth Huber approximation. Results of computational tests are reported.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we investigate a new algorithm for the non-linear ‘1 estimation problem, also known as the
absolute deviations curve fitting problem in statistics. Let ci : R

n 7!R be at least twice continuously differ-
entiable functions for each i ¼ 1; . . . ;m. We want to find a minimizing point for the following function:
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E-m
f ðxÞ �
Xm
i¼1
jciðxÞj. ð1Þ
From a statistical point of view, it is well known that the properties of the estimated parameters, i.e., opti-
mal values of x, highly depend upon the underlying distribution of the error terms in the model. Basset and
Koenker (1978) proved that the estimator based on the ‘1 problem above (a minimizing point of f ) is a
consistent and asymptotically normal estimator. They also discussed conditions under which the ‘1 estima-
tor is superior to the least squares estimator. Since the ‘1 estimator does not square the contribution of
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errors, it may be less influenced by the presence of outliers in the data as opposed to the least squares esti-
mator. Tishler and Zang (1982) observed that when measurement errors are Cauchy distributed the ‘1 solu-
tion yields more reliable estimates than the non-linear least squares problem.

From a computational point of view, the non-linear ‘1 estimation problem presents a major difficulty: its
objective function is not continuously differentiable. Several algorithms have been proposed for solving the
problem over the past three decades. Gonin and Money (1989) offer a classification of these algorithms into
four categories:

1. Gauss–Newton or Levenberg–Marquardt type algorithms. These algorithms use first derivative informa-
tion only and reduce the non-linear problem into a sequence of linear ‘1 estimation problems. Examples
of this class of algorithms can be found in Osborne and Watson (1971), Anderson and Osborne
(1977a,b), and McLean and Watson (1980).

2. SQP type methods. These algorithms utilize a sequence of quadratic programming (QP) subproblems
along with an active set strategy. They incorporate second order information into the objective function
of QP subproblems. Examples of this class are algorithms proposed by Murray and Overton (1981), Bar-
tels and Conn (1982), and Overton (1982).

3. Two phase or hybrid methods. These algorithms aim at identifying the optimal active set in the first phase
of the algorithm. With the active set identified the algorithm proceeds to the second phase where a sys-
tem of non-linear equations is solved using a method with fast local convergence properties, e.g., New-
ton�s method or a quasi-Newton method. Representatives of this type of algorithms are given by
McLean and Watson (1980) and Hald and Madsen (1985).

4. Smoothing or approximation algorithms. These methods approximate the non-differentiable objective
function by a differentiable function amenable to minimization by first- or second-order methods
depending on the approximation. These methods, although not presented as such in the original sources,
have a path-following flavor as well; see El-Attar et al. (1979), and Tishler and Zang (1982) for two dif-
ferent algorithmic contributions to this area. Ben-Tal and Teboulle (1989) derive smoothing functions
for non-differentiable optimization problems including the ‘1 problems. Ben-Tal et al. (1991) applied
El-Attar et al. function to engineering problems in plasticity. El-Attar et al. function is known as the
hyperboloid approximation in location literature; see Andersen (1996).

The method given in the present paper is akin to the algorithm of Tishler and Zang (1982) and to that of
Yang (1995). It uses an approximation function known as Huber�s M-estimator function in the field of
robust statistics. The method is similar to the successful method for the linear ‘1 problem developed by
Madsen and Nielsen (1993) and Madsen et al. (1996). However, the proposed algorithm presents many the-
oretical and computational departures from the Tishler–Zang, Yang, and Madsen et al. cases:

• Unlike Tishler–Zang, Yang, and Madsen et al. it uses a sequence of inexactly minimized subproblems
which are solved more and more accurately as the approximation becomes more accurate.

• Unlike Tishler–Zang and Yang method, it uses an extrapolation procedure which enables the two-step
superlinear convergence property under a strict complementarity assumption.

• It uses second-order information effectively in that Newton�s method coupled with a line search is
employed to solve the Huber subproblems.

• Although it is the third contribution on the Huber approximation of the non-linear ‘1 function, our
paper is the first to give rate of convergence results for the resulting algorithm.

The proposed algorithm is essentially an adaptation of a quadratic penalty function algorithm proposed
by Gould (1989) to solve non-linear programming problems with equality constraints. The main contribu-
tion of the present paper is to use Gould�s ideas in the context of an approximation algorithm for the
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non-linear ‘1 estimation problem. We note that Dussault (1995) proposed a similar algorithm for varia-
tional inequality problems. Dussault (1998) extends these results to augmented Lagrangian-like penalty
methods. However, he does not give computational results in his papers.

In the next two sections (Sections 2 and 3) we describe the proposed algorithm, and we give convergence
and rate of convergence results. Section 4 is devoted to a summary of the numerical results. Unlike the pre-
vious contribution by Yang (1995) which does not give numerical results, we report the results of a careful
implementation, and comparison with competing software.
2. The proposed algorithm

As the problem is non-differentiable at points where the functions ci have zero value (although ci�s are
smooth themselves) we propose an approximation technique which will replace the original problem by
UðxÞ ¼
Xm
i¼1

/ðciðxÞÞ; ð2Þ
where
/ðciðxÞÞ ¼
ciðxÞ2
2l ; if jciðxÞj 6 l;

jciðxÞj � l=2; if jciðxÞj > l

(
ð3Þ
for a positive scalar l. The above function was proposed by Huber (1981) as a robust estimator when the
measurement error distribution deviated from normality. We use the function as a smoothing approxima-
tion to the ‘1 function as in Madsen and Nielsen (1993). It is easy to verify that / is a once continuously
differentiable function of its argument, and that the following properties hold:
lim
l!0

/ðtÞ ¼ jtj
for scalar t, with
lim
l!0

UðxÞ ¼ f ðxÞ.
Therefore, when l approaches zero, we get arbitrarily close to the true non-differentiable ‘1 function.
Before stating the algorithm we will give some definitions. Let Aðx; lÞ ¼ fi j jciðxÞj 6 lg represent the

active set at ðx; lÞ and Acðx; lÞ its complement with respect to the index set f1; . . . ;mg. rcAðxÞ denotes a
matrix with columns rciðxÞ where i 2 Aðx; lÞ. The Lagrange multiplier estimates �ki, so-called as they are
reminiscent of Lagrange multipliers in the Karush–Kuhn–Tucker (KKT) optimality conditions (8) below,
are defined for all i 2 Aðx; lÞ as
�ki ¼ �kiðx; lÞ ¼
ciðxÞ
l

. ð4Þ
Let �g given below represent the gradient of the function UðxÞ. The expression for �g is given as
�gðx; �kÞ ¼
X

i2Acðx;lÞ
sgnðciðxÞÞrciðxÞ þ

X
i2Aðx;lÞ

�kirciðxÞ. ð5Þ
We define the quantity G (derivative of �g with respect to x while keeping �k fixed) as
Gðx; �kÞ ¼
X

i2Acðx;lÞ
sgnðciðxÞÞr2ciðxÞ þ

X
i2Aðx;lÞ

�kir2ciðxÞ ð6Þ
and the ðnþ mÞ � ðnþ mÞ matrix
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Kðx; �k; lÞ ¼ Gðx; �kÞ rcAðxÞT

rcAðxÞ �lI

" #
. ð7Þ
We say that x� is a KKT point (first-order stationary point; see p. 43 of Madsen, 1985) if there exist mul-
tipliers k�i such that �1 6 k�i 6 1 and
X

i2Acðx�Þ
sgnðciðx�ÞÞrciðx�Þ þ

X
i2Aðx�Þ

k�irciðx�Þ ¼ 0; ð8Þ
where Aðx�Þ ¼ fi j ciðx�Þ ¼ 0g.
Now, the algorithm is the following:

Algorithm

Step 0. Let an initial point xð0Þ be given. Set the positive constants c; s; b1; b2; �; l
ð0Þ and lmin as b1 < 0.5,

b1 < b2 < 1, �� 1 and lmin � 1. Let k ¼ 0 and xð0;0Þ ¼ xð0Þ.
Step 1. Inner Iteration:

Step 1:0. Let �k
ðk;0Þ ¼ �kðxðk;0Þ; lðkÞÞ. Compute �gðxðk;0Þ; �kðk;0ÞÞ, Gðxðk;0Þ; �kðk;0ÞÞ and Kðxðk;0Þ; �kðk;0Þ; lðkÞÞ. Let

‘ ¼ 0.
Step 1:1. If
k�gðxðk;‘Þ; �kðk;‘ÞÞk2 6 clðkÞ ð9Þ

then
x�ðkÞ ¼ xðk;‘Þ and k�ðkÞ ¼ �k
ðk;‘Þ ð10Þ
and continue from Step 2.
Step 1:2. Find pðk;‘Þ that satisfies the descent condition:
��gðxðk;‘Þ; �kðk;‘ÞÞTpðk;‘Þ P �lðkÞk�gðxðk;‘Þ; �kðk;‘ÞÞk2kpðk;‘Þk2; ð11Þ

i.e., if Kðxðk;‘Þ; �kðk;‘Þ; lðkÞÞ satisfies the second-order conditions (i.e., it is non-singular and it
has precisely m negative eigenvalues, the rest of the eigenvalues are positive; see Gould,
1986) then, compute pðk;‘Þ for the descent condition (11) as a Newton direction from the
system below:
" # !  !

Gðxðk;‘Þ; �kðk;‘ÞÞ rcAðxðk;‘ÞÞT

rcAðxðk;‘ÞÞ �lðkÞI
pðk;‘Þ

rðk;‘Þ
¼ � �gðxðk;‘Þ; �kðk;‘ÞÞ

0
. ð12Þ
Otherwise, use Remark 2.
Step 1:3. Find a stepsize aðk;‘Þ that satisfies Armijo–Goldstein sufficient descent and curvature

conditions
Uðxðk;lÞ þ aðk;lÞ; lðkÞÞ 6 Uðxðk;lÞ; lðkÞÞ þ b1a
ðk;lÞ�gðxðk;lÞ; �kðk;lÞÞTpðk;lÞ; ð13Þ

�gðxðk;lÞ þ aðk;lÞpðk;lÞ; �kðxðk;lÞaðk;lÞpðk;lÞÞÞTpðk;lÞ P b2�gðxðk;lÞ; �k
ðk;lÞÞTpðk;lÞ. ð14Þ
If pðk;‘Þ is indeed a Newton direction then always try first aðk;‘Þ ¼ 1, i.e., try a full Newton
step first.

Step 1:4. Move:
xðk;‘þ1Þ ¼ xðk;‘Þ þ aðk;‘Þpðk;‘Þ
and let ‘ ‘þ 1. Go to Step 1.1.
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Step 2. If lðkÞ < lmin then stop with the iterate x�ðkÞ as an approximate solution. Otherwise, lðkþ1Þ is set

according to 0 < lðkþ1Þ < lðkÞ.

Step 3. If Kðx�ðkÞ; k�ðkÞ; lðkÞÞ satisfies the second-order condition (i.e., it is invertible and has precisely m neg-
ative eigenvalues) compute pðkÞ from the linear system of equations below:
Gðx�ðkÞ; k�ðkÞÞ rcAðx�ðkÞÞT

rcAðx�ðkÞÞ �lðkÞI

" #
pðkÞ

rðkÞ

 !
¼ �

�gðx�ðkÞ; k�ðkÞÞ

cAðx�ðkÞÞ � lðkþ1Þk�ðkÞ

 !
ð15Þ

and let
x�ðkÞa ¼ x�ðkÞ þ pðkÞ. ð16Þ

If
k�gðx�ðkÞa ; �kðx�ðkÞa ; lðkþ1ÞÞÞk2 6 maxfs; k�gðx�ðkÞ; �kðx�ðkÞ; lðkþ1ÞÞÞk2g ð17Þ

then
xðkþ1;0Þ ¼ x�ðkÞa . ð18Þ

Otherwise, set xðkþ1;0Þ ¼ x�ðkÞ; k  k þ 1 go back to Step 1.

Some remarks concerning the algorithm are in order here.

Remark 1. In Step 1.1 we require only an inexact stationary point of the Huber approximation function.
However, as c becomes smaller, the accuracy becomes more stringent.

Remark 2. In Step 1.2 when the matrix K does not satisfy the second-order condition (i.e., is not invertible
or fails to have precisely m negative eigenvalues) then we may use a direction of negative curvature (donc)
or a direction of linear infinite descent (dolit), depending on which is applicable, (see Gould, 1986), as long
as (11) is satisfied.

Remark 3. Note that Step 3 is an extrapolation procedure which applies a Newton step at the stationary
point conditions of the Huber function using the reduced value of l. However, it uses the previous value of
l so that the matrix K is available from Step 1.4 of the previous inner iteration.
3. Convergence and rate of convergence

In this section we give convergence and rate of convergence results for the algorithm of the previous sec-
tion. The results follow along the lines of Gould (1989). Therefore, we omit the proofs whenever they are
obtained, mutatis mutandis, by verbatim repetition of Gould�s results. We point out the corresponding
result of Gould (1989) for the interested reader�s convenience.

Under a strict complementarity assumption, the algorithm is shown to converge in a locally two-step
superlinearly convergent manner. The two-step superlinear convergence hinges on Step 3 in the following
way:

• First, we can show using Gould�s results that the sequence flðkÞg can be set as a superlinearly conver-
gent sequence. This follows from the observation that eventually, the starting point of an inner iter-
ation is always obtained from the linear system at Step 3.
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• Second, eventually either this starting point of Step 3 or the first inner iterate obtained from it at Step
1.4 (which is ultimately a full Newton iterate with a step size of unity) satisfies the inner stopping
criteria. Therefore, the iterates inherit the superlinear behavior of l eventually but in a two-step
fashion.

For the analysis, we will assume that lmin ¼ 0. The first global convergence result is stated under the
following assumptions:

A1 All iterates x generated by the algorithm stay in a bounded domain X.
A2 The sequence flðkÞg goes to zero as k goes to infinity.
A3 At every limit point x� of the sequence fx�ðkÞg, and the corresponding limit point k� of the sequence

fk�ðkÞg (it is proved below in Theorem 1 that whenever fx�ðkÞg has a limit point, the sequence fk�ðkÞg has a
limit point), strict complementarity holds. That is, for ciðx�Þ ¼ 0 one has jk�i j < 1.

Assumption A3 implies that rcAðx�Þ is of full rank and that jAðx�Þj 6 n following Proposition 2.22 of
Madsen (1985).

The set of indices A used in cA refers to the active set at x�, unless otherwise stated. That is,
A ¼ fi j ciðx�Þ ¼ 0g.

Theorem 1. Let x� be a limit point of the sequence fx�ðkÞg.
(a) Under A1–A3, x� is a KKT point. The sequence fk�ðkÞg converges to a vector of Lagrange

multipliers.

(b) For all indices k corresponding to the subsequence of fx�ðkÞg convergent to x� the following error estimates

hold when lðkÞ ! 0þ:
k�ðkÞ ¼ k� þ oð1Þ; ð19Þ

cAðx�ðkÞÞ ¼ lðkÞk� þ oðlðkÞÞ. ð20Þ
Proof. First, we define for the purposes of the proof the quantity
gðxÞ ¼
X

i2Acðx;lÞ
sgnðciðxÞÞrciðxÞ.
Now, consider only those indices k for which a particular subsequence fx�ðkÞg converges to x�. As rcAðx�Þ is
of full rank, we may define
k� ¼ �rcAðx�Þþ>gðx�Þ.
Furthermore, for k sufficiently large, rcAðx�ðkÞÞþ exists, is bounded, and converges to rcAðx�Þþ. From (9)
and (10), we have that
kgðx�ðkÞÞ þ rcAðx�ðkÞÞ>k�ðkÞk2 ¼ k�gðx�ðkÞ; k
�ðkÞÞk2 6 clðkÞ. ð21Þ
Thus, we deduce that
krcAðx�ðkÞÞþ>gðx�ðkÞÞ þ k�ðkÞk2 ¼ krcAðx�ðkÞÞ
þ>ðgðx�ðkÞÞ þ rcAðx�ðkÞÞ>k�ðkÞÞk2 6 clðkÞkrcAðx�ðkÞÞþ>k2.

ð22Þ
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Combine the identity
k�ðkÞ � k� ¼ ðrcAðx�ðkÞÞþ>gðx�ðkÞÞ þ k�ðkÞÞ þ ðrcAðx�Þþ>gðx�Þ � rcAðx�ðkÞÞþ>gðx�ðkÞÞÞ
with (22) to obtain the bound
kk�ðkÞ � k�k2 ¼ clðkÞkrcAðx�ðkÞÞþ>k2 þ krcAðx�Þ
þ>gðx�Þ � rcAðx�ðkÞÞþ>gðx�ðkÞÞk2. ð23Þ
Thus, as the right-hand side of (23) can be made arbitrarily close to zero by picking k large enough, k�ðkÞ is
bounded for k sufficiently large and converges to k�. Furthermore, since kk�ðkÞk1 6 1 we have that
kk�k1 6 1. Then, taking the limit of (21) as k approaches infinity, we deduce that
gðx�Þ þ rc>A ðx�Þk
� ¼ 0. ð24Þ
Furthermore, multiplying (23) by lðkÞ, we obtain the additional bound
kcAðx�ðkÞÞ � lðkÞk�Þk2 6 clðkÞ2krcAðx�ðkÞÞþ>k2 þ lðkÞkrcAðx�Þþ>gðx�Þ � rcAðx�ðkÞÞþ>gðx�ðkÞÞk2. ð25Þ

Taking the limit of (25) as k approaches infinity, we have that
cAðx�Þ ¼ 0. ð26Þ

Hence, (24) and (26) imply that x� is a Kuhn–Tucker point, and the (sub)sequence fk�ðkÞg converges to the
relevant vector of Lagrange multipliers. The asymptotic estimates (19) and (20) may be deduced from (23)
and (25), respectively. h

Notice that under assumption A3, the algorithm identifies the optimal active set in a finite number of
iterations. Under assumption A1, one can show that the inner iteration is finitely convergent under the con-
dition that lmin > 0 using the standard analysis of Dennis and Schnabel (1996).

One needs two further assumptions before stating a sharper convergence result identical, after the nec-
essary changes, to Theorem 4.2 of Gould (1989).

A4 At every limit point x� of the sequence fx�ðkÞg the matrix Kðx�; k�; 0Þ has exactly jAj negative eigen-
values, the remaining eigenvalues are positive.

The assumption above along with A3 can be shown to be a second-order sufficiency condition for x� to
be a local minimum; see Gould (1985).

A5 All functions ci possess third derivatives, and assume bounded values within X.

Theorem 2. Under A1–A5 the results of Theorem 1 are valid. Furthermore, for all convergent subsequences of

the sequence fx�ðkÞg one has the following error estimates when lðkÞ ! 0þ:
x�ðkÞ ¼ x� þOðlðkÞÞ; ð27Þ

k�ðkÞ ¼ k� þOðlðkÞÞ; ð28Þ

cAðx�ðkÞÞ ¼ lðkÞk� þOðlðkÞ2Þ. ð29Þ

Now, we begin with the local convergence results.

A6 The sequence flðkÞg is adjusted so as to have lðkþ1Þ 6 rðkÞlðkÞ with limk!1rðkÞ ¼ r < 1.

The assumption A6 ensures that the sequence flðkÞg is at least linearly convergent. The following is the
most important intermediate result. For the purposes of this theorem, we say that ak ¼ OsðbkÞ for two se-
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quences ak and bk converging to zero if c2jbkj 6 jakj 6 c1jbkj for all k P k0 and some constants c1 and c2.
Although this theorem corresponds to Theorem 5.1 of Gould (1989), it requires a slight addition in our
case. We therefore give the proof in its entirety for the sake of completeness.

Theorem 3. Under A1–A6 for all indices k corresponding to a convergent subsequence the following estimates

hold:
�gðx�ðkÞ; �kðx�ðkÞ; lðkþ1ÞÞÞ ¼ OsðlðkÞ=lðkþ1ÞÞ; ð30Þ

�gðx�ðkÞa ; �kðx�ðkÞa ; lðkþ1ÞÞÞ ¼ OðlðkÞ2=lðkþ1ÞÞ. ð31Þ
Proof. To verify (30), first we have that the estimate (20) yields
kðx�ðkÞ; lðkþ1ÞÞ � k�ðkÞ ¼ cAðx�ðkÞÞð1=lðkþ1Þ � 1=lðkÞÞ ¼ ðlðkÞ=lðkþ1Þ � 1Þk� þ oðlðkÞ=lðkþ1ÞÞ ð32Þ
as k tends to infinity. From A6, we have that
1=2ð1� rÞlðkÞ=lðkþ1Þ 6 jlðkÞ=lðkþ1Þ � 1j 6 lðkÞ=lðkþ1Þ ð33Þ
for all large k. Therefore, combining (32) and (33), we have
ð1=2ð1� rÞð1� e1Þkk�k2ÞlðkÞ=lðkþ1Þ 6 kkðx�ðkÞ; lðkþ1ÞÞ � k�ðkÞk2 6 ðð1þ e1Þkk�k2ÞlðkÞ=lðkþ1Þ ð34Þ

for all k sufficiently large, where the terms ð1� e1Þ and ð1þ e1Þ ð0 < e1 � 1Þ account for the asymptotically
smaller terms in (34). Now, from (21) we obtain
�gðx�ðkÞ; kðx�ðkÞ; lðkþ1ÞÞÞ ¼ �gðx�ðkÞ; k�ðkÞÞ þ rc>A ðx�ðkÞÞðkðx�ðkÞ; lðkþ1ÞÞ � k�ðkÞÞ
¼ rc>A ðx�ðkÞÞðkðx�ðkÞ; lðkþ1ÞÞ � k�ðkÞÞ þOðlðkÞÞ
¼ rc>A ðx�ðkÞÞðkðx�ðkÞ; lðkþ1ÞÞ � k�ðkÞÞ þ oðlðkÞ=lðkþ1ÞÞ. ð35Þ
Then, (34), (35), and the continuity of rcAðxÞ give the bound
k�gðx�ðkÞ; kðx�ðkÞ; lðkþ1ÞÞÞk2 6 ð2ð1þ e1Þð1þ e2Þkrc>A ðx�Þk2kk
�k2ÞlðkÞ=lðkþ1Þ ð36Þ
for all k sufficiently large, where the term ð1þ e2Þ ð0 < e2 � 1Þ accounts for the asymptotically smaller
terms in (35) and the constant two occurs because of the bound krc>A ðx�ðkÞÞk2 6 2krc>A ðx�Þk2. Premultiply-
ing (35) by rcAðx�ðkÞÞþ> gives
kðx�ðkÞ; lðkþ1ÞÞ � k�ðkÞ ¼ rcAðx�ðkÞÞþ>�gðx�ðkÞ; kðx�ðkÞ; lðkþ1ÞÞÞ þ oðlðkÞ=lðkþ1ÞÞ. ð37Þ

Using the continuity of rcAðxÞþ> in some neighborhood of x� this leads to
kkðx�ðkÞ; lðkþ1ÞÞ � k�ðkÞk2 6 2ð1þ e2ÞkrcAðx�Þþ>k2k�gðx�ðkÞ; kðx�ðkÞ; lðkþ1ÞÞÞk2 ð38Þ

for all k sufficiently large, where the term ð1þ e2Þ once again accounts for the asymptotically smaller term
in (37). Inequalities (34) and (38) combine to give the bound
ð1=4ð1� rÞð1� e1Þkk�k2=ð1þ e2ÞkrcAðx�Þþ>k2ÞlðkÞ=lðkþ1Þ 6 k�gðx�ðkÞ; kðx�ðkÞ; lðkþ1ÞÞÞk2 ð39Þ
for large k. The bounds (36) and (39) then imply (30).
For the estimate (31), observe that the coefficient matrix Kðx�ðkÞ; k�ðkÞ; l�ðkÞÞ of (15) satisfies the second-

order condition (and hence is non-singular) for large enough k from assumption A4 and Theorem 2. Hence
x�ðkÞa is defined by (16). The active set at a limit point of x� of fx�ðkÞg is correctly identified for sufficiently
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large k at x�ðkÞa . To see this, note first that the right-hand side of (15) is OðlðkÞÞ. This observation along with
(15), (17) and (27) implies that
x�ðkÞa ¼ x� þOðlðkÞÞ.

Then the active set identification property follows using A3.

Now define
k�ðkÞa ¼ k�ðkÞ þ rðkÞ; ð40Þ

where rðkÞ is given by (15). Then, by Taylor�s expansion and (15) one has
�gðx�ðkÞa ; k�ðkÞa Þ
cAðx�ðkÞa Þ � lðkþ1Þk�ðkÞa

" #
¼ Gðx�ðkÞ; k�ðkÞÞ rc>A ðx�ðkÞÞ

rcAðx�ðkÞÞ �lðkþ1ÞI

" #
pðkÞ

rðkÞ

� �
ð41Þ

¼ �gðx�ðkÞ; k�ðkÞÞ
cðx�ðkÞÞ � lðkþ1Þk�ðkÞ

" #
þOðkpðkÞk22Þ þOðkrðkÞk22Þ ð42Þ

¼ 0

ðlðkÞ � lðkþ1ÞÞrðkÞ
� �

þOðkpðkÞk22Þ þOðkrðkÞk22Þ

¼ OðkpðkÞk22Þ þOðkrðkÞk22Þ þOðlðkÞkrðkÞk2Þ.
Moreover, Eqs. (9), (19), and (20) ensure that the right-hand side of (15) is OðlðkÞÞ.
Thus kpðkÞk2 ¼ OðlðkÞÞ ¼ krðkÞk2 and (41) gives
�gðx�ðkÞa ; k�ðkÞa Þ ¼ OðlðkÞ2Þ ð43Þ

and
cAðx�ðkÞÞ � lðkþ1Þk�ðkÞa ¼ OðlðkÞ2Þ. ð44Þ

But then, (44) and the definition of kðx�ðkÞa ;lðkþ1ÞÞ give
lðkþ1Þðkðx�ðkÞa ; lðkþ1ÞÞ � k�ðkÞa Þ ¼ cAðx�ðkÞa Þ � lðkþ1Þk�ðkÞa ¼ OðlðkÞ2Þ

and hence
kðx�ðkÞa ; lðkþ1ÞÞ � k�ðkÞa ¼ OðlðkÞ2=lðkþ1ÞÞ. ð45Þ

Now, Eqs. (43) and (45) combine to give
�gðx�ðkÞa ; kðx�ðkÞa ; lðkþ1ÞÞÞ ¼ �gðx�ðkÞa ; k�ðkÞa Þ þ rc>A ðx�ðkÞa Þðkðx�ðkÞa ; lðkþ1ÞÞ � k�ðkÞa Þ ¼ OðlðkÞ2=lðkþ1ÞÞ;

which establishes (31). h

Notice that under A6 the gradient at x�ðkÞ is asymptotically larger than the gradient at the alternative
starting point x�ðkÞa . This indicates that the alternative starting point x�ðkÞa should be asymptotically preferable
to x�ðkÞ. On the other hand, Theorem 3 gives a clue as to the choice of the sequence flðkÞg. The value lðkþ1Þ
should be smaller than lðkÞ, but larger than lðkÞ2. This choice ensures that the sequence flðkÞg approaches
zero in a Q-superlinearly convergent manner. This leads to the final assumption.

A7 As k goes to infinity the sequence flðkÞg is adjusted as lðkÞ2=lðkþ1Þ ¼ oð1Þ.

Notice here that under assumption A7 the gradient at x�ðkÞ in the estimate (30) can get arbitrarily large
whereas the gradient at x�ðkÞa vanishes to zero. The next step is to show that the sequence fx�ðkÞg follows the
Q-superlinearly convergent sequence flðkÞg. In order to show this one needs to show (1) that asymptotically,
the point x�ðkÞa is always chosen as the starting point of the inner iterations, and (2) that this point or the first
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Newton iterate obtained from this point satisfies the inner iteration stopping criterion (9). For convenience we
use K to denote the set of indices corresponding to indices k associated with convergent subsequences.

Theorem 4. Under A1–A7, for all k 2K the k þ 1st inner iteration begins from the alternative starting point

x�ðkÞa as defined in (15).

The proof of this theorem follows directly from (17) which governs the use of x�ðkÞa , assumption A6 and
the estimate (31) of the previous theorem.

Now, one can give the next theorem the proof of which is identical to that of Theorem 5.8 of Gould
(1989). This result is a consequence of two technical intermediate results, namely Lemmas 5.5 and 5.8 of
Gould (1989).

Theorem 5. Under A1–A7, for all sufficiently large k 2K the following hold:

(a) The Newton direction p�ðkþ1;0Þ obtained from (12) always satisfies (11).

(b) The step length aðkþ1;0Þ used with the Newton direction is equal to one.
Now, using the above theorem and the aforementioned second-order sufficiency property (c.f. assump-

tion A4) of the matrix Kðxðkþ1;0Þ; �kðkþ1;0Þ; lðkþ1ÞÞ the following corollary is obtained.

Corollary 1. Under A1–A7, for all sufficiently large k 2K the following holds:
xðkþ1;1Þ ¼ xðkþ1;0Þ þ pðkþ1;0Þ;
where pðkþ1;0Þ is the Newton direction obtained from (12).

The next step is to show that at the point xðkþ1;1Þ of the previous corollary the gradient can be bounded. It

is easy to show using Taylor series expansion that �gðxðkþ1;1Þ; �kðkþ1;1ÞÞ ¼ OðlðkÞ4=lðkþ1ÞÞ for all sufficiently large
k 2K. This leads to the following theorem and its corollary.

Theorem 6. Under A1–A7, for all sufficiently large k 2K, for ‘ 6 1 (9) holds.

Corollary 2. Under A1–A7, assume that the entire sequence fx�ðkÞg converges. Then,

(a) if flðkÞg converges Q-linearly the fx�ðkÞg converges R-linearly,

(b) if flðkÞg converges Q-superlinearly fx�ðkÞg converges R-superlinearly.
4. Numerical results

In this section we summarize our computational experience with a preliminary version of the algorithm
of the previous section. We believe more research effort will be necessary in future to reach a definite con-
clusion about the performance of the algorithm.

A version of the algorithm for dense matrix algebra was coded in C, and tested on 25 test problems with
up to 15 variables and 100 equations. For the numerical linear algebraic tasks the algorithm uses a version
of the symmetric indefinite matrix factorization techniques of Bunch and Parlett (1971). Using this factor-
ization, the calculations can be arranged in such a way that computation of the eigenvalues of the matrix K

are not necessary. For details, the reader is referred to Conn and Gould (1984). As in Gould (1989) we used
s ¼ 0.1, and c ¼ 1 although other choices should also be investigated in future work.

The results of our experiments with the algorithm of this paper, and two competing algorithms, the Hald
and Madsen (1985) two-stage non-linear ‘1 algorithm, and the general purpose Nelder and Mead (1965)
simplex algorithm are summarized below. The Hald–Madsen code is recognized to be the most efficient
non-linear ‘1 code to date.
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We report results with two different degrees of accuracy, 10�8 and 10�6, in Table 1. The test problems are
available in Hock and Schitkowski (1981) when no source is indicated. They can also be obtained from the
author of the present paper upon request.

With the exception of five test problems, the algorithm displays the behavior predicted by the theoretical
analysis outlined above. In problems Tishler–Zang (40� 5), Hald and Madsen 1 LC, and Biggs I, the algo-
rithm ran into numerical difficulties. In the problems Powell badly scaled function and Osborne I function,
only a single value of l was used with a large number of Newton iterations.

In the remaining 20 problems, superlinear l sequences were used successfully. On the other hand, it is
observed that the Hald–Madsen algorithm is the fastest in a larger number of test problems while our algo-
rithm is fastest in some test cases. The reason for the larger number of function and Jacobian evaluations in
our case is that in some test cases the algorithm takes many Newton steps for the initial value of l. This
indicates that the choice of initial l along with a suitable starting point deserves further research. Another
point that deserves further research is the choice of the search direction when the Newton system of Step 1.2
does not have any solution, or when it does have multiple solutions. The use of doncs results in poor direc-
tions of descent in the algorithm. In fact, we observed that the algorithm was competitive with the Hald–
Madsen algorithm whenever doncs were not used. A stable and efficient alternative to doncs has to be care-
fully researched in the future. A trust region type algorithm may be investigated as an alternative here.
Table 1
Computational results

Problem PH(6) PH(8) HM NM

Description m n F Jac F Jac F Jac F

Tishler and Zang (1982) 40 6 146 40 180 44 10 10 716
Tishler and Zang (1982) 40 3 192 115 236 119 22 22 701
Tishler and Zang (1982) 40 5 – – – – 27 27 1202
El-Attar et al. (1979) (Gonin and Money, 1989, p. 49) 3 2 72 26 91 28 11 11 153
Madsen (1975)a (Gonin and Money, 1989, p. 51) 3 2 37 25 57 33 49 49 78
Hald and Madsen (1985): 0 LC 3 2 35 21 32 24 12 12 106
Hald and Madsen (1985): 1 LC 3 2 – – – – 11 11 77
Jennrich and Sampson (1968)a 10 2 122 61 133 63 33 33 125

Rosenbrock function 2 2 57 46 61 47 31 31 428
Freudenstein and Roth function 2 2 18 17 19 18 28 28 58
Powell (1970)a badly scaled function 2 2 230 103 238 103 126 126 878
Brown badly scaled function 3 2 30 23 31 24 63 63 303
Beale (1958)a function 3 2 25 21 32 24 12 12 106
Helical Valley 3 3 45 36 49 38 14 14 305
Bard (1970)a function 15 3 52 33 147 51 10 10 165
Gauss function 15 3 67 33 227 127 11 11 176

Gulf Research and Development 100 3 63 37 63 37 21 21 293
Box (1966)a three dimensional function 10 3 124 75 137 75 20 20 437
Powell (1962)a singular function 4 4 31 23 53 28 90 90 405
Wood (Cox, 1969)a function 6 4 77 61 78 62 12 12 368
Kowalik and Osborne (1968)a function 11 4 108 57 186 71 10 10 279
Brown and Dennis (1971)a function 20 4 16 16 17 17 41 41 302
Osborne I (1972)a function 33 5 414 209 542 235 10 10 1218
Biggs (1971)a function 13 6 – – – – 150 150 789
Osborne II (1972)a function 65 11 146 72 244 88 16 16 1508

PH(6): Pinar and Hartmann Algorithm with lmin ¼ 10�6; PH(8): Pinar and Hartmann Algorithm with lmin ¼ 10�8; HM: Hald and
Madsen (1985) Algorithm; NM: Nelder and Mead (1965) Algorithm; F: number of function evaluations; Jac: number of Jacobian
evaluations.
a See Hock and Schitkowski (1981).
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