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Abstract

Using local interpolation of Whitney functions, we generalize the Pawtucki arahRlle approach
to construct a continuous linear extension operator. We show the continuity of the modified operator
in the case of generalized Cantor-type sets without Markov’s Property.
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1. Introduction

For a compactset C R?, let£(K) denote the space of Whitney jets Kifsee e.g[24]
or[11]). The problem of the existence of an extension operator (here and in what follows it
means a continuous linear extension operatorf (K) — C*®(R?) was first considered
in [4,13,20,21] In [22], a topological characterizatio®N property) for the existence of
an extension operator was given. In elaboration of Whitney’s method Schmets and Valdivia
proved in[19] (see alsd7]) that if the extension operatat exists, then one can take a
map such that all extensions are analytic on the complement of the compact set. For the
extension problem in the classes of ultradifferentiable functions see, for exdmilg),
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and the references therein. [b4] (see alsd15,18]), Pawtucki and Pleniak suggested

an explicit construction of the extension operator for a rather wide class of compact sets,
preserving Markov's inequality. If8] and later in[9], the compact sets were presented
without Markov’s Property, such that the sp&ie& ) admitted an extension operator. Here,
we deal with the generalized Cantor-type sk&t€ that have the extension property for

1 < a < 2, as it was proved ifi9], but are not Markov’s sets for any> 1 in accordance
with Plesniak’s[16] and Biatas's[3] results. The extension operator [itd] was given

in the form of a telescoping series containing Lagrange interpolation polynomials with
the Fekete—Leja system of knots. This operator is continuous in the Jackson topplogy
which is equivalent to the natural topologyf the space& (K), provided that the compact
setK admits Markov'’s inequality. Here, followinf.0], we interpolate the functions from
E(K ™) locally and show that the modified operator is continuous in

2. Jackson topology

For a perfect compact siton the line,£(K) denotes the space of all functiohen K
extendable to somg € C*°(R). The topologyr of Fréchet space ifi(K) is given by the
norms

I fllg=1flg+sud [(REHP - 1x —y[F 9 x,y e K, x #y,
k=0,1,...,q)

g = 0,1,..., where|f], = suf|f®x)| : x € K,k<qlandRIf(x) = f(x) —
Ty f(x) is the Taylor remainder.

The space (K) can be identified with the quotient spa€é®(1)/Z, wherel is a closed
interval containing andZ = {F € C*°(I) : F|g = 0}. Given f € £(K), let||| f ||l =
inf |F|3", where the infimum is taken for all possible extensiontof and| 7| denotes
thegth norm ofF in C*°(I). The quotient topology o, given by the normg||| - ||| ), is
complete; by the open mapping theorem, it is equivalent to the topaloblyerefore, for
anyqthere exists € N, C > 0 such that

Hf g <CUH Sl (€]

forany f € £(K).
Following Zernel[25], Plesniak[15] introduced in€ (K ) the following seminorms:

d-1(f) =|flo, do(f) = Eo(f), dk(f) = sgrfnk E.(f)

fork =1,2,... . Here, E,(f) denotes the best approximationfton K by polynomials
of degree at most. For a perfect seK C R the Jackson topologyz,, given by(dy), is
Hausdorff. By the Jackson theorem (see, E28]) the topologyr; is well-defined and is
not stronger than.

The characterization of analytic functions on a compactks@t terms of (d;) was
considered if2]; for the spaces of ultradifferentiable functions §&e
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We remark that for any perfect skt the spaceg&(K), t;) has the dominating norm
property (see, e.§12]):

3p ¥q 3, C>0: d2(/)<C dp(f)d,(f) forall fe&K).

Indeed, letz; be such thad (f) = nﬁ E, (f). Thend,(f) >n§ Ey, (f)andd, (f) >ny,
En, (f). So we have the desired condition with= 24.

Tidten proved in22] that the spac€ (K) admits an extension operator if and only if
it has the propertyDN). Clearly, the completion of the space with the prop&ibyV)
also has the dominating norm. Therefore, the Jackson topology is not generally complete.
Moreover, it is not complete in the cases of compact sets [88} in spite of the fact that
the corresponding spaces have ¢fpgV) property. By Theorem 3.3 if15], the topologies
7 andt, coincide for€(K) if and only if the compact s satisfies the Markov Property
(see[14—-18] for the definition) and this is possible if and only if the extension operator,
presented ifl4,15,18] is continuous irt ;. We do not know the distribution of the Fekete
points for Cantor-type sets, and therefore we cannot check the continuity of the Pawtucki
and Plshiak operator in the natural topology. Instead, followjh@], we will interpolate
the functions from€ (K) locally.

3. Extension operator for £(K®)
Let (l;){2, be asequence suchtiigt=1,0 < 2,41 < I;, s € N. LetK be the Cantor

set associated with the sequelig, thatis,K = (2, Es, WhereEg = 19 = [0, 1], E;
is a union of 2 closedbasicintervals/; ; of lengthl; andE, 1 is obtained by deleting the

open concentric subinterval of length— 2/, fromeachl; ; , j =1,2,...,2%.
Fix 1 < o < 2 andlq with le“l < 1. We will denote byk ® the Cantor set associated
with the sequencd,,), wherelp =1 andl,y1 =1 =--- = li‘" forn>1.

In the notations of Arslan et a]1], we consider the set’é“). The construction of the

extension operator for the cak D with o < n is quite similar, so we can restrict ourselves
ton = 2.

Letus fixs, m € N and takev = 2" — 1. The intervall; ; covers 2-1 pasic intervals
of the lengths,,—1. ThenN + 1 endpointgx;) of these intervals give us the interpolating
set of the Lagrange interpolation polynomial (f, x, I15) = ,iV:Jrll f (xx) wi(x), corre-
spondingto the intervd} ;. Here wy (x) = (x—f;:;é% with Qy1(x) = H,iV:“Lll(x—xk).
Inthe case? < N + 1 < 2”1 we use the same procedure a$1ifl] to include new
N + 1— 2" endpoints of the basic intervals of the length,, in the interpolation set. The
polynomialsL y (f, x, I; s), corresponding to other basic intervals, are taken in the same
manner.

Givend > 0, and a compact sét, we take aC>°-functionu(-, , E) with the properties:
u(-,0,E) = 1onE, u(x,d, E) = 0 for distx, E) > ¢ and|u|,<c, 6~ 7, where the
constant,, depends only op. Let(c,) 1.

Fix ny = [s log, «] for s > log 4/log o, ny = 2 for the previous values of and
ON,s = ls+[log, N1 fOr N >2. Here[a] denotes the greatest integerain
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Let Ny = 2" — 1 andM, = 2"s-1~1 — 1 fors>1, My = 1. Consider the operator from
[10]

L(f,x)=Luy(f, x, I1,0) u(x, dpp+1,0, 11,0 N K)

oo 25 Ny
+Z<Z Y LN (fx 1) — Ly-a(fx, 1 5)]

s=0 \j=1 N=M;+1

xu(x, 5N’S, Ij,s NK)
23+1

+ 2 s (6 i) = L (%, Ly )]
. 2 ’
Jj=1

X u(x, Ony, 5, Ij s41 N K)>-

We call the sum{jx;MYH -- - theaccumulation sumg-or fixed;j (without loss of gener-
ality let j = 1) represent the term in the last sum in the telescoping form

ons 1

— > ILn(fix.d1y) — Ly-a(fox, L) u(x, bygn, -1, T1501 N K)
N=2ns—1

and will call this thetransition sumHere, the interpolation set for the polynomiay ( £, x,
I1 5) consists of all endpoints of the basic subintervals of leagth 1 on /1 ;41 and some
endpoints (from 0 fotv = 2~1 — 1 to all for N = 2" — 1) of basic subintervals of the
same length otz 54 1.

Clearly, the operatdr is linear. Let us show that it extends the functions friéex *).

Lemma 1. Forany f € E(K®) andx € K® ,we have L(f, x) = f(x).

Proof. By the telescoping effect
L(fvx) :S|l>m00 LMX(f’XVIj,SL (2)

wherej = j(s) is chosen in such a way thate 7; ;.
We will denote temporarilyr,_1 — 1 byn. ThenM; = 2" — 1. Arguing as in10], for
anyq, 1<q < M, we have the bound
2}"
[ Ly, (f,x, Ljs) — fOOIII S Il4 Z | x — xx |7 | or(x) |. 3
k=1
For the denominator dfwy (x) | we get
[xp —xal-- | xp — Xg—a| - | Xk — X1l - - [ Xk — Xpp41l
n—1
Zlngs—1 (ns—2 = 2lngs—1)? - (lngs—3 — 2ngs—2)* -+ (I — 21541)°
2 znfl
=l"+5*l‘ln+s—2”'l_&‘ - A,

-~ k . n—k
whereA = ITj_; (1 - 2 ne?



38 M. Altun, A. Goncharov / Journal of Approximation Theory 132 (2005) 34—-41

=L on—k42 Ltk ince stk stk
Clearly, InA > —>7}"7 2 o for large enougts. Smcelm_1 <5 and
<371, we have InA > —2+2271 > 1,
On the other hand, the numerator|of; (x) | multiplied by| x — x| ¢ gives the bound

_ n -1 n—1
lx — x| T o — i BT s Dngs—1 - gy o 1F
Hence, the sum in (3) may be estimated from above BY [,, . lsq_l, which approaches
0 assbecomes large. Therefore, the limit in (2) exists and eqiéts. O

4. Continuity of the operator L

Theorem 1. Let1 < o < 2. The operatorL : £(K®) — C*>(R), given in Sectior3, is
a continuous linear extension operator.

Proof. Letus prove thatthe series representing the opekatniformly converges together
with any of its derivatives.

Foranyp e N, let ¢ =2 — 1 be suchthat2/«)¥ > p + 4. Givenq let sg satisfy the
following conditions:sg > 2v + 3 ando™ >m for m >ng,_1.

Suppose the point(s:ck)ll\”rl are arranged in ascending order. For the divided difference
[x1, ..., xy+1]f, we have the following bound frofd0]:
| Een e xnal f1<2Y 79 FlL (iR T 2 Xy — xp0m D~ 4)
where min is taken over all< j <N + 1 — ¢ and all possible chains of strict embed-
dings[x4(), - - - Xp©)] C [Xa(@), - - - Xp)] C -+ C [Xa(N=g)» -+ s Xb(N—¢)] with a(0) =

j, b0 =j+gq,....,a(N—q) =1, b(N — q) = N + 1. Here, giveru(k), b(k), we
takea(k + 1) = a(k), b(k +1) = b(k) + Lora(k + 1) = a(k) — 1, bk + 1) = b(k).
The length of the first interval in the chain is not included in the product in (4), which we
denote in the sequel Hy.

For s > 50 and for any;j <2° we consider the corresponding term of the accumulation
sum. By the Newton form of interpolation operator we get

Ly(f,x,1js) — Ly-1(f,x,1js) =[x1, ..., xn11]f - Qn (%),
N+1

whereQpy (x) = Hiv(x — yr) with the set(yk)fl\' consisting of all pointgx;); ™~ except
one.

Thus, we need to estimatdxi, ..., xy411f | - [(Qn - ulx, Sy, s, 1;s N K))P| from
above. HereM, + 1< N <N,, thatis 2" 1< N < 2™ for somem = n,_1, ...,ns and
ON.s = ls+m—1. The interpolation se(txk)ll\“rl consists of all endpoints of the basic intervals
of lengthls,,—> (inside the interval ; ;) and some endpoints (possibly all fisr= 2" — 1)
of the basic intervals of length,,_1. For simplicity we takej = 1. In this casex; =
0, x2 = lsym—1, X3 = ls4m—2 — ls+m—1 OF X3 = ls4m—2, €tC.

Since distx, 11 N K) <lyym—1, We get

!

; N
12y (1< = Mralln—a 4 0.
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Therefore| (Qu-1) V1< X7 (7) epilyh a NI 4 Usem—1490 < 2P cpl ) 4
TG (sym-1+ yi). Ma% <, Bi, With Bo=1, By=N, By=N?/2,...,Bi = N?%/2.
(N ly4m=1)""2 Ugrm-1+ y3) "2+ (spm—1 + yi) "L fori >3.

To estimateBs, we note thatsi,,—1 + y3 =2 lsrm—2, N lspm—1 < 2" 1* <lg4m—2

s+m—2"
since 2%t , = 2" lff_zl)“m < om li“_l)“m < 2"(3)*" <1, due to the choice afp.
Therefore,B3, and all B; for i > 3, are less thamB,. On the other hand;,,—1 + yx <
Vk+1, k<N —1, asls,—1isamesh of the ne{!yk)’l\' andl,,—1+ yn < 2. Thisimplies
that
[(@n - w) P <27 ¢p N2ITE 1 TNy <27 ¢p N2 1P Y 1 TN (5)

To apply (4), for I< j < N 4+ 1— g we considey + 1 consecutive pointse )7 _, from
(xp)Y . Every interval of the length ., contains from 2%~ 4+ 1 to 2"~* points.x;.
Therefore, the interval of the length,,—,—1 contains more than + 1 points. In order to
minimize the produckl, we have to include intervals containing large gaps in th&§&tin
the chainx;, ..., xj44] C--- C[x1,...,xy41] @s late as possible, that is all- 1 points
must belong td; s, —,—1 for somej. By the symmetry of the seéf ¥, we can again take
j = 1. The interval of the length,,—, contains at most'2points, whence for any choice
of ¢ + 1 points in succession, all values that make up the prddware not smaller than the
length of the gafis+m—v—1 = Lyym—v-1 — 2ls4m—v- ThereforeH)hgn‘jiLl Hyjllxk,
whereJis the number of points; on 71 s4m,m—y—1. SinceJ < '+ we have/ —g —1<2.
Further,

v
Xg+2+ - XJ Istm—v-1 -1
J—q—-1 (l —21 ) < exp(2” 41?+m—v—1)' (6)
hs+m7v71 s+m—v—1 s+m—v
Sincel*;t | | =PtV o 2-5tv we see that the fraction above is smaller
than 2, due to the choice a§. It follows thatH}%H(’;’jzlxk and|[x1, ..., xn41lf | <
2N=a7L|( £l g (egrz- - xnp) 7
Combining this with (5) we have
—p-1 1
| D1, xnval £ 1y )P <ep N22V 10 170 2 T Do (11 £ 111 .-

Our next goal is to evaluaﬂZ:%xk in terms ofl,,,,, 1. Estimating roughly alk;, £ > 2
that are not endpoints of the basic intervals of lerigth,_», from above byl ,,_,_1, we
get

+1 v—2 ZU717
HZ:ZX,‘ <l$+m—1 ls+m—2 lsz+m—3 T lx2+mfv ls+m—1:}—l = l;<+m—1
- v—1
withe =142+ 5+ + 5 — 5 > 2/0)' - 1.
Therefore,
| 2ol - 1@y -0 P <ep N22V 121111 g

sincex + o1 — p — 1 > 2, due to the choice dj.
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+m—2 _ .

Here, 2 [;4m_1 < 22" 137" < 22"~ <1, asm >2 andly < 3. The accumulation
sum containgVy — My < N, terms. Therefore,

N, (p)

Z gcprls|||f|||q’

N=M;+1

which is a term of the series convergent with respest &5 is easy to see. We neglect the
sum with respect t¢ because for fixed, at most one term of this sum does not vanish.

The same proof works for the terms of the transition sums. This sum does not vanish
only for x at a short distance th ;+1 N K. For this reason, the arguments of the estimation

of |Q§\l,)(x)| remain valid. On the other hand, if we want to minimize the product of the
lengths of intervals, constituting the chdiry, ..., x; 4] C --- C [x1,...,xy41], then

we haveto take;, ..., x;, in the intervally ;1. Thus we have the bound (6). The rest of
the proof runs as before. Taking into account (1), we see that the opkeliatavell-defined
and continuous. [J

Remark. Itis a simple matter to find a sequence of functions that converges in the Jackson
topology and diverges in. It is interesting that the same sequence can destroy the Markov
inequality. Givers € N, letN = 2* and Py (x) = (l;_1-12 ,-- -1(2,“71)—1 I (x —cjis),
wherec; ; is a midpoint of the interval; ;. Then% In(| Py, (0)|/| Pxlo) — oo ass — oo,
contrary to the Markov property. On the other haBgd(Py) <|Py|o forn < N. Then, for

anyk we getd; (Py) < N* |Pylo<2*¥ I, — 0 ass — oo. But P}, (0)—+0, so the sequence
(Py) diverges in the natural topology of the spaiie ).
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