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Abstract

The problem of recovering a complex signal from the magnitudes of two of its fractional Fourier transforms is

addressed. This corresponds to phase retrieval from the transverse intensity profiles of an optical field at two arbitrary

locations along the optical axis. The convergence of the iterative algorithm, the effects of noise or measurement errors,

and their dependence on the fractional transform order are investigated. It is observed that in general, better results are

obtained when the fractional transform order is close to unity and poorer results are obtained when the order is close to

zero. It follows that to the extent that conditions allow, the fractional order between the two measurement planes

should be chosen as close to unity (or other odd integer) as possible for best results.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Phase retrieval from intensity information is a

problem of great practical interest and has accord-

ingly been extensively studied (for instance, see

[1,2] and the references therein). Two variations

of the problem are particularly common. In the
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first, only the magnitude of the Fourier transform

of a function is known, but additional assumptions

regarding the function, such as finite extent and

non-negativity – are made. In the second, the

magnitudes of both the function and its Fourier

transform are known. Both problems are typically

solved with iterative algorithms.
In this paper, we consider the generalization of

the second of the above problems to the case where

the magnitude (or intensity) of the signal is known

at two arbitrary fractional Fourier domains (or in

other words, we know the magnitude of the
ed.
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fractional Fourier transform of the function at two

orders). The ath order fractional Fourier domain is

a generalization of the ordinary space and fre-

quency domains. Just as the original function

resides in the space domain and its Fourier trans-
form resides in the frequency domain, the ath order

fractional Fourier transform (FRT) of the function

[3–7] resides in the ath order fractional Fourier do-

main [7–12]. The ath order FRT fa(u) of a function

f(u) is defined for 0 < |a| < 2 as

faðuÞ ¼
Z 1

�1

exp½�iðpsgnðaÞ=4� a=2Þ�
j sin aj1=2

� exp½ipðcot au2 � 2 csc auu0 þ cot au02Þ�f ðu0Þdu0;
ð1Þ

where a = ap/2. When a = 0, we have fa(u) = f(u)

and when a = ±2, we have fa(u) = f(�u). When
a = 1, we have f1(u) = F(u), the ordinary Fourier

transform, and when a = �1, we have f�1(u) =

F(�u), the ordinary inverse Fourier transform.

The transform is additive in index: the a2th trans-

form of the a1th transform is equal to the a2 + a1th

transform and so forth. The FRT has a fast algo-

rithm. Further properties and references are given

in [13].
It has been shown that the propagation of opti-

cal waves can be characterized by the FRT, with

the transverse amplitude of light going through

FRTs of increasing order as light propagates along

the optical axis. Mathematically, this result is ex-

pressed as a relationship between the FRT and

the Fresnel integral, with the transform order

being related to the distance of propagation
[13,14]. Therefore, the problem of recovering a

complex signal fully from its FRT magnitudes at

two orders, can be used to solve the problem of

recovering a complex field from two transverse

intensity profiles at two arbitrary locations along

the optical axis. In other words, if we cannot meas-

ure the phase at a certain plane, we can compen-

sate by measuring the intensity at two planes.
Furthermore, optical systems involving arbi-

trary concatenations of thin lenses and sections

of free space in the Fresnel approximation can also

be modeled in terms of the FRT [13,14]. Such sys-

tems are known as quadratic-phase systems,

ABCD optical systems, or other names. This
means that the transverse amplitude of light at

any arbitrary plane of such a system can be related

to the transverse amplitude at any other plane

through a FRT relationship. Therefore, the prob-

lem addressed in this paper can also be used for
recovering the complex field from two transverse

intensity profiles at two arbitrary locations in such

a system. In other words, the problem we deal with

does not require that the two planes be related

through a Fourier transform or free-space propa-

gation and is more general.

A fundamental algorithm used to recover phase

from the magnitudes of a function and its Fourier
transform is known as the Gerchberg–Saxton (GS)

iterative algorithm [15]. Many refinements of this

basic algorithm have been considered; for instance,

see [1,2,16]. A variation of the algorithm to deal

with arbitrary general linear systems (not necessar-

ily unitary like the Fourier or Fractional Fourier

transforms) has also been presented [17–19]. In

this paper we will consider the fractional generali-
zation of the two-magnitude phase retrieval prob-

lem and the GS algorithm in their most purest

forms so as to reveal the effects of working with

fractional domains as transparently as possible,

and refrain from carrying over extensions or

refinements proposed for the basic GS algorithm.

We also do not make use of any additional a priori

knowledge other than the magnitude at two orders
(such as non-negativity and so forth).
2. Review

The use of the GS algorithm in conjunction

with FRTs has been reported in a number of ear-

lier papers. In [20,21] the authors deal with beam
shaping problems: while they do not consider the

problem of phase retrieval, these papers are never-

theless relevant in that they use the GS algorithm

to find the required profile of a phase-only filter.

A number of works deal with the retrieval of

phase from FRT magnitudes at all orders, rather

than just two. Such methods, based on tomogra-

phy in the space-frequency plane, are clearly inef-
ficient when applied to fully coherent or

deterministic fields, since they use a great deal

more information than needed, and require a very
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large number of measurements. However, these

methods constitute a powerful means of recover-

ing the phase in the case of partially coherent light

[22,23] [13, pp. 378–380].

The problem of retrieving the phase from the
magnitude of two FRTs with closely spaced orders

has been considered in [24,25]. This problem phys-

ically corresponds to retrieval of phase from

knowledge of the intensity of light at two closely

spaced locations on the optical axis [26–29], and

has recently been generalized/extended in [30,31].

The two close-ordered FRT magnitudes allow

approximation of the angular derivative of the
fractional Fourier magnitudes, which permits one

to find the instantaneous frequency and the phase.

This approach is a special case of that considered

in the present paper since it works only when the

orders are close, whereas we allow arbitrary or-

ders. However, as we will see, our method is less

satisfactory when the orders are close, so that in

such cases, this approach may be preferred and
thus considered to complement the approach here.

The problem of phase retrieval from two FRT

magnitudes is similar to the problem of phase re-

trieval from two Fresnel transform magnitudes

(for instance, see [32–34]). Formulating the prob-

lem in terms of FRTs is consistent with the descrip-

tion of optical propagation through ABCD optical

systems as continuous fractional Fourier transfor-
mation and evolution of the light field through

increasing FRT orders. In addition to being math-

ematically purer, it has several advantages. The

FRT satisfies a more complete and elegant set of

basic properties. Since it corresponds to a pure

rotation in the space-frequency plane (rather than

shearing like the Fresnel transform), it is geometri-

cally and numerically better behaved. Reference
[33] discusses various Fresnel-based approaches

and their applicability in the near, intermediate,

and far fields, noting that fewer works on phase

retrieval in the intermediate region have been pub-

lished. The problem of phase retrieval from the

magnitude at only a single Fresnel domain has also

been considered [35,36]. These works make addi-

tional assumptions about the unknown signal, such
as finite extent and non-negativity.

Reference [37] deals with optical systems involv-

ing the FRT which deviate from unitarity (rather
than the pure FRT itself, which is always unitary)

and shows that the Yang–Gu algorithm gives bet-

ter results than the GS algorithm for nonunitary

systems. In [38–40], the problem is formulated di-

rectly in the discrete domain, allowing the use of
a finite recursive algorithm. The authors note that

this approach has the advantage of not being

dependent on the choice of initial phase. This

algorithm has also found application in image

encryption [41].

In the present paper, we consider the phase re-

trieval from two fractional Fourier magnitudes

problem in a continuous framework. We do not
make use of any additional a priori knowledge

or hidden assumptions, employing the GS algo-

rithm in its most basic form. We investigate the

convergence of the algorithm, paying special atten-

tion to the dependence of convergence on the frac-

tional transform orders. We also discuss the

sensitivity of the outcome of the algorithm on

noise or measurement errors, and the dependence
of this sensitivity on the fractional transform or-

ders. We observe that in general, both in terms

of convergence and sensitivity, better results are

obtained when the difference between the two

orders is close to unity and poorer results are ob-

tained when it is close to zero.
3. Results

The GS algorithm employed can be summa-

rized as follows. For simplicity, in our examples

we assume the magnitudes are known at the 0th

and ath orders. The problem where the magni-

tudes are known at two orders a1 and a2 is totally

identical if we identify a = a2 � a1. We begin by
initializing the unknown phase function of

f(u) = f0(u) to some initial value, such as zero or

a constant. Then we take the ath order FRT of

f(u). We leave the calculated phase intact but re-

place the magnitude with the known magnitude

of fa(u). Then we take the �ath (inverse ath) order

FRT of this function and again leave the calcu-

lated phase intact and replace the magnitude with
the known magnitude of f(u). The iteration cycle

is then repeated. Since functions differing by a

constant phase would have the same fractional



64 M.G. Ertosun et al. / Optics Communications 244 (2005) 61–70
Fourier magnitudes, recovery is possible up to a

constant phase factor. In plotting the final recov-

ery errors in the following examples, we have

eliminated this constant phase.

Our first example is shown in Fig. 1. A very
large percentage of the signal energy is contained

in a space-frequency region of radius 4, so that

in all domains we restrict our attention to the

interval [�4,4]. The Nyquist theorem implies a

sampling interval in each domain equal to the in-

verse of the extent of the signal in the orthogonal

domain, which leads to a sampling interval of 1/8

and a space-bandwidth product of 64 in all do-
mains. Either the discrete FRT matrix defined in

[42] or the algorithm described in [43] can be em-

ployed to compute the FRTs to a good approxi-

mation; the former approach was employed here.

The GS algorithm uses the magnitude of the func-

tion displayed and that of its FRT as its input. The

phase is initialized to zero. (Very similar results are

obtained when the phase is initialized to other con-
stant values.) The results are shown in Fig. 2,

which shows the difference between two consecu-

tive iterates /k(u), /k� 1(u), defined as
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8

Z 4

�4

j/kðuÞ � /k�1ðuÞj
2
du:

s
ð2Þ
In this particular example, the convergence is

smooth and this difference converges to very

small values within about a 100 iterations. We

observe that in general, convergence is faster

when the order is close to unity and worse when

it is close to zero. For instance, for the 100th
iteration, the difference decreases with the FRT

order as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.7, 0.9,

1.0, with only the 0.7th and 0.8th orders spoiling

the monotonic dependence. This is understanda-

ble, since if the order was zero, the function

and its FRT become identical and we do not

have sufficient information to retrieve the phase.

Table 1 shows the final error between the 10th/
100th iterate and the original phase function /
(u), defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8

Z 4

�4

j/kðuÞ � /ðuÞj2 du

s
: ð3Þ
1 2 3 4

tude

1 2 3 4

e

b) of first example function.
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Fig. 2. Difference between two consecutive iterates for first example.
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We again observe that the error is smaller when

the order is close to unity and the error is larger

when the order is close to zero. In fact, apart from

the 0.8th and 0.9th orders, the final error exhibits a

monotonic dependence on order.

We now consider the effects of adding various

amounts of zero-mean white Gaussian noise to

the magnitudes of both the function and its
FRT. The signal-to-noise ratio (SNR) is defined as

SNR ¼
R 4

�4
jf ðuÞj2 duR 4

�4
r2 du

; ð4Þ

where r2 is the variance of the zero-mean Gaussian

random variable characterizing each sample of the

noise process. Table 2 gives the final errors between
Table 1

Final recovery error for first example

Order 0.1 0.2 0.3 0.4 0.5

10 iterations 0.3209 0.2509 0.1778 0.1327 0.1

100 iterations 0.1893 0.0825 0.0470 0.0250 0.0
the hundredth iterate and the original phase func-

tion for different amounts of added noise. As ex-

pected, the final error increases as the noise

increases for any given order. The decrease in final

error with decreasing noise is less for small orders

and more for higher orders. We also observe that,

as a general pattern, a given amount of noise de-

grades the result more when the order is closer to
zero and less when the order is closer to unity.

When SNR = 1, all the final errors are very large

and do not depend much on the order. As the

SNR increases, we begin to observe a decrease in

the final error with increasing FRT order. This de-

crease with order is most pronounced for the larg-

est SNR values. The errors in this table have been

computed according to the modified error formula
0.6 0.7 0.8 0.9 1.0

017 0.0681 0.0464 0.0395 0.0447 0.0001

199 0.0088 0.0004 0.0013 0.0003 0.0001



Table 2

Final recovery error in the presence of noice for first example. The SNR values correspond to noise variances of 0.50652, 0.16022,

0.05062, 0.01602, 0.00512, respectively

Order 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SNR = 1 1.5920 1.6488 1.5392 1.3719 1.4465 1.2967 1.3014 1.0782 1.2846 1.3038

SNR = 10 1.0300 1.1169 0.8108 0.5813 0.7190 0.7487 0.4576 0.5578 0.4804 0.4181

SNR = 100 0.4315 0.3019 0.2982 0.2863 0.2041 0.2480 0.2297 0.1387 0.1150 0.1520

SNR = 1000 0.2822 0.1574 0.0983 0.0715 0.0804 0.0547 0.0846 0.0585 0.0514 0.1095

SNR = 10,000 0.2653 0.1118 0.0783 0.0333 0.0352 0.0207 0.0174 0.0228 0.0255 0.0173
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

Z 2

�2

j/kðuÞ � /ðuÞj2 du

s
; ð5Þ

in order to exclude the regions where the magni-

tude of the original function is identically zero.

When the magnitude is identically zero, we cannot
expect to retrieve the phase, which is indetermi-

nate. Due to this indeterminacy, the algorithm is

very sensitive to even the smallest amount of noise

and results in random-like and highly erroneous

results outside the interval [�2,2]. Including these

in the final error results in meaningless results. Of

course, in practice we may not know that the ac-

tual noiseless magnitude was exactly zero outside
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Fig. 3. Magnitude (a) and phase (b
this interval, and formal or informal application

of additional constraints or knowledge would be
needed to decide that the random-like results ob-

tained outside [�2,2] constitute an amplification

of noise and not a reconstruction of the phase in

that region.

Our second example is shown in Fig. 3. Again, a

significant percentage of the signal energy is as-

sumed to be constrained in the space-frequency re-

gion of radius 4, so we restrict ourselves to the
interval [�4,4] and the space-bandwidth product

is 64. The phase is again initialized to zero (with

similar results for other constant values). The con-

vergence is displayed in Fig. 4, leading to similar
1 2 3 4

tude

1 2 3 4

) of second example function.
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Fig. 4. Difference between two consecutive iterates for second example.
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comments as in the previous example. At 500 iter-

ations, the difference between consecutive iterates

decreases with order as 0.2, 0.3, 0.4, 0.1, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0, with only the 0.1th order spoiling

the monotonic dependence. Table 3 shows the final

error between the thousandth/ten-thousandth iter-

ate and the original phase function (convergence is

slower in this example than in the previous one).
Notice that for the 0.2nd, 0.4th, 0.5th, 0.6th or-

ders, the error has actually increased in the ten

thousandth iteration, illustrating the fact that the

algorithm does not always exhibit monotonic con-

vergence. Generally speaking, the error is lower for

larger orders and higher for smaller orders,

although the ordering is far from being strict.
Table 3

Final recovery error for second example

Order 0.1 0.2 0.3 0.4 0

1000 iterations 0.2214 0.1761 0.1331 0.1792 0

10,000 iterations 0.1661 0.1971 0.0258 0.1902 0
Table 4 shows the final errors between the ten

thousandth iterate and the original phase function

for different amounts of added noise. As expected,

in general the final error increases as the noise in-

creases, but there are exceptions; depending on

unpredictable effects of noise on convergence,

occasionally a higher error is obtained although

the noise is lower. Again, as a general trend, the
dependence of the final error on noise is greater

for higher orders. For a given amount of noise

the error tends to decrease as the order becomes

closer to unity and the dependence on order is

stronger for higher SNR values. However, these

observations are more in the nature of a general

pattern and far from a strict dependence. Unlike
.5 0.6 0.7 0.8 0.9 1.0

.1218 0.0457 0.0419 0.0199 0.0225 0.0362

.1564 0.0495 0.0089 0.0174 0.0028 0.0362



Table 4

Final recovery error in the presence of noise for second example. The SNR values correspond to noise variances of 0.79062, 0.25002,

0.07912, 0.02502, 0.00792, respectively

Order 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SNR = 1 1.7566 1.8763 1.6561 1.5569 1.7836 1.5632 1.5268 1.4174 1.5744 2.1656

SNR = 10 1.3649 1.2891 0.9952 0.5503 1.0180 2.0083 0.9767 0.7873 1.8889 0.5579

SNR = 100 0.6118 0.6477 0.5983 0.4031 0.6166 0.3033 0.4493 0.3476 0.1500 0.4052

SNR = 1000 0.1816 0.2635 0.2707 0.2873 0.2422 0.2240 0.3484 0.1040 0.1106 0.0686

SNR = 10,000 0.2109 0.1969 0.1415 0.1775 0.1582 0.0940 0.0690 0.0328 0.0625 0.0449
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the previous example, the errors here are calcu-

lated over the whole interval [�4,4].
It should be noted that in the examples pre-

sented (as well as others we have considered), the

difference between two consecutive iterates quickly

reaches very small values. Examining the final er-

rors in tables 1 and 3, we observe that in some

cases, usually corresponding to the higher orders,

the final error has been reduced to very small val-

ues as well. On the other hand for other cases, usu-
ally corresponding to the lower orders, the final

error does not decrease much with further itera-

tions. This corresponds to stagnation of the algo-

rithm or slow progress in a ‘‘tunnel’’ [1, p. 304],

phenomena which are familiar from the conven-

tional GS algorithm. In general it may be said that

the likelihood of stagnation is greater for smaller

orders. In the conventional GS algorithm involv-
ing the ordinary Fourier transform, the error can

only decrease (or stay the same) at each iteration

[1,16]. This also holds true when the ordinary Fou-

rier transform is replaced with the FRT; since the

FRT is also a unitary transform, the same proof is

valid here as well. However, it must be noted that

we use a different definition of error in this paper.

In this paper, we have followed earlier work on
the GS algorithm and the FRT in considering one-

dimensional examples to discuss the dependence of

final error on order and SNR in the simplest and

most transparent manner possible. However, it

should be noted that while the solution to the same

problem in two dimensions is in general nearly un-

ique, the one-dimensional problem does not have a

unique solution [45]. In practice, the non-unique-
ness intrinsic to the one-dimensional problem must

be resolved through the use of additional assump-

tions or information. However, since we did not
wish to complicate our presentation with the intro-

duction of a variety of such additional assump-
tions, we based our conclusions on examples

converging to the original function.
4. Discussion and conclusions

The major observations of this paper may be

summarized as follows: Applying the GS algo-
rithm between two functions related through the

FRT rather than the ordinary Fourier transform

in general leads to similar qualitative behavior. A

general degradation as the fractional order is de-

creased from unity towards zero is observed. How-

ever this degradation does not suddenly occur

when we depart from the unity order (ordinary)

Fourier transform, but rather gradually as the
order changes from unity to zero. There is no spe-

cific threshold beyond which the results suddenly

become worse. The degradation with decreasing

order has several faces. Convergence is less satis-

factory and stagnation more common for smaller

orders. Furthermore, larger final errors are gener-

ally obtained with smaller orders. The effect of

noise is to equalize the dependence on order. When
the noise is small, the final errors depend strongly

on order, with smaller orders leading to greater er-

ror. As the noise is increased, the final errors ob-

tained with different orders become closer and

for very large noise values corresponding to unity

SNR, the final errors are roughly comparable for

all orders. Generally speaking, for a given order,

final error decreases with decreasing noise as ex-
pected, with the amount of decrease greater for

higher orders. Likewise, for a given SNR, final er-

ror decreases with increasing order, with the
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decrease greater for higher values of SNR. Again,

we note that the degree of conformity with these

general observations varies from example to exam-

ple; thus they should be viewed more in the nature

of a general pattern and not as a strict dependence.
That the results generally, if not always, improve

as the order gets closer to unity, and degrades as

the order gets closer to zero is understandable,

since if the order was zero, the function and its

FRT become identical and we do not have suffi-

cient information to retrieve the phase. Therefore,

when the order is close to zero, it is natural to ex-

pect the problem to be more difficult. In a sense,
it is best if the two known magnitudes are ‘‘orthog-

onal’’ to each other, in the sense of belonging to

two literally orthogonal fractional Fourier do-

mains in the space-frequency plane. When the or-

ders are close to each other, this makes the

problem more ill-posed. Knowledge of the magni-

tude at two orders close to each other is less desir-

able while knowledge of the magnitude at two
orders separated by a number as close to unity

(or other odd integer) as possible is more desirable.

Distinct methods for retrieving the phase from two

closely spaced orders are presented in [24,25]. We

also note that although it does not share precisely

the same concerns, reference [44] deals with the

importance of phase and amplitude information

in different fractional domains.
It follows from the discussion of the previous

paragraph that if two intensity measurements are

to be made in an optical system and it is desired

to retrieve the phase from these measurements, it

would be best to select the measurement planes

such that they correspond to two FRTs separated

by orders close or equal to unity; that is, to two

‘‘orthogonal’’ domains. This conclusion, which
follows immediately from our FRT based formu-

lation, might have been less evident in a Fresnel

transform based approach.

It may also be interesting to investigate the

dependence of the results on the fractional order

through the notion of the ‘‘phase contrast transfer

function’’ [46]. This concept relates the signal

strength and thus SNR to the fractional order
(or propagation distance) and therefore can be

used to gain further insight into the dependence

of the results on the order, particularly regarding
the noise-independent and noise-dependent contri-

butions to this dependence.
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