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Abstract

In this study, we determine the upper and lower bounds for the processing time of each job under controllable
machining conditions. The proposed bounding scheme is used to find a set of discrete efficient points on the efficient
frontier for a bi-criteria scheduling problem on a single CNC machine. We have two objectives; minimizing the man-
ufacturing cost (comprised of machining and tooling costs) and minimizing makespan. The technological restrictions of
the CNC machine along with the job specific parameters affect the machining conditions; such as cutting speed and feed
rate, which in turn specify the processing times and tool lives. Since it is well known that scheduling problems are extre-
mely sensitive to processing time data, system resources can be utilized much more efficiently by selecting processing
times appropriately.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Most of the existing scheduling algorithms assume that the processing times are fixed and known. When
we analyze the single machine total tardiness problem, 1k

P
T j, as an example, there are two important

parameters: the processing time vector, �p, and the due date vector, �d. In the literature, �p is treated as a hard
constraint, i.e. fixed and not allowed to change. On the other hand, �d is considered as a soft constraint that
means we are allowed to deviate from the desired due dates but a certain cost penalty is incurred for these
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deviations. In this study, one of the most important objectives is to show that the processing times can be
treated as a soft constraint as well and their cost impact can be measured in terms of the corresponding
machining and tooling costs. This problem becomes more evident for the CNC machines for which the
machining conditions, i.e. cutting speed and feed rate, are controllable variables.

In the current literature, the process planning and scheduling levels are linked through timing data. After
calculating locally optimal process parameters, i.e. machining conditions, the processing time is then passed
to the scheduling level as data. In reality however, the time it takes to process each part is a controllable
variable. Since it is well known that scheduling problems are extremely sensitive to processing time data,
it seems that by selecting processing times appropriately, system resources can be utilized much more
efficiently.

The cutting speed and feed rate are the machining parameters which constitute the machine settings and
we can increase or decrease the processing time of a job by changing them. An increase in one of the ma-
chine settings will decrease the processing time but this will also decrease the life of the cutting tool because
the job in process will use the tool more. Consequently, we incur an additional tooling cost, to which a man-
ufacturer should always pay attention to use CNC machines effectively. In case of lower cutting speed, i.e.
higher processing time, the completion times of jobs increase leading to increases in regular scheduling
objectives such as minimizing tardiness, makespan or total completion times.

The optimization of the machining conditions for a single operation is a well known problem, where the
decision variables are usually the cutting speed and the feed rate. These conditions are the key to econom-
ical machining operations. Knowledge of optimal cutting parameters for machining operations is required
for process planning of metal cutting operations. Numerous models have been developed with the objective
of determining optimal machining conditions. Malakooti and Deviprasad [7] formulate a metal cutting
operation, specifically for a turning operation, as a discrete multiple objective problem. The objectives
are to minimize cost per part, production time per part, and roughness of the work surface, simultaneously.
Akturk and Avci [1] propose a solution procedure to make tool allocation and machining conditions selec-
tion decisions simultaneously. Akturk and Onen [2] develop a new algorithm to solve joint lot sizing, tool
allocation and machining conditions optimizations problems to minimize total production cost. They show
that it is possible to improve the overall solution by exploiting the interactions among these problems. Since
machining conditions directly determine the processing time and tool usage rate of an operation, it is very
essential to integrate process planning and scheduling decisions as well.

Processing time control and its impact on sequencing decisions and operational performance have
received limited attention in the scheduling literature. A survey of the literature up to 1990 can be
found in Nowicki and Zdrzalka [8]. Panwalkar and Rajagopalan [10] consider the static single machine
sequencing problem with a common due date for all jobs in which job processing times are controllable
with linear costs. They develop a method to find optimal processing times and an optimal sequence to
minimize a cost function. Trick [12] focuses on assigning single-operation jobs to variable-speed machines
while simultaneously controlling the processing speed of each machine. Zdrzalka [14] deals with the prob-
lem of scheduling jobs on a single machine in which each job has a release date, a delivery time and a con-
trollable processing time, having its own associated linearly varying cost and propose an approximation
algorithm for minimizing the overall schedule cost. Nowicki and Zdrzalka [9] present a bi-criterion ap-
proach of minimizing completion time and processing cost to preemptive scheduling of parallel machines
with jobs having processing costs which are linear functions of variable processing times. Cheng et al. [3]
consider a parallel machine scheduling problem with controllable processing times, where the job process-
ing times can be compressed through incurring an additional cost, which is a convex function of the amount
of compression. Daniels et al. [4] investigate the improvements in manufacturing performance that can be
realized by broadening the scope of the production scheduling function to include both job sequencing
and processing time control through the deployment of a flexible resource. Karabati and Kouvelis [6]
solve the simultaneous scheduling and optimal processing times selection problem in a flow line operated
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under a cyclic scheduling policy. Vickson presents simple methods for solving two single machine
sequencing problems when job processing times are themselves decision variables having their own linearly
varying costs [13].

In the literature of scheduling with controllable processing times, most of the studies assume that the
processing times can be crashed in a range with a linear compression cost.

It seems that there are two reasons for not solving the process planning and scheduling problems simul-
taneously. First of all, assigning arbitrary ranges to the processing times and assuming a linear compression
cost may not be a realistic assumption. Furthermore, the scheduling problems are generally classified as
NP-hard problems, and adding a nonlinear objective function and nonlinear constraints coming from
the process planning problem will make these problems even more difficult to solve in practice. In this
paper, we accomplished two things to alleviate some of these problems. We derived closed form expressions
to determine exact upper and lower bounds for the processing times by considering CNC machine, cutting
tool and machining operation specific parameters. Consequently, the nonlinear machining related con-
straints can be replaced with a simple linear bound. Moreover, we also developed an efficient frontier to
establish a time/cost tradeoff for each manufacturing operation to link process planning and scheduling
problems. By utilizing our results, someone could develop methods for building production schedules which
include process planning level decisions as well as traditional scheduling decisions as will be demonstrated
in Section 6.
2. Problem definition

There are N jobs, and each job corresponds to a metal cutting operation which can be performed by a
different cutting tool. Our objective is to determine upper and lower bounds for the processing time of each
job i under the bi-criteria objective of minimizing the manufacturing cost (comprised of machining and
tooling costs) and minimizing any regular scheduling measure such as makespan, total completion time,
etc. Let Yi be the completion time of job i (the time at which the processing of job i is finished). A perform-
ance measure Z is regular if the scheduling objective is to minimize Z, and Z can increase only if at least one
of the completion times in the schedule increases. Regular performance measures are functions that are
nondecreasing in Y1,Y2 . . .,Yn. Suppose that Z = f(Y1,Y2, . . .,Yn) is the value of the measure that charac-
terizes schedule S and that Z 0 ¼ f ðY 0

1; Y
0
2; . . . ; Y

0
nÞ represents the value of the same measure under some dif-

ferent schedule S0. Then Z is regular as long as the following condition holds: Z 0 > Z implies that C0
i > Ci

for some job i.
The notation used throughout the paper is as follows:

Parameters

ai, bi, ci speed, feed, depth of cut exponents for the tool
M, b, c, e specific coefficient and exponents of the machine power constraint
R, g, h, l specific coefficient and exponents of the surface roughness constraint
Ci Taylor�s tool life expression parameter for the tool used for job i

O operating cost of the CNC machine ($/minute)
Ti cost of the tool used for job i ($)
di depth of cut for job i (in.)
Di diameter of the generated surface for job i (in.)
Li length of the generated surface for job i (in.)
H maximum available machine power (hp)
Si maximum allowable surface roughness for job i (lin.)
N number of the jobs
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Decision variables

vi cutting speed of job i (fpm)
fi feed rate of job i (ipr)
Ui tool usage rate of job i

Pi processing time of job i (min)

Let Z1 be machining and tooling cost of all jobs, and equal to
Z1 ¼
XN
i¼1

ðO � P i þ T i � UiÞ; ð1Þ
where machining and tooling costs are summed respectively. Tool usage rate of a job, Ui, is simply the ratio
of processing time to the tool life. Each job has different usage rates depending on its depth of cut, diameter,
length and surface finish requirements. The cutting tool becomes worn when the aggregation of usage rates
of jobs operated by this tool exceeds one, in other words when the total processing time of the jobs exceeds
tool life as discussed in Akturk and Avci [1]. The processing time and usage rate of job i for a turning oper-
ation are calculated as follows:
P i ¼
p � Di � Li

12 � vi � fi
; ð2Þ

Ui ¼
p � Di � Li � dci

i

12 � Ci � vð1�aiÞ
i � f ð1�biÞ

i

: ð3Þ
We can control the processing times and usage rates of jobs by changing the cutting speed and feed rate of
the machine. While changing the machining conditions, we have to consider process planning constraints
such as machine power, surface roughness and tool life as discussed in Akturk and Avci [1]. A mathematical
model (NLP) of the overall scheduling problem is given below:
Minimize Z1 ¼
XN
i¼1

ðO � P i þ T i � UiÞ;

Z1 ¼
XN
i¼1

pDiLiO
12

v�1
i f �1

i þ pDiLid
ci
i T i

12Ci
vðai�1Þ
i f ðbi�1Þ

i

� �
;

Minimize Z2 : Any regular scheduling measure;

Subject to T 0
iv

ðai�1Þ
i f ðbi�1Þ

i 6 1; i ¼ 1; . . . ;N ðTLÞ; ð4Þ

M 0
iv

b
i f

c
i 6 1; i ¼ 1 . . . ;N ðMPÞ; ð5Þ

R0
iv

g
i f

h
i 6 1; i ¼ 1; . . . ;N ðSRÞ; ð6Þ

si þ P i 6 sj _ sj þ P j 6 si; i; j ¼ 1; . . . ;N ^ i 6¼ j ðNon-interferenceÞ: ð7Þ
Other constraints of scheduling
vi; fi > 0; si P 0; i ¼ 1; . . . ;N ; ð8Þ

where
T 0
i ¼

pDiLid
ci
i

12Ci
; M 0

i ¼
Mde

i

H
; and R0

i ¼
Rd 0

i

Si
:
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The first term in the objective function Z1 is the machining cost and the second one is the tooling cost.
The first three set of constraints are tool life (TL), machine power (MP) and surface roughness (SR) con-
straints, respectively. These nonlinear constraints ensure that while solving the machining conditions opti-
mization problem we do not exceed the available machine power and cutting tool life, and satisfy the
necessary quality requirements for each part. The noninterference constraints are included to prevent
scheduling two different jobs at the same time on the CNC machine by using a set of disjunctive constraints
where si stands for starting time of job i. This model can represent any scheduling problem with a regular
measure and controllable processing times.

We have a nonlinear programming problem with nonlinear constraints. In a simplified form, the prob-
lem can be formulated as follows:
f

Minimize Z1ð�v; �f Þ;
Minimize Z2ð�v; �f ;�sÞ;
Subject to Constraints (4)–(6) imposed on �v and �f ;

and constraint (7) imposed on �s;�v and �f ;
where �v ¼ ðv1; . . . ; vN Þ, �f ¼ ðf1; . . . ; fN Þ and �s ¼ ðs1; . . . ; sN Þ.
In the next sections, we will represent our procedures to determine an efficient frontier and lower

and upper bounds for the processing time of job i that will ease the solution procedures of such
problems. For the next two sections, we will skip the indice i from the calculations for the sake of clear-
ance and simplicity, because the lower and upper bound determination procedures will be the same for
every job.
3. Determination of a lower bound

Tool life, machine power and surface roughness constraints on machining conditions can be seen in Fig.
1. At the intersection point with the surface roughness constraint, in case (a) machine power constraint is
binding, while in (b) tool life constraint is binding. Minimizing the sum of machining and tooling costs of
C

cutting speed

tool life

A

B
A

(b)(a)

C

cutting speed

machine power

roughness
surface

feed rateeed rate

surface
roughness

machine power

B

tool life

FEASIBLE REGION FEASIBLE REGION

Fig. 1. Machine settings for upper and lower bounds and efficient frontier.
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one job subject to these three constraints is called the single machining operation problem (SMOP). Two
theorems on these constraints are given below.

Theorem 1 (Akturk and Avci [1]). At least one of the surface roughness and machine power constraints is

binding at optimality for SMOP.

According to this theorem, any interior point of Fig. 1 for any case will give a higher processing time
than the ones lying on the boundaries. Therefore, the machining conditions should always be set to a point
on the boundary of the feasible region.

We proved the following theorem which will be used in determining both lower and upper bounds of the
processing time.

Theorem 2. The surface roughness constraint must be tight at optimality.

Proof. The proof is given in Appendix A. h

According to Theorem 2, the upper edge of the feasible surface roughness line gives the minimum
processing time and the lower edge gives the minimum usage rate for a given job. Therefore for any time
and cost related objectives, the optimal (v, f) pair is on this line. This means that (v, f) pairs on the surface
roughness constraint are dominant over all other (v, f) pairs with respect to regular scheduling measures. By
the help of this theorem, the inequality (6) becomes an equation and we can write f in terms of v as follows:
f ¼ R � dl

S
� vg

� ��1=h

: ð9Þ
By using Eqs. (2), (3) and (9), once we find the cutting speed value of a job, we can calculate feed rate, tool
usage rate and processing time of it easily, or we can write U, v and f in terms P. This is the important prac-
tical part of the theorem which makes most of the calculations easier, since the number of independent var-
iables is reduced to only one. U, v and f are written in terms of P below.
U ¼ pDL
12

� �ðha�gbÞ
ðh�gÞ

� d
cðh�gÞþlða�bÞ

ðh�gÞ � C�1 � R
S

� �ða�bÞ
ðh�gÞ

� P
hða�1Þ�gðb�1Þ

ðg�hÞ ; ð10Þ

v ¼ pDL
12

� � h
ðh�gÞ

� Rdl

S

� � 1
ðh�gÞ

� P
h

ðg�hÞ; ð11Þ

f ¼ pDL
12

� � g
ðg�hÞ

� Rdl

S

� � 1
ðg�hÞ

� P
g

ðh�gÞ: ð12Þ
This theorem also shows that the minimum processing time is achieved by the (v, f) pair at the feasible inter-
section point on the (SR) constraint. This is the intersection of (SR) constraint with either (TL) or (MP)
constraints. Point A in Fig. 1 shows this feasible intersection point, while point B corresponds to an infea-
sible one. In order to find the point A, we write (TL) and (MP) constraints in terms of P first.

Substituting v and f in terms of P, (TL) constraint reduces to:
1 P T 0vða�1Þf ðb�1Þ;

1 P C�1 pDL
12

� �ðha�gbÞ
h�g

d
cðh�gÞþlða�bÞ

h�g
R
S

� �ða�bÞ
h�g

P
hða�1Þ�gðb�1Þ

g�h ;

P P C
ðg�hÞ

hða�1Þ�gðb�1Þ
pDL
12

� � ðha�gbÞ
hða�1Þ�gðb�1Þ

d
cðh�gÞþlða�bÞ
hða�1Þ�gðb�1Þ

R
S

� � ða�bÞ
hða�1Þ�gðb�1Þ

:

ð13Þ
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Similarly, substituting v and f in terms of P, (MP) constraint reduces to:
1 P M 0vbf c;

1 P
M
H

pDL
12

� �ðhb�gcÞ
h�g

d
eðh�gÞþlðb�cÞ

h�g
R
S

� �ðb�cÞ
h�g

P
ðhb�gcÞ
g�h ;

P P
M
H

� � ðh�gÞ
ðhb�gcÞ pDL

12

� �
d

eðh�gÞþlðb�cÞ
ðhb�bcÞ

R
S

� � ðb�cÞ
ðhb�gcÞ

:

ð14Þ
From Eqs. (13) and (14), we can calculate the minimum value of the processing time which is the lower
bound, PL, as follows:
PL ¼ max

C
ðg�hÞ

hða�1Þ�gðb�1Þ
pDL
12

� � ðha�gbÞ
hða�1Þ�gðb�1Þ

d
cðh�gÞþlða�bÞ
hða�1Þ�gðb�1Þ

R
S

� � ða�bÞ
hða�1Þ�gðb�1Þ

M
H

� � ðh�gÞ
ðhb�gcÞ pDL

12

� �
d

eðh�gÞþlðb�cÞ
ðhb�bcÞ

R
S

� � ðb�cÞ
ðhb�gcÞ

2
66664

3
77775: ð15Þ
As a result, the minimum processing time for a job, i.e. the lower bound, can be found exactly using the job,
CNC machine and cutting tool related parameters directly.
4. Determination of an upper bound

The optimal solution to SMOP (i.e. optimal (v, f) pair), which minimizes the sum of machining and tool-
ing cost of one job under (TL), (MP) and (SR) constraints, provides an upper bound of the job processing
time for scheduling problems with any regular measure. It also provides the lower bound of the objective
function value that will be used to define Zmin

1 in Section 6. The sum of machining and tooling costs are
represented in Fig. 2. The point C represents the optimal solution of SMOP which is the same with point
C in Fig. 1. Any point below this one on the (SR) constraint will result in a higher processing time and will
Cost

Total Cost

Machining Cost

Tooling Cost

PA C

i

i

Fig. 2. Manufacturing cost components of a job.
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not improve neither cost nor any regular scheduling measure. Although the points below will give higher
machining cost but lower tooling cost, the summation of these two cost terms will be higher as shown in
Fig. 2. As we know, completion time, tardiness or makespan related objectives never decrease with increas-
ing processing time values for jobs. For example, Makespan ¼

PN
i¼1P i, which is directly proportional to

the processing times of jobs. In other words, the points giving higher processing time values than point C
(the ones below point C on (SR) in Fig. 1) will not improve the makespan criterion. Therefore, beyond this
point, both Z1 and Z2 objectives become worse.

The relationship between processing time and terms of Z1 and Z2 can be seen more clearly by writing
them in terms of processing time. By using Eq. (10), tooling cost reduces to:
Tooling cost ¼ T � U ¼ pDL
12

� �ðha�gbÞ
ðh�gÞ

dcT ðCÞ�1ðR0Þ
ða�bÞ
ðh�gÞ � P

hð1�aÞ�gð1�bÞ
ðh�gÞ :
Due to the possible values of the technical coefficients such that a > b > 1, h > 0 and g < 0, the tooling cost
is a convex function which is also obvious from Fig. 2 that it increases as processing time decreases and
decreases as processing time increases.

Machining Cost = O Æ P. Apparently machining cost is directly proportional to the processing time and
the optimal machine settings giving the minimum cost which is the aggregation of tooling and machining
costs will yield a processing time value and any deviation from it will not improve the solution since it has
adverse effects on two types of costs.

As a result, any point below point C will give worse Z1 and Z2 values, therefore the corresponding
processing time value of point C can be used as an upper bound for P in scheduling problems with regular
measures. The next step is calculating this upper bound, PU. The optimal P value when the SMOP is rewrit-
ten in terms of P is exactly PU. The findings in this study simplified the SMOP even further and we can
rewrite the SMOP in terms of P as follows:
Minimize O � P þ pDL
12

� �ðha�gbÞ
ðh�gÞ

dcT ðCÞ�1ðR0Þ
ða�bÞ
ðh�gÞ � P

hð1�aÞ�gð1�bÞ
ðh�gÞ ;

Subject to P P PL:
The objective function is the summation of machining and tooling costs respectively, and the only con-
straint can be calculated easily by using Eq. (15). After taking the derivative of the objective function with
respect to P and solving it, feasibility check has to be made. If the resulting P value satisfies the constraint,
then it is optimal. If not then, PL is optimal yielding PU = PL. As a result, PU is very easy to compute.

In Fig. 2, the curve between points A and C forms an efficient frontier of one job in terms of cost and
processing time and this also provides a basis for efficient frontier of the whole schedule. Moreover, the
nonlinear constraints of (4)–(6) can be replaced by a new linear bound of PL

6 P 6 PU Since it is linear
and PL and PU values are very easy to calculate, this replacement will decrease the computational require-
ments of the original nonlinear bi-criteria problem.
5. Numerical example

A job is given with the following attributes S = 300, L = 5, d = 0.2, and D = 3.2. The coefficients of the
assigned tool are (a,b,c,C,b,c,e,M,g,h, l,R,T) = (4,1.4,1.16,40960000,0.91,0.78,0.75,2.394,�1.52,1.004,
0.25,204620000,4). The operating cost and maximum power of the CNC machine are O = 0.5 $/minute
and H = 10 hp, respectively.

From Eq. (15), PL = max(0.18,0.40) = 0.40 min = 24 seconds. This means that the MP constraint is
binding (see part (a) of Fig. 1).
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To calculate the upper bound, we will solve the SMOP presented in the previous section.
Minimize 0:5P þ 0:333P�1:43;

Subject to P P 0:40:
By derivation, the value minimizing the objective function is P = 0.98. This also satisfies P P 0.40, there-
fore it is the optimal solution, and PU = 0.98 minute = 59 seconds.

The job in our problem can be processed in 24–59 seconds. Any duration which is not in this interval
is either infeasible or worse in terms of the objective function value. The settings of machine are
(v = 445 and f = 0.024) for the lower and (v = 311 and f = 0.014) for the upper bound of P. These two set-
tings correspond to points A and C respectively in Figs. 1 and 2. These settings of the CNC machine are
very easy to change by a single line in a G code or in a APT language. The feed rate is the speed of the
cutting tool moving along the part profile or from one point to another. It is defined as the distance (in
inches or millimeters) that the tool moves in 1 minute or in one revolution of the machine tool spindle.
In this paper, we measured the feed rate in inches per minute (ipr). For example, the following G code
in the NC program will be included to set the feed rate for the lower bound (we will use 0.014 for the upper
bound).

G99 F0.024;

In the APT language, we have to add the following statement:

FEDRAT/0.024, IPR

In CNC programming, a feed rate statement should be specified before the motion statement. The FE-
DRAT statement is modal; it remains in effect until changed by another FEDRAT statement. In addition
to the upper and lower bounds, we can also find a closed form equation of the efficient frontier of this job
given in Fig. 3 to evaluate manufacturing cost and processing time tradeoffs as shown below:
vðh�gÞ � Ph ¼ R � dl

S

� �
� pDL

12

� �h

) v2:524 � P 1:004 ¼ 1921592:47:
300 320 340 360 380 400 420 440 460
0

0.2
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Fig. 3. Processing time and cutting speed tradeoff for a single manufacturing operation.
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6. Efficient frontier of makespan and manufacturing cost

In this section, we propose an exact method and approximation approaches in order to determine a set
of efficient points of makespan and manufacturing cost objectives. The NLP formulation presented in the
problem definition section reduced to the formulation below as a consequence of the proposed bounding
scheme.
Minimize Z1 ¼
XN
i¼1

ðO � P i þ T i � UiÞ ðMachining Costþ Tooling CostÞ;

Minimize Z2 ¼
XN
i¼1

P i ðMakespanÞ;

Subject to PL
i 6 P i 6 PU

i 8i:
In Fig. 4, the point A is the point where Z1 has its maximum value and Z2 has its minimum. In fact
this point is reached when machine settings of each job is assigned to the pair giving the minimum P,
i.e. point A in Figs. 1 and 2. Also, at point C of Fig. 4, Z1 is at the minimum while Z2 is at the maximum.
This point is also achieved when settings of each job is at point C (minimum cost point) in Figs. 1 and 2. Let
Zmax
1 , Zmin

1 , Zmax
2 and Zmin

2 be these four points in Fig. 4. All points between A and C on the efficient frontier
are efficient points. A point ðZb

1; Z
b
2Þ is said to be efficient with respect to cost and makespan criteria if there

does not exist another point ðZd
1; Z

d
2Þ such that Zd

1 6 Zb
1 and Zd

2 6 Zb
2 with at least one holding as a strict

inequality [11]. For a more detailed discussion on multicriteria scheduling, we refer to T�kindt and Billaut
[11].

As discussed above, we can easily calculate the minimum and maximum makespan values for a given
problem. The procedure of efficient point generation (EPG) can be outlined as follows:
Z

Z

A

Z

Z

C

Z

Z

1

1

2

1

2

max

max

min

2

min

Fig. 4. Efficient frontier of makespan and total manufacturing cost objectives.
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Procedure EPG:

Step 0. Calculate PU
i and PL

i for every job i, and then calculate Zmax
1 , Zmax

2 , Zmin
1 and Zmin

2 .

Step 1. Initially let k ¼ Zmax
2

�Zmin
2

X�N and j = 1.

Step 2. Let Z ½j�
2 ¼ Zmax

2 � j � k. If Z ½j�
1 6 Zmin

2 , go to Step 5.

Step 3. Find the corresponding minimum Z ½j�
1 value for a given Z ½j�

2 .
Step 4. Increase j by one, j = j + 1, and go to Step 2.

Step 5. List all ðZ ½j�
1 ; Z

½j�
2 Þ pairs for j = 1,2 . . ., (X Æ N). These points are all efficient points.

X is the tuning parameter of the step-size k. For lower values of X (i.e. 0.25, 0.5) the step-size increase
and we get fewer number of efficient points. On the other hand, the results get more accurate for higher
values of X = 1,2, . . . since step size will be narrowed.

The main idea behind the EPG algorithm is to find a set of discrete efficient points on the efficient fron-
tier such that we can provide an approximation of the continuous tradeoff curve. An important computa-
tional difficulty in this procedure is calculating the corresponding manufacturing cost value when the
makespan value is given (Step 3). In other words, we can calculate the individual job processing times that
minimize the total manufacturing cost Z ½ j�

1 for a given makespan value, Z ½ j�
2 . This is the most challenging

step of the algorithm and the other steps can easily be implemented if we find an appropriate procedure
for Step 3. We first propose an exact algorithm in Section 6.1 in order to find the optimum Z ½j�

1 value for

a given Z ½j�
2 in Step 3. Obviously, this exact algorithm could become computationally demanding for large

problems. Therefore, we also propose four heuristic algorithms in Sections 6.2–6.5 to compute the value of
Z ½j�
1 when Z ½j�

2 is fixed. These heuristics differ in terms of computational requirements and solution quality as
discussed in Section 7.
6.1. Exact procedure

Given the makespan value, the corresponding manufacturing cost value can be found exactly via solving
the formulation below.
Minimize Z1 ¼ Z ½j�
1 ;

Subject to Z2 ¼ Z ½j�
2 ;

PL
i 6 P i 6 pUi 8i:
If we rearrange the terms of Ui in terms of Pi in Eq. (10) then
Ui ¼ Ai � Pa
i ;
where
Ai ¼
pDiLi

12

� �ðha�gbÞ
ðh�gÞ

� d
cðh�gÞþlða�bÞ

ðh�gÞ
i � C�1 � R

Si

� �ða�bÞ
ðh�gÞ
and
a ¼ hða � 1Þ � gðb � 1Þ
:
ðg � hÞ
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After inserting this equation to the formulation, it reduces to:
(NLP):
Minimize O �
XN
i¼1

P i þ
XN
i¼1

T � Ai � ðP iÞa ¼ Z ½j�
1 ;

Subject to
XN
i¼1

P i ¼ Z ½j�
2 ;

PL
i 6 P i 6 PU

i 8i:
Since summation of processing times are equal to the given makespan value, Z ½j�
2 , the first part of the objec-

tive function is a constant value and the problem reduces to (NLP_R). From now on, let S(P) denote the
value of optimal solution found for any problem P, then SðNLPÞ ¼ SðNLP RÞ þ O � Z ½j�

2 .
(NLP_R):
Minimize
XN
i¼1

T � Ai � ðP iÞa; ð16Þ

Subject to
XN
i¼1

P i ¼ Z ½j�
2 ; ð17Þ

PL
i 6 P i 6 PU

i 8i: ð18Þ
According to this algorithm, Step 3 of EPG is replaced by

Step 3. Solve NLP_R. Return Z ½j�
1 ¼ SðNLP RÞ þ O � Z ½j�

2 .

It gives the minimum manufacturing cost for a given makespan exactly. The benefit of the bounds be-
come more apparent in this procedure because problems in which the nonlinear terms are restricted to the
objective function are generally easier to solve than those in which nonlinearities appear both in objective
function and constraints. In the following subsections, we propose four different approximation algorithms
to solve the NLP_R problem.

6.2. Lagrangean relaxation

This algorithm starts with the NLP_R formulation. As an initial step, the first constraint, Eq. (17), of the
NLP_R is dualized with a nonnegative Lagrangean multiplier K.

(LR_K):
Minimize
XN
i¼1

T � Ai � ðP iÞa þ K
XN
i¼1

P i � Z ½j�
2

 !
; ð19Þ

Subject to PL
i 6 P i 6 PU

i 8i:
We can find the Pi values for a given multiplier K by taking a derivative of the objective function (Eq. (19))
with respect to Pi and by equating it to zero as follows:
P i ¼
TAia
�K

� � 1
1�a

: ð20Þ
Since we did not consider the bounds, there might be some Pi values which have exceeded their upper
bounds, or others which are lower than their lower bounds. Therefore, we set the Pi to the bound which
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is not satisfied. For instance, if the Pi value is greater than its upper bound, then it is set to the upper bound.
Pi values are calculated for all i�s and they are used to calculate the total cost, Z1. It is important to note
that at any iteration of the Lagrangean relaxation algorithm, Pi values may not be optimal for the LR_K,
nor feasible for the (NLP), in terms of Eq. (17), but they still give an objective function value which is a
lower bound for the S(NLP), i.e. Z ½j�

1 .
The overall Lagrangean procedure can be outlined as follows:

Step 3.1. Initialize the Lagrangean multiplier and scalar d (e.g., K = 0, d = 2). Set iteration number
r = 0.

Step 3.2.1. Calculate Pi values via Eq. (20). If P r
i > PU

i for any job i then P r
i ¼ PU

i . Similarly, if P r
i < PL

i

for any job i then P r
i ¼ PL

i . Calculate the amount of deviation, , as � ¼
PN

i¼1P i � Z ½j�
2 . If

�0.1k 6 6 0.05k, calculate the total cost, report it as Z ½j�
1 , and go to Step 4 of EPG.

Step 3.2.2. Set r = r + 1. If r = 100, report the total cost of the solution which has the smallest value
found so far, as Z ½j�

1 and continue with Step 4 of EPG.
Step 3.2.3. Update the multiplier, K = K + d. d is a scalar satisfying 0 < d 6 2. if K becomes negative,

update d until K is no longer negative. Return to Step 3.2.1.
6.3. Job response function––variation I

In the EPG procedure, we start from the maximum makespan value, and decrease it by a step-size k at
each iteration. Initially, the processing time of each job is set to its upper bound. Therefore, the main prob-
lem at each iteration is to find Pi values in such a way that they minimize the manufacturing cost while their
sum is equal to the desired makespan. This means that processing times of some jobs will be reduced. We
propose a response function in order to find which jobs are more likely to give a minimum cost increase for
a reduction in their processing times.

Let Ri(e) be the response of job i, i.e. the increase in the contribution of job i to the total cost, Z1, as a
response to e amount decrease in its processing time.
RiðeÞ ¼ Ai½ðP i � eÞa � ðP iÞa�:

Since it measures the response, distributing the desired reduction, k, to the processing times of the jobs pro-
portional to their response values is the aim of this algorithm. In sum, we start with the PU

i values and then
look for the jobs when their processing times are reduced that result in the smallest increase with respect to
the manufacturing cost, i.e. the ‘‘biggest bang for the buck’’ approach. The main steps of the algorithm are
as follows:

Step 3.1. Let r be 1 and e ¼ r k
N initially.

Step 3.2. Calculate Ri(e) for each job i and set
ki ¼ 1� RiðeÞPN
l¼1RlðeÞ

 !,
ðN � 1Þ:
Step 3.3. Using multipliers ki, calculate the Pi values. P i ¼ PU
i � kik. Check the bounds. If bounds are not

satisfied, the tight bound is optimal, i.e. if the Pi value is less than its lower bound then it is set
to its lower bound. Since some jobs may be set to their lower bounds, there will be a gap
between the desired reduction and the total reduction in processing times. This difference is dis-
tributed among the processing times of jobs in the following steps until there is no gap.

Step 3.3.1. Let g be the difference between the desired reduction and the total reduction in processing
times, and q be the set of jobs for which P i > PL

i . Then,
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ki ¼ 1� RlðeÞP
l2qRlðeÞ

 !,
ðN � 1Þ; 8i 2 q:
Step 3.3.2. Calculate the new Pi values; P i ¼ PU
i � ki � g. Check the bounds. Repeat Step 3.3.1 until there

exists no gap.
Step 3.3.3. Calculate the total manufacturing cost objective function value.
Step 3.4. Increase r by 1 and go to Step 3.2 until r is equal to N. Report the minimum cost found so far

as Z ½j�
1 .

For the smaller values of the response function, corresponding k value gets higher which results in more
reduction of the processing time from its upper bound. Since the ki values add up to 1 and bounds are al-
ways satisfied, summation of Pi�s always add up to Z ½j�

2 . Therefore, infeasibility is not faced in this
procedure.
6.4. Job response function––variation II

Ri(e) corresponds to an increase on manufacturing cost when the processing time of job i is decreased by
e time units. Similarly, Ri(1) is the sensitivity of job i to a unit decrease. Furthermore, at each iteration of
the EPG procedure, we decrease the makespan by k time units. Therefore, Ri(k) measures the correspond-
ing change in Z1 if the reduction is achieved by changing the processing time of job i only. Consequently,
the amount of required decrease in the processing time of job i, e, can take any value of 0,k/N, 2k/N,
3k/N, . . .,k.

In this variation, the k amount of processing time decrease is distributed to the jobs according to their
responses as it is in the first variation but in the response calculations, e takes values of k/N,k/N � 1, . . .,k.
That means we first allocate the required amount k equally among N jobs, then N � 1 jobs, etc. Obviously,
different allocation schemes might lead to different solutions.
6.5. Knapsack-based algorithm

We can easily calculate the minimum (point C) and maximum (point A) manufacturing cost values
for each job, as well as the exact nonlinear cost function between these two points as shown in Fig. 2.
The corresponding processing times of these two points are simply the bounds on the processing time of
job i. We first convert this nonlinear cost function into a set of discrete points in such a way that the dif-
ference between the actual cost value and the cost value at the selected point is less than the approximation
error from the actual cost value. In order to generate alternative points for each job, we first draw a line
between two adjacent points. If the approximation error, the maximum distance between the line and
the cost curve, is greater than W, then a middle point is inserted between these two points. This step is re-
peated until all points are added. For each point, we know the processing time and the corresponding man-
ufacturing cost value. As a result, the problem reduces to choosing the optimal (Cost,Processing Time) pair
for each job which gives the minimum cost and satisfies the desired makespan. The steps of the algorithm
are:

Step 3.1. Find the alternative points for every job i. (Costil,Pil) is the cost and processing time pair for
job i when lth alternative is selected.

Step 3.2. Let Fi be the number of alternatives found above for job i. Xil is the binary decision variable
which is equal to 1 if alternative l of the job i is selected. We solve the following knapsack
problem and the optimal value of it is reported as Z ½j�

1 .



Table 1
Experime

Factors

H

T

N

inimize
XN XF i

Cost X ; ð21Þ
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M
i¼1 l¼1

il il

Subject to
XN
i¼1

XF i

l¼1

P ilX il ¼ Z ½j�
2 ; ð22Þ

XF i

l¼1

X il ¼ 1 8i ¼ 1; 2; . . . ;N ; ð23Þ

X il 2 f0; 1g:
This algorithm does not guarantee optimality for the original problem since we convert the nonlinear
continuous function into a set of discrete points.
7. Computational results

In this section, we performed a computational study to test the performance of the four approximation
algorithms by comparing them with the exact algorithm. All of the five algorithms are coded in the C lan-
guage and compiled with the GNU C compiler. The MIP formulation used in the knapsack-based algo-
rithm is solved using the callable library routines of CPLEX 7.1 MIP solver. The NLP formulation of
the exact algorithm is formulated in GAMS 2.25 and solved by MINOS 5.3. All problems are solved on
a 400 MHz UltraSPARC station. There are three experimental factors that can affect the efficiency of
the algorithms as listed in Table 1. The experimental design is a 23 full factorial design with two different
levels each.

The first factor is effective on the lower bound of the processing time, and the second one is used to con-
trol the upper bound. The last factor determines the size of the problem.

• H: Maximum available machine horse power for all jobs. The increase in the value of H in the machine
power constraint shifts up the intersection point in Fig. 1 on the surface roughness constraint, which pro-
vides higher feasible cutting speed and feed rate values. The increase in (v, f) values in turn results in a
wider range of possible processing time alternatives for each job.

• T: Tooling cost. The total manufacturing cost is composed of two parts (see Eq. (1)). The first part,
machining cost, increases with increasing processing time values and the second part, tooling cost,
decreases with increasing processing time values. When the cost of the tool increases, the impact of
the second part on the total cost becomes higher. As a result, the optimal setting which minimizes the
total cost will have lower v and f values (a point below the point C in Fig. 1). Since this point is used
as an upper bound for the processing time (PU), the upper bound increases when T increases.
ntal design factors

Definition Level 1 Level 2

Machine power 5 10
Cost of the tool UN[6,10] UN[13,17]
Number of jobs 50 100
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• N: The first two factors are used to control the bounds on the processing times. The number of jobs is a
factor which determines the problem size. When the problem size is large, it takes more CPU time to
solve the problem, and the resulting cost and makespan objective values are expected to be high.
Table 2
Technica

Tool

1
2
3
4
5
6
7
8
9
10
There are 10 different types of tools, and each job is equally likely to be processed by one of them. The
technological coefficients of the tools are given in Table 2. The other problem specific parameters are se-
lected randomly from the intervals of O = 1, Si = UN[150,250], di = UN[0.05,0.30], Li = UN[4,6], and
Di = UN[1,4], where UN[a,b] is uniform distribution in interval [a,b]. Furthermore, the maximum allow-
able approximation error, W, in the knapsack-based algorithm is set to 0.05 after some trial runs. The
parameter X, which determines the step-size and number of efficient points to be found in the EPG algo-
rithm, is set to 0.4 when the number of jobs, N, is 50, and to 0.2 when N is equal to 100.

We proposed five algorithms, one being exact and others approximation approaches. We have a 23 full
factorial design. We took five replications for each factor combination and 20 different EPG iterations for
each replication resulting in 23 * 5 * 20 = 800 individual runs for each algorithm. As discussed earlier, each
algorithm finds the corresponding manufacturing cost value for a given desired makespan value. In order to
give an idea how these results are collected for each algorithm, we report the results for each of the pro-
posed algorithm for one sample replication with a factor combination of (N,H,T) = (50,1,0) in Table 3.
The first point (maximum makespan, minimum cost) and the last point (minimum makespan, maximum
cost) in this table correspond to the points A and C in Fig. 4 respectively, and given as the same starting
and ending points for each algorithm. They are easily calculated by substituting the upper and lower
bounds of the processing times into the cost function. These results are also plotted in Fig. 5 to indicate
the shape of the efficient frontier of our bi-criteria problem.

The performance measures used in evaluating the experimental results are the absolute percentage devi-
ation of the approximation algorithms from the optimal solution and the run times in CPU seconds. The
absolute percentage deviation of each run is calculated as (app � opt)/opt, where app is the manufacturing
cost value delivered by an approximation algorithm and opt is the optimal solution for a given makespan
value. For four approximation algorithms, the minimum, average and maximum values of the absolute per-
cent deviations from the optimal results out of 800 runs are given in Table 4. The factor combinations at
which the minimum and maximum values are achieved are also reported in the same table. When H and T
are at their low levels, i.e. at level 0, we have the minimum range (PU � PL) for the processing time alter-
natives. On the other hand, the most difficult problem instance in terms of the computational requirements
is the experimental setting of (N,H,T) = (100,1,1) since we have the largest problem size and the maximum
number of feasible processing time settings (or the maximum range of PU � PL). We report the average
CPU times in CPU seconds for each parameter setting in Table 5.
l coefficients of the tools

a b c C b c e M g h l R

4.00 1.40 1.16 40960000 0.91 0.78 0.75 2.394 �1.52 1.004 0.25 204620000
4.30 1.60 1.20 37015056 0.96 0.70 0.71 1.637 �1.60 1.005 0.30 259500000
3.70 1.30 1.10 13767340 0.90 0.75 0.72 2.315 �1.45 1.015 0.25 202010000
3.70 1.28 1.05 11001020 0.80 0.75 0.70 2.415 �1.63 1.052 0.30 205740000
4.10 1.26 1.05 48724925 0.80 0.77 0.69 2.545 �1.69 1.005 0.40 204500000
4.10 1.30 1.10 57225273 0.87 0.77 0.69 2.213 �1.55 1.005 0.25 202220000
3.70 1.30 1.05 13767340 0.83 0.75 0.73 2.321 �1.63 1.015 0.30 203500000
3.80 1.20 1.05 23451637 0.88 0.83 0.72 2.321 �1.55 1.016 0.18 213570000
4.20 1.65 1.20 56158018 0.90 0.78 0.65 1.706 �1.54 1.104 0.32 211825000
3.80 1.20 1.05 23451637 0.81 0.75 0.72 2.298 �1.55 1.016 0.18 203500000



Table 3
Results of the five algorithms for a single replication of factor combination (50,1,0)

Makespan Manufacturing cost

Lagrangean Response-I Response-II Knapsack Optimal

35.4 60.2 60.2 60.2 60.2 60.2

33.9 60.3 60.3 60.8 64.2 60.2
32.5 60.9 60.6 61.4 68.3 60.5
31.0 68.1 61.0 65.8 72.5 61.0
29.5 61.9 61.8 66.1 76.8 61.7
28.0 82.0 62.9 70.1 81.3 62.7
26.5 65.5 64.3 86.0 85.7 64.0
25.0 71.3 66.3 106.3 91.5 65.8
23.5 68.3 76.1 115.2 97.6 68.1
22.1 78.8 86.4 121.3 104.9 70.9
20.6 93.1 104.2 138.9 111.0 74.5
19.1 79.7 122.4 144.8 118.5 79.2
17.6 102.9 135.3 149.9 126.1 85.1
16.1 93.6 145.6 169.1 135.1 92.4
14.6 103.4 170.7 194.8 143.1 102.2
13.1 116.8 201.0 216.5 153.8 115.6
11.7 134.4 245.4 275.3 166.1 134.5
10.2 160.4 292.1 328.9 181.5 158.5
8.7 198.5 348.6 375.6 206.1 195.3
7.2 259.1 374.4 388.1 257.7 251.2

5.7 405.7 405.7 405.7 405.7 405.7
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Fig. 5. Efficient points found by the proposed algorithms.
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When we analyze the computational results, it is important to note that we can solve decent size prob-
lems optimally due to the proposed bounding scheme. This also supports our initial claim that the problems
in which the nonlinear terms are restricted to the objective function are generally easier to solve than those
in which nonlinearities appear both in objective function and constraints. For the larger size problems, the



Table 4
Absolute deviations of the four approximation algorithms

min ave max

Lagrangean % Deviation 0.00 9.90 213.03
(N,H,T) (50,0,0) – (50,0,1)

Response-I % Deviation 0.00 35.52 131.98
(N,H,T) (50,1,0) – (100,1,1)

Response-II % Deviation 0.06 41.75 198.21
(N,H,T) (50,1,0) – (100,1,1)

Knapsack % Deviation 0.37 27.94 99.05
(N,H,T) (100,1,0) – (100,1,1)

Table 5
Average CPU times of the five algorithms in seconds

N H T Lagrangean Response-I Response-II Knapsack Optimal

50 0 0 2.06 0.02 0.02 1.68 1.61
50 0 1 2.38 0.02 0.02 1.53 1.42
50 1 0 1.96 0.02 0.02 6.85 1.26
50 1 1 2.28 0.03 0.02 9.88 1.24
100 0 0 4.80 0.09 0.08 2.99 1.40
100 0 1 5.25 0.08 0.09 3.04 1.87
100 1 0 4.51 0.09 0.09 17.50 2.25
100 1 1 4.76 0.08 0.10 34.23 1.85
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Lagrangean relaxation based algorithm seems promising in terms of the solution quality, whereas the job
response function based algorithms in terms of the CPU time.
8. Conclusion

In this study, a bi-criteria scheduling problem is dealt in which the processing times are assumed to be
controlled by adjusting the machine settings. During the machining conditions optimization study, we
found a very practical theorem which can also be used in other scheduling studies. The bounds that we sug-
gested ease the modeling of the processing times and also ease the efficient frontier determination in bi-cri-
teria scheduling as demonstrated on the problem of minimizing makespan and manufacturing cost
simultaneously. By utilizing the proposed bounding mechanism, we developed an exact algorithm and four
heuristic approaches to determine a set of discrete efficient points to approximate the continuous tradeoff
curve in a reasonable computation time. As a result, the proposed study provides a good starting point to
demonstrate how the process planning and scheduling decisions can be integrated. For a further research,
we will study total completion time problem on a single CNC machine instead of makespan criterion, so
that job sequencing decisions and processing time selection problems will have an impact on each other.
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Appendix A. Proof of Theorem 2

The geometric programming (GP) model proposed by Akturk and Avci [1] is as follows:
ðGPÞ Minimize SMOPi ¼ C0
1v

�1
i f �1

i þ C0
2v

ðai�1Þ
i f ðbi�1Þ

i ;

Subject to Constraints (4)–(6)

vi; fi > 0;
where
C0
1 ¼

pDiLiO
12

and C0
2 ¼

pDiLid
ci
i T i

12Ci
:

Denoting the dual variables by B1,B2, . . .,B5 the dual formulation for the SMOP problem can be written
as follows:
ðDual GPÞ Maximize Q� ¼ C0
1

B1

� �B1

� C0
2

B2

� �
B � ðT 0

iÞ
B3 � ðM 0

iÞ
B4 � ðR0

iÞ
B5 ;

Subject to B1 þ B2 ¼ 1; ð24Þ
� B1 þ ðai � 1Þ � B2 þ ðai � 1Þ � B3 þ b � B4 þ g � B5 ¼ 0; ð25Þ
� B1 þ ðbi � 1Þ � B2 þ ðbi � 1Þ � B3 þ c � B4 þ h � B5 ¼ 0; ð26Þ
B1;B2;B3;B4;B5 P 0;
where
T 0
i ¼

pDiLid
ci
i

12Ci
; M 0

i ¼
Mde

i

H
and R0

i ¼
Rdl

i

Si
:

The first two dual variables B1 and B2 correspond to the each of the primal objective function terms, respec-
tively. Therefore, their summation must be equal to 1, also known as normality constraint, as stated in the
first dual constraint. The other dual variables B3, B4 and B5 correspond to the primal problem constraints,
respectively. Furthermore, there is a dual constraint for each primal variable, vi and fi, respectively, known
as orthogonality constraints.

Each of the constraints of the primal problem can be either loose or tight at optimality. Due to Theorem
1, we know that at least one of the surface roughness and machine power constraints is binding at optimal-
ity for SMOP. Since the tool life constraint cannot be binding by itself, we can set the dual variable corre-
sponding to the tool life constraint equal to zero (B3 = 0) due to the complementary slackness conditions.
When the machine power constraint is tight and surface roughness constraint is loose, the dual variable Y5

corresponding to the surface roughness constraint is equal to zero due to complementary slackness condi-
tions again. When we solve Eqs. (24)–(26), we find that B4 = �((ai � bi)/(b � c))B2.

Due to Gorczyca [5], b > c > 0 and ai > bi > 1 that means increasing cutting speed or feed rate always
require more machine power and tool usage. Moreover machine power and tool life are more sensitive
to the changes in cutting speed than feed rate yielding b > c > 0 and ai > bi > 1. If Y2 > 0, then Y4 < 0,
which makes this case infeasible. Therefore, the machine power constraint cannot be binding by itself.

In the other case where the surface roughness constraint is binding then B5 should be nonnegative be-
cause of the dual feasibility constraints. Furthermore, the tool life and the machine power constraints
are loose, so the corresponding dual variables B3 and B4 are both equal to zero due to the complementary
slackness conditions. Therefore, the constraints of GP-dual problem are reduced to the following system:
B1 þ B2 ¼ 1;
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�B1 þ ðai � 1Þ � B2 þ g � B5 ¼ 0;

�B1 þ ðbi � 1Þ � B2 þ h � B5 ¼ 0:
The solution for this system can be stated explicitly as follows:
B1 ¼ 1� B2; B2 ¼
g � h

g � bi � h � ai
and B5 ¼

ai � bi

h � ai � g � bi
;

where g Æ bi � h Æ ai 5 0, since g < 0, ai > bi > 1 and h > 0.
g is always negative since increasing the feed rate increases the surface roughness [5]. Consequently

B5 > 0 and 0 6 B1, B2 6 1, so we verify dual feasibility of the solution. Therefore, the surface roughness
constraint must be tight at optimality.
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