
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository
www.elsevier.com/locate/datak

Data & Knowledge Engineering 54 (2005) 121–146
A data mining approach for location prediction
in mobile environments q

Gökhan Yavas� a, Dimitrios Katsaros b, Özgür Ulusoy a,*,
Yannis Manolopoulos b

a Department of Computer Engineering, Bilkent University, Bilkent, Ankara 06533, Turkey
b Department of Informatics, Aristotle University, Thessaloniki, Greece

Received 3 May 2004; accepted 30 September 2004

Available online 30 October 2004
Abstract

Mobility prediction is one of the most essential issues that need to be explored for mobility management

in mobile computing systems. In this paper, we propose a new algorithm for predicting the next inter-cell
movement of a mobile user in a Personal Communication Systems network. In the first phase of our three-

phase algorithm, user mobility patterns are mined from the history of mobile user trajectories. In the second

phase, mobility rules are extracted from these patterns, and in the last phase, mobility predictions are

accomplished by using these rules. The performance of the proposed algorithm is evaluated through sim-

ulation as compared to two other prediction methods. The performance results obtained in terms of Pre-

cision and Recall indicate that our method can make more accurate predictions than the other methods.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Location prediction; Data mining; Mobile computing; Mobility patterns; Mobility prediction
0169-023X/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2004.09.004

q This research has been funded through the bilateral program of scientific cooperation between Turkey and Greece

(from TÜB _ITAK grant no. 102E021 and C.C.E.T.).
* Corresponding author. Tel.: +90 312 266 4126.

E-mail addresses: gyavas@cs.bilkent.edu.tr (G. Yavas�), dimitris@skyblue.csd.auth.gr (D. Katsaros), oulusoy@cs.

bilkent.edu.tr (Ö. Ulusoy), manolopo@skyblue.csd.auth.gr (Y. Manolopoulos).

https://core.ac.uk/display/52922182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gyavas@cs.bilkent.edu.tr
mailto:dimitris@skyblue.csd.auth.gr
mailto:oulusoy@cs.
mailto:manolopo@skyblue.csd.auth.gr

122 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
1. Introduction

Personal Communication Systems (PCSs) are becoming more popular by the help of the recent
developments in the computer and communication technologies. In the near future, PCSs will
support a huge user population and offer services that will allow the users to access various types
of data such as video, voice and images. A PCS allows dynamic relocation of mobile users since
these systems are based on the notion of wireless access. Mobility of the users in PCSs gives rise to
the problem of mobility management.

Mobility management in mobile computing environments covers the methods for storing and
updating the location information of mobile users who are served by the system. A hot topic in
mobility management research field is mobility prediction. Mobility prediction can be defined
as the prediction of a mobile user�s next movement where the mobile user is traveling between
the cells of a PCS or GSM network. The predicted movement can then be used to increase the
efficiency of PCSs. By using the predicted movement, the system can effectively allocate re-
sources to the most probable-to-move cells instead of blindly allocating excessive resources
in the cell-neighborhood of a mobile user. Effective allocation of resources to mobile users
would improve resource utilization and reduce the latency in accessing the resources. Broadcast
program generation can also benefit from predicted mobility patterns, since the data items can
be broadcast to the cell where the users are moving [16]. Accurate prediction of location infor-
mation is also crucial in processing location-dependent queries of mobile users. When a user
submits a location-dependent query, the answer to the query will depend on the current loca-
tion of the user [17]. Many application areas including health care, bioscience, hotel manage-
ment, and the military benefit from efficient processing of location-dependent queries. With
effective prediction of location, it may also be possible to answer the queries that refer to
the future positions of users.

Up until now, there has been a considerable amount of research on mobility management.
Most of the research has focused on the problem of location update, which is concerned with
the reporting of the up-to-date cell locations by the mobile users to the PCS network [4]. Loca-
tion update should be performed whenever a mobile user moves to another cell in the network
to be able to track the exact location of each mobile user. When an incoming call arrives, the
network simply routes the call to the last reported location of the mobile user. Compared to
the amount of work performed on location update, little has been done in the area of mobility
prediction [1,6–8,10,11]. These works have some deficiencies, which are explained in the
following:

• Some of these works do not attempt to find mobility patterns. Instead, the patterns are assumed
to be already available. These patterns are then used for mobility prediction.

• In some of these works, prediction is based on the probability distribution of the speed and
direction of the mobile user. For collecting such information, highly sophisticated and expen-
sive tools such as GPS (Global Positioning System) are needed.

• Most of the methods studied in these works are highly sensitive to a change in a mobile user�s
path. For this reason, the prediction accuracy drops in case of noisy data. These methods do
not consider the difference between the randomness and the regularity in users� paths (i.e., they
do not distinguish a random movement and a regular movement of a user). In general, users

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 123
follow some path patterns when traveling in network and their random movements are rela-
tively few when compared to regular movements. Therefore random and regular movements
should not be treated equally.

Aiming to overcome the above deficiencies, we have developed an effective mobility prediction
algorithm. In the first phase of this three-phase algorithm, movement data of mobile users is
mined for discovering regularities in inter-cell movements. These regularities are called mobility
patterns. Mobility rules are then extracted from the mobility patterns in the second phase of
our algorithm. In the third phase, the mobility rules, which match the current trajectory of a mo-
bile user, are used for the prediction of the user�s next movement. The first two phases of our pre-
diction algorithm, which are user mobility pattern mining and mobility rule generation, are
accomplished offline by the system. However, the last phase, i.e., the mobility prediction, is
accomplished online. It means that whenever a user intends to make an inter-cell movement, a
prediction request is sent to the system and the prediction is made by the system using our mobil-
ity rule based prediction algorithm.

The rest of this paper is organized as follows. In Section 2, we present the network model we
have used in this work, formulate the problem that we deal with, and present the related work.
Our method for the solution of the problem is proposed in Section 3. We present the experimental
results in Section 4, and conclude our paper in Section 5.
2. Background

2.1. Problem definition

In our work, we assume that the mobile users move in a wireless PCS network, which has an
architecture similar to those used in EIA/TIA IS41 and GSM standards [14]. The coverage area of
the PCS network is partitioned into smaller areas which are called cells. In each cell in the PCS
network, there is a base station (BS) which has the capability of broadcasting and receiving infor-
mation. The base stations are connected to each other via a fixed wired network. Mobile users use
radio channels to communicate with base stations.

The coverage area consists of a number of location areas. Each location area may consist of one
or more cells but in our work we assume that each location area consists of only one cell. Base
stations regularly broadcast the ID of the cell in which they are located. Therefore, the mobile
users which are currently in this cell and listening to the broadcast channel will know in which
cell they are now. The movement of a mobile user from his current cell to another cell will be re-
corded in a database which is called home location register (HLR). In addition, every base station
keeps a database in which the profiles of the users located in this cell are recorded. This database is
called visitor location register (VLR). Therefore, in our system it is possible to get the movement
history of a mobile user from the logs on its home location register.

Since mobile users may initiate calls to other users or receive incoming calls while moving in the
coverage region, the ongoing calls should be transferred from one cell to another without call
dropping. To avoid call dropping due to insufficient resources at the destination cell, apriori
resource allocation could be employed at that cell.

124 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
In our work, we collect the movement trajectories of a user in the form of T = h(id1, t1),
(id2, t2), . . ., (idk, tk)i. Here id1 denotes the ID number of the cell to which the user enters at time
t1. In this record it is clear that two consecutive ID numbers must be the ID numbers of two neigh-
bor cells in the network. After the movement history of a user is collected in a predefined time
interval in the above format, this record is partitioned into subsequences. This procedure is
accomplished as follows: If the mobile user stays in a cell idi more than a threshold value, before
moving to another one idi+1 at ti+1, we assume that his trajectory up until now hid1, . . ., idii ends
here, and at idi+1 a new trajectory is started. Therefore, the first subsequence is hid1, . . ., idii. By
continuing in this manner the record is partitioned into subsequences, and these subsequences
are recorded to be used in our algorithm.

We name the trajectories obtained by the above procedure as user actual paths (UAPs). We con-
sider the UAPs as a valuable source of information because the mobility of the users contains
both regular and random patterns [8]. Therefore by using the UAPs, we may be able to extract
the regular patterns and use them in prediction.

We assume that we have UAPs which have the form U = hc1,c2, . . .,cni. In this notation, each ck
denotes the ID number of the kth cell in the coverage region. In finding the trajectories that are
frequently used by the mobile users, we generalize the pattern mining method presented in [2,3], to
be used in our domain. The method presented in that work was intended for mining the frequent
user access patterns from web logs, and then using these access patterns for effective caching and
prefetching.

We name the frequently followed trajectories as user mobility patterns (UMPs). Mining of the
UMPs enables us to generate mobility rules. By considering the mobility rules and the trajectory of
a user, we predict the next inter-cell movement of the user. In the next section, we describe the
algorithm developed for accomplishing the above issues.

2.2. Related work

The sequential pattern mining problem was discussed in [5]. For our domain, the mobile users
are assumed to be moving between the cells of a PCS network. The algorithms proposed in [5]
cannot be applied directly to our domain for mining mobility patterns, because these algorithms
do not take into account the network topology while generating the candidate patterns. This
weakness of the proposed algorithms gives rise to generation of candidate patterns, which cannot
exist as mobility patterns on the corresponding network, since only the sequence of neighboring
cells of the network can be considered as a mobility pattern. Therefore, the number of candidates
generated can be extremely high, and this factor can dramatically reduce the performance of the
mining algorithm.

In [2,3], sequential pattern mining is applied to the domain of predictive Web prefetching. Web
prefetching can be defined as deriving users� future requests for Web documents based on their
previous requests. For effectively predicting the users� future requests, user access patterns are
mined from the Web logs of users� previous requests and then these patterns are used for prefetch-
ing. The method presented in [2,3] extends existing algorithms for mining sequential patterns in
order to take the graph structure of the corresponding Web site into account during support
counting, candidate generation and pruning. As we describe in Section 3.1, in the first phase of
our mobility prediction algorithm, we generalize the method presented in [2,3] to be able to mine

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 125
mobility patterns of users in mobile computing environments. In the latter stages of our algo-
rithm, mobility rules are extracted from the mobility patterns, and by using these rules, user move-
ments are predicted.

There has been a considerable amount of research in mobility prediction, as well. The work pre-
sented in [7] is among the pioneering research for predicting the mobile users�movement behavior.
In that work, user�s moving behavior is modeled as repetitions of some elementary movement pat-
terns which are indeed circular and straight line patterns. In order to estimate the future location
of a user, a mobile motion prediction (MMP) algorithm is proposed. However, the MMP algo-
rithm is highly sensitive to random movements of the user. It is reported in [7] that as the random
movements of the user increase the performance of MMP decreases linearly.

The work in [8] proposes a two level scheme, which combines a local with a global prediction
model. The top level is the global mobility model (GMM), whose resolution is determined in terms
of the cells crossed by a mobile user during the lifetime of the connection. The bottom level is the
local mobility model (LMM), whose resolution is determined in terms of a 3-tuple sample space
(speed, direction, position) that varies with time. LMM is used to model the intra-cell movements
of the mobile users. On the other hand, GMM is used to predict the inter-cell movement trajectory
of a user by matching the user�s actual path to one of the existing ‘‘mobility patterns’’. For this
purpose pattern matching techniques are used. However, the weakness of the work is revealed
at this point because there is no method presented in [8] to discover these mobility patterns.

In [6], a Gauss–Markov model is introduced, where a mobile user�s current velocity and loca-
tion is correlated in time to a various degree. Based on the Gauss–Markov model, a mobile user�s
future location is predicted by the network based on the information gathered from the user�s last
report of location and velocity. In [1], Aljadhai and Znati use a first-order autoregressive filter in
order to determine the direction of movement of a user. It is claimed in that work that the pro-
posed method guarantees that the predicted mobile direction is not affected by small deviations in
the mobile user�s direction.

In the work [10], for location prediction cell-to-cell transition probabilities of a mobile user is
calculated by the help of the previous inter-cell movements of the user, and then recorded to a
matrix. Based on this, resource allocation is done at the k most probable cells that are in the
neighborhood of the current cell. Here k is a user-defined parameter. This method is called Mobil-

ity Prediction based on Transition Matrix (TM).
An adaptive algorithm for location management is proposed in [15]. By building and maintain-

ing a dictionary of individual user�s path updates, the proposed on-line algorithm can learn mobile
users� mobility patterns. However, some serious shortcomings of the algorithm make it impracti-
cal. First of all, it is very sensitive to noisy (random) user movements. Moreover, the algorithm is
not scalable for huge numbers of mobile clients since the used data structure—the trie—can grow
to unmanageable size so as to be used in an on-line fashion.

In some of the other works such as [11,9], data mining methods such as clustering and associ-
ation rule mining are used for exploring mobility patterns. In [11], a new location tracking method
called behavior-based strategy (BBS) is presented. The aim of that work is designing a better pag-
ing area for each mobile user for each time region. The moving behavior of each mobile user is
mined from long-term collection of the user�s moving logs. Next, time varying probability of each
mobile user is estimated by using user�s moving behavior, and then optimal paging area of each
time region is derived. The concept of moving behavior has a different nature compared to our

126 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
UMP definition. Therefore, the approach followed by BBS for mining the moving behavior of
users has a completely different basis than that of the method we use for mining UMPs. In addi-
tion, while designing our algorithm, our purpose was accurately predicting the next inter-cell
movement of the mobile users which enables the system to allocate the network resources effec-
tively, while the method proposed in [11] aims to design a better paging area.

In [9], a method called dynamic clustering based prediction (DCP) of mobile user movements is
presented. In that work, DCP is used for discovering user mobility patterns from collections of
recorded mobile trajectories, and then these patterns are used for the prediction of movements
and dynamic allocation of resources. Collected user trajectories are clustered according to their
in-between similarity. Weighted edit distance measure [8] is used for determining the similarity be-
tween two trajectories. The clustering used in [9] is agglomerative. It means that initially every sin-
gle trajectory forms a cluster itself. At each iteration of the clustering algorithm, the two most
similar clusters (i.e., clusters that are closest in terms of weighted edit distance) are merged to form
a new cluster. Each cluster is represented by a number of cluster representative trajectories. After
each merge operation, the representatives of new cluster are found to be the union of represent-
ative sets of the merged clusters. The merge operation continues until the number of the clusters is
reduced to a predefined value. In the prediction phase, the representatives of the clusters are used.
A mobile user�s next trajectory is predicted by finding the best matching representative with its
current trajectory. The best matching one has the minimum edit distance to the current trajectory.
In case of more than one match, all matched representatives can be used for prediction. The main
difference between that work and ours is the method used for mining the UMPs. In [9], UAPs are
clustered in order to mine the UMPs, while sequential pattern mining is used for the same purpose
in our work. Moreover, the UMPs are used in different ways for mobility prediction in both
works. Another difference is that only the next inter-cell movement of a mobile user is predicted
in our method, while the complete trajectory of a mobile user is predicted in [9].
3. Mobility prediction based on mobility rules

Our algorithm consists of three phases: user mobility pattern (UMP) mining, generation of
mobility rules using the mined UMPs, and the mobility prediction. The next inter-cell movement
of mobile users is predicted based on the mobility rules in the last phase. We examine each phase
in detail in the following subsections.
3.1. Mining user mobility patterns from graph traversals

We define a user mobility pattern (UMP) as a sequence of neighboring cells in the coverage re-
gion network. The consecutive cells of a UMP should be neighbors because the users cannot travel
between non neighbor cells. Indeed, UMPs correspond to the expected regularities of the user ac-
tual paths. In order to mine the UMPs from user actual paths (UAPs), sequential pattern mining

[5] can be used. Sequential pattern mining has been previously used and examined in various re-
search domains. One such work has been performed in the domain of web log mining [2,3]. In that
work, sequential pattern mining is used to mine the access patterns of a user while he is visiting the

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 127
pages of web sites. This method assumes the web pages to be the nodes and the links between these
pages to be the edges of an unweighted directed graph, G. Then, sequential pattern mining is ap-
plied to web logs by considering G.

We design a new method that is convenient for our domain, by generalizing the method of [2,3]
and applying it for UMP mining. This new method employs

• a different definition of the graph G, and
• a new method for support counting, which generalizes the method presented in [2,3].

In our method, we use a directed graph G, where the cells in the coverage region are considered
to be the vertices of G. The edges of G are formed as follows: If two cells, say A and B, are neigh-
boring cells in the coverage region (i.e., A and B have a common border) then G has a directed
and unweighted edge from A to B and also from B to A. These edges demonstrate the fact that
a user can move from A to B or B to A directly. In Fig. 1, an example coverage region and the
corresponding graph G is presented.

The algorithm we have developed for UMP mining is presented in Fig. 2.
To understand how the UMP mining algorithm works, assume that the set of candidate pat-

terns each including k cells is found in the (k � 1)st run of the while loop and this set is not empty
(line 4, in Fig. 2). The set of these patterns, denoted by Ck, is called length-k candidate patterns.
Returning to the execution of our algorithm, from line 5 to line 12, first all the length-k subse-
quences of all UAPs are generated and these subsequences are used to count the supports of
the length-k candidate patterns. In order to be more precise, the subsequence definition is given
below.

Definition 1. Assume that we have two UAPs, A = ha1,a2, . . . ,ani and B = hb1,b2, . . . ,bmi. B is a
subsequence of A, iff there exists integers 1 6 i1 < � � �< im 6 n such that bk ¼ aik , for all k, where
1 6 k 6 m.

In other words, B is a subsequence of A, iff all cells in B also exist in A while keeping their order
in B (but they do not need to be consecutive in A).

Let us give an example by using the coverage region given in Fig. 1: assume A = hc3,c4,
c0,c1,c6,c5i, then B = hc4,c5i will be a length-2 subsequence of A. In other words, the UAP B is
contained by the UAP A.
C0

C6

C5

C1

C2

C3

C4

C8

C7

0

3

4

2

1

6

5

7

8

Fig. 1. An example coverage region (a) and the corresponding graph G (b).

Fig. 2. User mobility pattern mining algorithm.

128 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
In line 10 of the mining algorithm, we see that every candidate �s� has a count value and this
value is incremented by �s.suppInc� value. The count value of a candidate keeps the support given
to this candidate by the UAPs. This is the point where our algorithm extends the method pre-
sented in [2,3]. The method presented in that work, increments the count value of a candidate
by 1 if this candidate is contained by a UAP. By this method, the effect of possible noise in the
data is minimized. Because the users who are following a UMP may follow random paths between
the consecutive cells of this UMP. These paths can be characterized as noise and the UAPs con-
taining noise are called corrupted. If the number of corrupted UAPs in the data is high, then a
pattern may not have adequate support and it will be missed.

However, this method of support counting treats a highly corrupted candidate pattern and a
slightly corrupted (or even not corrupted at all) candidate pattern in the same way and assigns
the support value of 1 to both patterns. Since this method is unfair for the context of mobile mo-
tion prediction, unlike the work in [2,3], our support counting method considers the degree of cor-
ruption, i.e., we differentiate the support given to a slightly corrupted pattern and to a highly
corrupted pattern. In our method, we calculate the support assigned to a candidate pattern B
by an UAP A (i.e., suppInc) by using the following formula:
suppInc ¼
1

1þtotDist ; if pattern B is contained by UAP A

0; otherwise

�

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 129
We can define the totDist value by means of the notion of string alignment [12]. Given two
strings, where a string is a sequence of characters, Gusfield demonstrates methods for determining
the similarity between these two strings by finding the optimal alignment between them. For in-
stance, assume that the two strings are ‘‘acbcdb’’ and ‘‘cadbd’’. Here is one possible alignment of
these two strings, where the special character ‘‘-’’ represents the insertion of a space.
a c - - b c d b

- c a d b - d -
Definition 2.1. If x and y are each single character or space, then d(x,y) denotes the score of
aligning x and y. In our case, the scoring function is defined as follows:
dðx; yÞ ¼ 0 if x ¼ y and dðx; yÞ ¼ 1 otherwise
Definition 2.2. If S is a string, then jSj denotes the length of S and S[i] denotes the ith character of
S (where the first character is S[1] rather than, say S[0]).

Definition 2.3. Let A be a UAP and B be a pattern such that B is contained in A. A containment
alignment X 0 maps A and B into strings A 0 and B 0 that may contain space characters, where

1. jA 0j = jB 0j,
2. the removal of all spaces from A 0 and B 0 leaves A and B, respectively.

The total score of the alignment X 0 is
Xm
i¼k

dðA0½i�;B0½i�Þ;
where k is the index of first and m is the index of last non-space character in B 0.
The above definition of containment alignment is an adaptation of the string alignment defini-

tion given in [12]. For any two patterns, there may be more than one possible containment align-
ments. For instance, assume that A = hc3,c4,c0,c1,c6,c5,c8,c5i and B = hc4,c5i. Then, two possible
containment alignments for these patterns are:

1.
A0 ¼ c3 c4 c0 c1 c6 c5 c8 c5
B0 ¼ - c4 - - - c5 - -

2.
A0 ¼ c3 c4 c0 c1 c6 c5 c8 c5
B0 ¼ - c4 - - - - - c5
Definition 2.4. An optimal containment alignment of UAP A and pattern B is a containment
alignment with the minimum possible containment alignment score for these two patterns. We call
the containment alignment with minimum value optimal by the nature of our scoring function
that was presented in Definition 2.1. As one can see, our scoring function gives a penalty of 1 for
each mismatch in the alignment, and in Definition 2.3 the value of an alignment is defined as the
sum of penalties which are naturally the result of mismatches. Therefore, the optimal alignment

130 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
will have the minimum value, which denotes the minimum number of mismatches, and we call this
value totDist for these patterns. Indeed, totDist gives us the exact number of cells which exist
between the consecutive cells of B in A.

For instance, an optimal containment alignment for the patterns A and B will be:
A0 ¼ c3 c4 c0 c1 c6 c5 c8 c5
B0 ¼ - c4 - - - c5 - -
The value of this optimal containment alignment is 3 and by Definition 2.4 totDist = 3. Actu-
ally, it can be said that the pattern B is 3 cells corrupted with respect to pattern A. Therefore, the
support value given to B by A is suppInc ¼ 1

1þ3
¼ 1

4
. It is easily seen that the quality of the patterns

will improve since this method is a more accurate way of support counting. The improvement in
the pattern quality will give rise to more accurate mobility rules. Therefore, the prediction accu-
racy by using these rules will be higher when compared to the accuracy by using the rules that are
generated with the former way of support counting [2,3]. Indeed, our support counting method is
a generalization of the support counting method of [2,3]. If we simply take totDist as 0, without
considering the degree of corruption, we will end up with the support counting method of that
work. Therefore, we can claim that applying different methods for calculating totDist will affect
the quality of the rules obtained. For this reason, an appropriate method, such as ours, should
be selected for calculating this value.

For support counting and storing large patterns, a trie data structure is used as in the work [2,3]
instead of the hash-tree data structure recommended to be used for [13]. In the hash-tree the can-
didates exist only in the leaves of the tree. On the other hand, every trie node sequence, from root
to any node, can represent a pattern in the trie data structure. This property of the trie structure
provides efficiency in support counting procedure. Furthermore the trie data structure grows
dynamically as its leaves are extended and there is no need to build repeatedly a new hash-tree
for every iteration.

To count the supports of length-k candidate patterns, first all candidate patterns are in-
serted into the trie. Next the database of UAPs is scanned. For each UAP A of length n,
all possible length-k subsequences and their totDist values should be determined (if n < k, then
UAP A is skipped and not used in this phase of support counting). Then, each of these sub-
sequences are searched in the trie and for those who exist in the trie, their support count is
increased by suppInc value, which is calculated with the totDist value of the corresponding
subsequence.

After counting the supports of all the candidates, the candidates which have a support
smaller than the threshold value (suppmin) are eliminated. The remaining candidates are called
the length-k large patterns (Lk). Then, Lk is added to the set in which all the large patterns are
maintained.

The next step in the mining algorithm is the generation of length-(k + 1) candidate patterns,
Ck+1. For this step, the CandidateGeneration() function, presented in Fig. 3, is used.

To illustrate how the candidate generation algorithm works, assume that there exists a pattern
C = hc1,c2, . . .,cki in Lk which is given as the input to this algorithm. To generate the possible can-
didates fromC, all the nodes inGwhich have an incoming edge from the cell ck are assigned to a set
which is denoted by N+(ck). This is the set of all the cells to which a mobile user can move from ck.

→

Fig. 3. Generation of length-(k + 1) candidates.

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 131
Next, a cell, v from N+(ck) is attached to the end of the pattern C in order to generate a candidate
C 0 = hc1,c2, . . .ck,vi. C 0 is then added to the length-(k + 1) candidates set. This procedure is re-
peated for all the cells in the set N+(ck).

In [2,3], a modified version of Apriori pruning criterion of [13] is used in the candidate gener-
ation procedure. Apriori pruning criterion requires that a set of items I = {i1, i2, . . ., in} is large
only if every subset of I of length-(n � 1), is also large. In case of a pattern, pruning can be based
on the following rule: a pattern P = hc1,c2, . . .,cni is large, only if every subpattern S of P, with
length-(n � 1), is large. In [2,3], if any one of the length-k subsequence patterns of a possible
length-(k + 1) candidate C 0, which can exist as paths in the corresponding network graph G, is
not an element of Lk, then C 0 is pruned and not added to the length-(k + 1) candidates set. How-
ever, we cannot use this pruning strategy due to the nature of our new support counting method.
With our support counting method, the support is no longer monotonically decreasing with the
increasing size of the pattern which was the case in the previous support counting method. It
means that a length-(k � 1) subpattern S of a length-k pattern P does not need to be large even
if P is large. For instance, consider a UAP h1,6,0,3,2i in Fig. 1, and the pattern P1 = h1,0,2i and
its subpattern P2 = h1,2i. Due to our support counting method, this UAP assigns a support of

1
ð1þ2Þ to P1 and

1
ð1þ3Þ to P2. If we set the suppmin value to 1

3
, then P1 becomes a large pattern where

P2 does not. If the above pruning method is applied to this example, P1 should be pruned since
one of its subpatterns, P2, is not large. It is clear that we cannot apply this pruning strategy with
our support counting method. Therefore, we omitted this pruning step in our candidate genera-
tion algorithm.

Example. An example database of UAPs is given in Table 1.

In Tables 2–6, the execution of the UMP mining algorithm with suppmin = 1.33 (which corre-
sponds to 33.25%) and graph G which is given in Fig. 1 is illustrated on an example using the data-
base of UAPs which is given in Table 1. In Table 2, set of length-1 candidate patterns (C1) and set
of length-1 large patterns (L1) are given.

Table 1

Database of user actual paths (UAPs)

UAP ID UAP

1 h5,6,0,4,5i
2 h3,4,5,0i
3 h1,2,3,4,0,5i
4 h3,2,0i

Table 2

Length-1 candidate patterns (C1) and length-1 large patterns (L1)

C1 L1

CAND SUPP PATTERN SUPP

h0i 4 h0i 4

h1i 1 h2i 2

h2i 2 h3i 3

h3i 3 h4i 3

h4i 3 h5i 3

h5i 3

h6i 1

h7i 0

h8i 0

Table 3

Length-2 candidate patterns (C2) and length-2 large patterns (L2)

C2 L2

CAND SUPP CAND SUPP PATTERN SUPP

h0,1i 0 h3,2i 1 h0,5i 1.5

h0,2i 0 h3,4i 2 h2,0i 1.33

h0,3i 0 h4,0i 1.5 h3,0i 1.33

h0,4i 1 h4,3i 0 h3,4i 2

h0,5i 1.5 h4,5i 2.5 h4,0i 1.5

h0,6i 0 h5,8i 0 h4,5i 2.5

h2,0i 1.33 h5,0i 1.5 h5,0i 1.5

h2,1i 0 h5,4i 0.33

h2,3i 1 h5,6i 1

h3,0i 1.33

132 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
Next, C2 is generated by using the candidate generation algorithm given in Fig. 3 and, L1 is
used in this process. Then, the supports of these candidates are counted and the patterns which
have a support value larger than suppmin are assigned to set L2. The sets C2 and L2 are presented
in Table 3.

Having L2, C3 is generated using CandidateGeneration() function, and then the large patterns
in C3 are assigned to the set L3. These sets are shown in Table 4.

The set of length-4 candidate patterns, C4, is illustrated in Table 5.

Table 4

Length-3 candidate patterns (C3) and length-3 large patterns (L3)

C3 L3

CAND SUPP CAND SUPP CAND SUPP CAND SUPP PATTERN SUPP

h0,5,8i 0 h2,0,6i 0 h3,4,5i 1.5 h4,5,4i 0 h3,4,0i 1.5

h0,5,0i 0 h3,0,1i 0 h4,0,1i 0 h4,5,6i 0 h3,4,5i 1.5

h0,5,4i 0 h3,0,2i 0 h4,0,2i 0 h5,0,1i 0

h0,5,6i 0 h3,0,3i 0 h4,0,3i 0 h5,0,2i 0

h2,0,1i 0 h3,0,4i 0 h4,0,4i 0 h5,0,3i 0

h2,0,2i 0 h3,0,5i 0.5 h4,0,5i 1 h5,0,4i 0.5

h2,0,3i 0 h3,0,6i 0 h4,0,6i 0 h5,0,5i 0.33

h2,0,4i 0 h3,4,0i 1.5 h4,5,8i 0 h5,0,6i 0

h2,0,5i 0.33 h3,4,3i 0 h4,5,0i 1

Table 6

The set of all large patterns

L

PATTERN SUPP PATTERN SUPP

h0i 4 h3,0i 1.33

h2i 2 h3,4i 2

h3i 3 h4,0i 1.5

h4i 3 h4,5i 2.5

h5i 3 h5,0i 1.5

h0,5i 1.5 h3,4,0i 1.5

h2,0i 1.33 h3,4,5i 1.5

Table 5

Length-4 candidate patterns (C4)

C4

PATTERN SUPP PATTERN SUPP

h3,4,0,1i 0 h3,4,0,6i 0

h3,4,0,2i 0 h3,4,5,8i 0

h3,4,0,3i 0 h3,4,5,0i 1

h3,4,0,4i 0 h3,4,5,4i 0

h3,4,0,5i 1 h3,4,5,6i 0

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 133
Unfortunately, none of these patterns have a support larger than suppmin which indicates that
L4 does not contain any patterns. Therefore, the UMP mining algorithm terminates with the set of
large candidates, L, which is shown in Table 6.

3.2. Generation of mobility rules

In the second phase of our movement prediction algorithm, the mobility rules which will be
used in the next phase (i.e., the prediction phase) are generated. Having the UMPs mined in

134 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
the previous phase, we can now produce the set of the mobility rules from these UMPs. Assume
that we have a UMP C = hc1,c2, . . .,cki, where k > 1. All the possible mobility rules which can be
derived from such a pattern are:
Table

All po

Mobi

Rule

h2i !
h4i !
h3i !
h5i !
h4i !
h3,4i
h3i !
h3,4i
h3i !
hc1i ! hc2; . . . ; cki
hc1; c2i ! hc3; . . . ; cki
. . .

hc1; c2; . . . ; ck�1i ! hcki

For a mobility rule, we call the part of the rule before the arrow the head of the rule, and the

part after the arrow the tail of the rule. Moreover, when these rules are generated, a confidence
value is calculated for each rule. For a mobility rule R : hc1,c2, . . .,ci�1i ! hci,ci+1, . . .,cki, the con-
fidence is determined by using the following formula:
confidenceðRÞ ¼ hc1; c2; . . . ; cki � count
hc1; c2; . . . ; ci�1i � count

� 100
By using the mined UMPs, all possible mobility rules are generated and their confidence values
are calculated. Then the rules which have a confidence higher than a predefined confidence thresh-
old (confmin) are selected. These rules are used in the next phase of our algorithm, which is the
mobility prediction.

Example. All possible mobility rules and their confidence values for the UMPs given in Table 6
are demonstrated in Table 7.

If the threshold confidence value, confmin is assumed to be 50, then the rules having a
confidence bigger than or equal to confmin will be the same as the rules in Table 7 since all these
rules have a confidence bigger than confmin.
3.3. Mobility prediction

This is the third and the last phase of our algorithm. The pseudo-code for the mobility predic-
tion phase of our algorithm is presented in Fig. 4. In this phase, the next movement of the mobile
7

ssible mobility rules

lity rules

Confidence

h0i 66.6

h0i 50

h4i 66.6

h0i 50

h5i 83.33

! h0i 75

h4,0i 50

! h5i 75

h4,5i 50

→

Fig. 4. Mobility prediction algorithm.

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 135
user is predicted. The prediction procedure can be summarized as follows: Assume that a mobile
user has followed a path P = hc1,c2, . . .,ci�1i up to now. Our algorithm finds out the rules whose
head parts are contained in path P, and also the last cell in their head is ci�1. We call these rules the
matching rules. We store the first cell of the tail of each matching rule along with a value which is
calculated by summing up the confidence and the support values of the rule in an array of such
tuples. The support of a rule is the support of the UMP from which the current rule is generated.
The tuples of this array are then sorted in descending order with respect to their support plus con-
fidence values. While sorting the matching rules, both the support and confidence values of a rule
should be taken into consideration to select the most confident and frequent rules.

Then, we define another parameter, m, which is the maximum number of predictions that can
be made each time the user moves. For prediction, we select the first m tuples from the sorted
tuples array. Then the cells of these tuples are our predictions for the next movement of the mobile
user. It means that we use the first m matching rules that have the highest confidence plus support
value for predicting the user�s next movement.

Example. Assume that a mobile user is traveling through the cells of the coverage region shown in
Fig. 1. Also the UAPs that the user has followed in its mobility history are given in Table 1. Then,

136 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
the mobility rules that are given in Table 7 will be used in mobility prediction for this user.
Moreover, suppose that the user has followed a path P = h2,3,0,4i up to now and he is currently
in cell 4. Our algorithm will find the rules h4i ! h0i, h4i ! h5i, h3,4i ! h0i, and h3,4i ! h5i as the
matching rules. The first cell in each rule�s tail will be stored along with the rule�s confidence plus
support value in an array of (cell, confidence + support) tuples. If there are more than one tuple for
a cell in the array, then the one which has the biggest confidence plus support value is kept and the
others are deleted. Then, these tuples are sorted with respect to their confidence plus support
values in descending order. For our example, the sorted tuple array will be: TupleArray =
[(5,85.83), (0,76.5)]. If m is equal to 1, then only cell 5 will be used for the prediction of user�s
next movement. If m is equal to 2, then both cells 5 and 0 are the predicted cells for the next
movement.
4. Experimental results

4.1. Simulation design

For simulation, we have adapted the simulation model which is presented in our earlier work
[9]. In this model, it is assumed that a mobile user travels on a 15 by 15 hexagonal shaped network
which gives a total of 225 base stations.

In order to generate the user actual paths (UAPs), first a number of user mobility patterns
(UMPs) is generated. The length of a UMP is determined by a uniform distribution with a
mean length l. Each UMP is taken as a random walk over the hexagonal network. There are
two types of UAPs generated. The first type consists of UAPs that follow a UMP and the sec-
ond type consists of outliers (i.e., those which do not follow a pattern). The ratio of the number
of outliers to the number of UAPs that follow a UMP is denoted by 0. For each new UAP we
decide whether it is going to be an outlier or not, according to the value 0. If it is an outlier,
then it is formed as a random walk over the hexagonal network. Otherwise, a UMP is selected
randomly that will correspond to the generated UAP. We also use a corruption mechanism to
distinguish the UAP from its corresponding UMP. We insert random cells between the consec-
utive cells of the UMP. In order to accomplish this, we define a corruption ratio c, which de-
notes the ratio of the number of such random cells to the number of cells in the corresponding
UMP.

The total number of generated UAPs is 10,000 and from these, we construct the training and
test sets. The number of UAPs in training set is 9000 and the number of UAPs in test set is 1000.
UMPs are mined from the UAPs in the training set and then the mobility rules that will be used in
prediction are generated by using these UMPs. The UAPs in the test set are used for evaluating
the prediction accuracy of our algorithm.

There are three possible outcomes for the location prediction, when compared to the actual
location:

• The predictor correctly identified the location of the next move.
• The predictor incorrectly identified the location of the next move.
• The predictor returned ‘‘no prediction’’.

Table 8

Symbol table for the parameters used in our experiment

Symbol Definition Default values

m Maximum number of predictions made each time 2

l Average length of UAPs 5

c Corruption factor 0.4

o Outlier percentage 30%

suppmin Minimum support percentage 0.1%

confmin Minimum confidence percentage 80%

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 137
All predictors encounter situations in which they are unable to make a prediction; in particular,
all realistic predictors will have no prediction for the first location of each user trace.

We use two performance measures for the evaluation of the proposed algorithm:

• Recall: the number of correctly predicted cells divided by the total number of requests (i.e., the
total number of inter-cell movements that the user makes). Thus, the recall counts the ‘‘no-pre-
diction’’ case as an incorrect prediction.

• Precision: the number of correctly predicted cells divided by the total number of predictions
made. This metric is appropriate for applications that may prefer no prediction to a wild guess.

The parameters used in the experiments and their default values are given in Table 8. The de-
fault values of l, c and 0 are adapted from [9].

4.2. Algorithms used for comparison

We compared our UMP-based mobility prediction method with two different prediction meth-
ods. The first method is Mobility Prediction based on Transition Matrix (TM) [10]. In this method,
a cell-to-cell transition matrix is formed by considering the previous inter-cell movements of mo-
bile users. The predictions are based on this transition matrix by selecting the m most probable
cells as the predicted cells. We used TM for performance comparison because it makes predictions
based on the previous movements of the user. For the problem of movement prediction, most peo-
ple may intuitively consider using this method for the solution. It is also a simple and time-efficient
method which makes it an ideal baseline algorithm. The second prediction method is the Ignorant
Prediction, which is presented in [15]. Ignorant Prediction method disregards the information
available from movement history. To predict the next inter-cell movement of a user, this method
assigns equal transition probabilities to the neighboring cells of the user�s currently residence cell.
It means that prediction is performed by randomly selecting m neighboring cells of the current
cell. It is a very primitive algorithm and we used it as a base algorithm to observe the system per-
formance when no location prediction is made based on a prior knowledge of user movements.

The first experiment is conducted for choosing the m (the maximum number of predictions
made each time) value which is appropriate for all the methods. The next two experiments are
conducted for tuning the parameters of our method, which are: suppmin (the minimum support
threshold used in UMP mining algorithm) and confmin (the minimum confidence threshold used
in mobility rule generation algorithm). In these experiments, we search for the best values for each

138 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
parameter that make both recall and precision good. The last two experiments are to measure the
performance of our method as compared to the performance of other methods.

We also measured the average time required to make a single prediction with each algorithm.
For our algorithm, computation of the predicted cells requires a time in the range of 10–50ms for
all cases in the experiments. This is the time needed for the online computation of the predicted
cells when a prediction request arrives at the system. Considering the fact that a user who reaches
a cell would most probably stay in it for a period of time that is much larger than 50 ms, the pre-
diction time is a negligible overhead. The mobility rule mining phase of our algorithm is executed
offline just for once. Thus, the time needed for the offline phase can be neglected. The other two
algorithms make their predictions in shorter time, since they involve less computation in determin-
ing locations.

4.3. Impact of maximum number of predictions

In the first experiment, we examine the performance impact of parameter m, maximum number
of predictions made at each move of user. As Fig. 5 indicates, the precision obtained by our meth-
od and the precision obtained by TM decrease as m increases. The decrease in precision obtained
by TM is more dramatic when compared to that obtained by our method. The decrease in both
precision values is due to the fact that as the number of predictions made at each movement of the
user increases, the probability of having some incorrect predictions gets higher. Therefore, the
number of correct predictions made by our method and TM does not increase in the same rate
with the number of predictions.

On the other hand, the precision obtained by Ignorant Prediction method remains almost con-
stant as m increases, ignoring some statistical variations. It is around 0.2 for all m values. As m
increases, the total number of predictions and the number of correct predictions for this method
increase at the same rate. This explains why the precision of the Ignorant method is fixed at 0.2.
This value is very low when compared to the value obtained by our method. Moreover, if the hex-
agonal simulation network is perfect (i.e., all the cells in the network have six neighbors), we
would expect that the precision value of the Ignorant method should be fixed at 1

6
¼ 0:1�6. Our
0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6
m

Pr
ec

is
io

n

UMP-Based
Ignorant
TM

Fig. 5. Precision as a function of the maximum number of predictions made each time.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6
m

R
ec

al
l

UMP-Based
Ignorant
TM

Fig. 6. Recall as a function of the maximum number of predictions made each time.

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 139
simulation network is not perfect because the cells that are at the corners have 2 or 3 neighbors.
Besides, the cells which are along the left, right, top and bottom sides of the simulation network
have less than 6 neighbors.

The recall values for all methods increase with increasing m as shown in Fig. 6. This observa-
tion can be explained by the fact that as the number of predictions made at each move of the mo-
bile user increases, the probability of predicting the correct cell increases. The increase in recall
values with TM and Ignorant methods are more significant when compared to the increase with
our method. For our method, beginning from m = 3, recall values do not increase significantly
and become almost fixed at around 0.5. This is because the number of matching rules is the same
for all m values. Beginning from some m value, the number of correct predictions does not in-
crease because the m value exceeds the number of matching rules. Therefore, the number of cor-
rect predictions becomes stable making the recall value stable. For TM and Ignorant methods,
recall values increase steadily, finally reaching to 1.

By considering the above results, one can easily see that there is a trade-off between recall and
precision measures. Therefore a middle ground should be found for the m value. The increase in
recall with our method is not very significant when compared to that obtained with TM which is
the actual competitor to our method. Thus, setting m as small as possible would be appropriate
for our method since we do not want the precision to drop with increasing m because we do not
gain anything in recall with higher m values. In addition, we can say that setting m = 2 could be
considered as a good choice for TM as well, because the increase rate in the recall value from m
values 1–2 is maximum for TM. Since the precision value decreases with increasing m for TM,
making m bigger than 2 does not increase the recall value so much that it would be worth to de-
crease the precision value. Moreover, if we set m bigger than 3, this would cause excessive network
resource waste. Therefore we will set m = 2 for all the methods at the rest of the performance
experiments.

4.4. Impact of minimum support value

Next, we investigate the effect of increasing minimum support (suppmin) value on the recall and
precision values obtained by our method. It is shown in Figs. 7 and 8 that as the suppmin increases,

0.55

0.5625

0.575

0.5875

0.6

0.6125

0.625

0.6375

0.65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Min Support

Pr
ec

is
io

n

Fig. 7. Precision as a function of the minimum support for UMP-based prediction algorithm.

0.45
0.455
0.46
0.465
0.47
0.475
0.48
0.485
0.49
0.495
0.5

0.505
0.51

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Min Support

R
ec

al
l

Fig. 8. Recall as a function of the minimum support for UMP-based prediction algorithm.

140 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
the precision and recall values decrease. This is due to the fact that the increase in the suppmin

value leads to a decrease in the number of mined mobility rules. Therefore, the number of correct
predictions is reduced. This causes the recall and the precision values to decrease.

Since both recall and precision values decrease for increasing suppmin, it would be most appro-
priate to choose suppmin = 0.1 which is the smallest value used in the experiments. We have ob-
served that recall and precision values do not increase considerably (it can even be said that
the values do not increase at all) for the suppmin values smaller than 0.1.

4.5. Impact of minimum confidence value

In this experiment, we examine the effect of increasing minimum confidence (confmin) values on
the recall and precision of our method. Fig. 9 indicates the impact of minimum confidence on the
precision. As one can realize, the precision increases as confmin increases. Even, the precision
reaches to very high values such as 0.99 at confmin = 100. Because, at high confmin values, only
the rules that have high confidence values are used for prediction. As a result, the number of rules
used for prediction is reduced and their quality gets higher with the increasing confmin. This leads
to a higher decrease rate in the number of predictions when compared to the decrease rate in the
number of correct predictions. Therefore, the precision value improves as confmin increases.

0

0.1

0.2

0.3

0.4

0.5

0.6

50 60 70 80 90 100
Min Conf

R
ec

al
l

Fig. 10. Recall as a function of the minimum confidence for UMP-based prediction algorithm.

0.5

0.6

0.7

0.8

0.9

1

50 60 70 80 90 100
Min Conf

P
re

ci
si

on

Fig. 9. Precision as a function of the minimum confidence for UMP-based prediction algorithm.

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 141
On the other hand, we observe the opposite effect on the recall as shown in Fig. 10. As the con-
fmin value increases, the number of mined rules is reduced. The decrease in the rules negatively
affects the number of correct predictions. Therefore, the recall decreases as confmin increases.

Once again a trade-off between recall and precision is observed with increasing confmin values.
This case is similar to the one observed with the experiment evaluating the impact of parameter m.
Using a similar approach, a middle ground value of 80 has been chosen for confmin.

4.6. Impact of corruption factor

Next, we examine the effect of corruption on the precision and recall values. The impact of
increasing corruption factor is illustrated in Figs. 11 and 12. As one can observe in Fig. 11, the
precision value is very high for our method when the corruption is zero. However, this is not a
realistic case because there is no possibility of absence of corruption. A realistic corruption value
would be 0.4 which is the default value used in our experiments. As the corruption increases, the
precision is reduced since the number of mobility rules that are determined by our algorithm de-
creases. But the precision values, which are never less than 0.53 can be considered good for such
high corruption factors. TM is also affected by corruption but the decrease in precision for TM is

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8
corruption factor

Pr
ec

is
io

n

UMP-Based
Ignorant
TM

Fig. 11. Precision as a function of the corruption factor.

0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9

0 0.2 0.4 0.6 0.8
corruption factor

R
ec

al
l

UMP-Based
Ignorant
TM

Fig. 12. Recall as a function of the corruption factor.

142 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
less significant when compared to that of our method. However, the precision obtained by our
method is better than the precision obtained by its closest competitor, which is TM. This is true
for all corruption values. Although the Ignorant Prediction method demonstrates a stable preci-
sion value, it presents the worst performance for precision. This indicates the ineffectiveness of the
Ignorant Prediction method.

The recall value also drops for both our method and TM with the increasing corruption factor.
For our method, we can explain this by the decreasing number of mined rules. As the corruption
in the data increases, the UAPs will provide less support to large patterns. This leads to a decrease
in the number of UMPs mined by our algorithm. As a result, the number of mobility rules which
are determined by our algorithm decreases. There is another reason for the performance reduction
of our method. As a result of the corruption, our prediction algorithm will match less or even will
not match any mobility rules to the current trajectory of a mobile user. Therefore, no prediction
can be accomplished in many cases when the corruption gets very high.

Increasing the corruption does not reduce the performance of Ignorant Prediction significantly.
This is an expected result because Ignorant Prediction disregards the historical inter-cell move-

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 143
ment of users and every prediction of this method is random. Therefore the corruption factor does
not affect the performance of Ignorant Prediction.

4.7. Impact of outlier percentage

In the last experiment, we examine the impact of outlier percentage in the data set. The results
are presented in Figs. 13 and 14. When we increase the outlier percentage, we observe a slight de-
crease in the recall. On the other hand, the precision of our method is not affected by the increas-
ing outlier percentage. This can be explained by the fact that the rules which are mined from
outlier UAPs are not used in predicting the next trajectory in most of the predictions made. Be-
cause, these rules are supported by the outliers and they are not common. When a user is follow-
ing a UMP, these rules are not used for prediction. Therefore, the precision is not reduced.

The recall and precision values obtained by TM behave similarly when compared to the values
obtained by our method. The recall of TM experiences a slight decrease but it is better than the
recall of our method for all outlier percentages. However the precision of our method is always
better than the precision of TM.
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 30 40 50 60
outlier percentage

Re
ca

ll

UMP-Based
Ignorant
TM

Fig. 14. Recall as a function of the outlier percentage.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 30 40 50 60
outlier percentage

Pr
ec

is
io

n UMP-Based
Ignorant
TM

Fig. 13. Precision as a function of the outlier percentage.

144 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
5. Conclusion

In this paper, we present a data mining algorithm for the prediction of user movements in a
mobile computing system. The algorithm proposed is based on mining the mobility patterns of
users, forming mobility rules from these patterns, and finally predicting a mobile user�s next move-
ments by using the mobility rules. Through accurate prediction of mobile user movements, our
algorithm will enable the system to allocate resources to users in an efficient manner, thus leading
to an improvement in resource utilization and a reduction in the latency in accessing the resources.
Another benefit of our algorithm will be to enable the system to produce more accurate answers to
location-dependent queries that refer to future positions of mobile users.

We have evaluated the performance of our algorithm using simulation and compared the obtained
results with the performance of two other prediction methods, Mobility Prediction based on Tran-
sition Matrix (TM) and Ignorant Prediction. In TM, mobility prediction is based on the cell-to-cell
transition probability matrix. The Ignorant method does not take any historical information into ac-
count when making prediction. In this method, randomly selected neighbors of the current cell are
used as the predicted cells. This method can be considered as a baseline algorithm for comparison.

Our method has performed well with a variety of corruption factor and outlier percentage val-
ues. We have observed that although an increase in the corruption in the data decreases the recall
and precision, an increase in the outlier percentage has no significant effect on the recall and pre-
cision. When compared to the performance of the baseline method, which is Ignorant Prediction,
our method provides a very good performance in terms of precision and recall.

When we compare its performance with the performance of TM, it can be seen that the preci-
sion obtained with our method is better than that observed with TM. This result indicates that our
method makes more accurate predictions. Most of its predictions made at each request are cor-
rect. On the other hand, the recall values obtained with TM are higher than those obtained with
our method for most of the experiments. This is due to the nature of our method, which may not
make prediction in response to some of the requests. The reason is that there may not be any
matching rule for the current trajectory of the user when a prediction request is made. Thus,
our method does not make any prediction in that case. On the other hand, TM makes prediction
at most of the requests because it only keeps the transition probabilities of the cells. Therefore,
even if there has been only one transition from a cell, say A, then it will use this information
to make a prediction when the user is in cell A. It will have a higher potential to make predictions
at every request, resulting in higher probability to make a correct prediction. Since the number of
requests in the test set is the same for both methods and the number of correct predictions is high-
er for TM, TM produces higher recall values.
References

[1] A. Aljadhai, T. Znati, Predictive mobility support for QoS provisioning in mobile wireless environments, IEEE J.

Select. Area Commun. 19 (10) (2001) 1915–1930.

[2] A. Nanopoulos, D. Katsaros, Y. Manolopoulos, Effective prediction of web user accesses: a data mining approach,

in: Proceedings of the WebKDD Workshop (WebKDD�01), 2001.
[3] A. Nanopoulos, D. Katsaros, Y. Manolopoulos, A data mining algorithm for generalized web prefetching, IEEE

Trans. Knowl. Data Eng. 15 (5) (2003) 1155–1169.

G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146 145
[4] I.F. Akyildiz, S.M. Ho, Y.-B. Lin, Movement-based location update and selective paging for PCS networks, IEEE/

ACM Trans. Network. 4 (4) (1996) 629–639.

[5] R. Agrawal, R. Srikant, Mining sequential patterns, in: Proceedings of the IEEE Conference on Data Engineering

(ICDE�95), 1995, pp. 3–14.
[6] B. Liang, Z. Haas, Predictive distance-based mobility management for PCS networks, in: Proceedings of the IEEE

Conference on Computer and Communications (IEEE INFOCOM�99), 1999, pp. 1377–1384.
[7] G.Y. Liu, M.Q. Gerald, A predictive mobility management algorithm for wireless mobile computing and

communications, in: Proceedings of the IEEE International Conference on Universal Personal Communications,

1995, pp. 268–272.

[8] T. Liu, P. Bahl, I. Chlamtac, Mobility modeling, location tracking, and trajectory prediction in wireless ATM

networks, IEEE J. Select. Area Commun. 16 (6) (1998) 922–936.

[9] D. Katsaros, A. Nanopoulos, M. Karakaya, G. Yavas, O. Ulusoy, Y. Manolopoulos, Clustering mobile

trajectories for resource allocation in mobile environments, in: Intelligent Data Analysis Conference

(IDA�2003)Lecture Notes in Computer Science, vol. 2810, Springer-Verlag, 2003.

[10] S. Rajagopal, R.B. Srinivasan, R.B. Narayan, X.B.C. Petit, GPS-based predictive resource allocation in cellural

networks, in: Proceedings of the IEEE International Conference on Networks (IEEE ICON�02), 2002, pp. 229–234.
[11] H.-K. Wu, M.-H. Jin, J.-T. Horng, C.-Y. Ke, Personal paging area design based on mobile�s moving behaviors, in:

Proceedings of the IEEE Conference on Computer and Communications (IEEE INFOCOM�01), 2001, pp. 21–30.
[12] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, 1997.

[13] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of Very Large Databases

Conference (VLDB�94), 1994, pp. 487–499.
[14] S. Mohan, R. Jain, Two user location strategies for personal communication systems, IEEE Personal Commun.

Mag. 1 (1994) 42–50.

[15] A. Bhattacharya, S.K. Das, LeZi—Update: an information-theoretic approach to track mobile users in PCS

networks, ACM Wireless Networks 8 (2–3) (2002) 121–135.

[16] Y. Saygin, O. Ulusoy, Exploiting data mining techniques for broadcasting data in mobile computing environments,

IEEE Trans. Knowl. Data Eng. 14 (6) (2002) 1387–1399.

[17] G. Gok, O. Ulusoy, Transmission of continuous query results in mobile computing systems, Inform. Sci. 125 (1–4)

(2000) 37–63.

Gökhan Yavas� was born in Eskisehir, Turkey in 1978. He received a B.S. degree (2001) and an

M.S. degree (2003) in Computer Engineering both from Bilkent University, Ankara, Turkey.

Currently, he is a Ph.D. candidate at the Computer Science Department of Case Western Reserve

University. His research interests include data mining, mobile data management and bioinfor-

matics. His current work focuses on managing and querying genomic pathways, and efficient

access methods for genomic sequences.
Dimitrios Katsaros has received a B.Sc. and a Ph.D. degree in Informatics from the Aristotle

University of Thessaloniki, Greece, in 1997 and 2004 respectively. The subject of his dissertation

was ‘‘Information Dispersal in the Wireline and Wireless Web’’. He is co-editor of the book

Wireless Information Highways (by IDEA Inc.). His research interests include Web and Internet

(particularly caching, replication, prefetching, and content delivery), mobile and pervasive

computing (especially data management and delivery) and data mining.

Özgür Ulusoy received his Ph.D. in Computer Science from the University of Illinois at Urbana-

Champaign. He is currently a Professor in the Computer Engineering Department of Bilkent

University in Ankara, Turkey. His research interests include data management for mobile sys-

tems, web querying, multimedia database systems, and real-time and active database systems. He

has served on numerous program committees for conferences including International Conference

on Very Large Databases, International Conference on Data Engineering, and International

Conference on Scientific and Statistical Database Management. He was the program cochair of

the International Workshop on Issues and Applications of Database Technology that was held in

Berlin in July 1998. He coedited a special issue on Real-Time Databases in Information Systems

journal and a special issue on Current Trends in Database Technology in the Journal of Database

Management. He also coedited a book on Current Trends in Data Management Technology. He

146 G. Yavas� et al. / Data & Knowledge Engineering 54 (2005) 121–146
has published over 60 articles in archived journals and conference proceedings.

Yannis Manolopoulos is professor with the Department of Informatics of the Aristotle University

of Thessaloniki, Greece. He received a B.E. (1981) in Electrical Engineering and a Ph.D. (1986) in

Computer Engineering, both from the Aristotle University. He has published over 140 papers in

journals and conference proceedings. He is co-author of two monographs by Kluwer and has

served as PC (co-)chair for ADBIS, WDAS, SSTD, SSDBM conferences. His research interests

include databases, data mining and performance evaluation of storage subsystems. He is Vice-

chair of the Greek Computer Society and Chair of the ACM SIGKDD Greek Section.

	A data mining approach for location prediction in mobile environments z.star This research has been funded through the bilateral program of scientific cooperation between Turkey and Greece from T Uuml B I
	Introduction
	Background
	Problem definition
	Related work

	Mobility prediction based on mobility rules
	Mining user mobility patterns from graph traversals
	Generation of mobility rules
	Mobility prediction

	Experimental results
	Simulation design
	Algorithms used for comparison
	Impact of maximum number of predictions
	Impact of minimum support value
	Impact of minimum confidence value
	Impact of corruption factor
	Impact of outlier percentage

	Conclusion
	References

