
Information Systems 29 (2004) 697–717

Efficiency and effectiveness of query processing in
cluster-based retrieval$

Fazli Can*,1,2, Ismail Seng .or Alting .ovde, Engin Demir

Computer Engineering Department, Bilkent University, Bilkent, Ankara 06533, Turkey

Received 9 August 2002; accepted 3 June 2003

Abstract

Our research shows that for large databases, without considerable additional storage overhead, cluster-based

retrieval (CBR) can compete with the time efficiency and effectiveness of the inverted index-based full search (FS). The

proposed CBR method employs a storage structure that blends the cluster membership information into the inverted

file posting lists. This approach significantly reduces the cost of similarity calculations for document ranking during

query processing and improves efficiency. For example, in terms of in-memory computations, our new approach can

reduce query processing time to 39% of FS. The experiments confirm that the approach is scalable and system

performance improves with increasing database size. In the experiments, we use the cover coefficient-based clustering

methodology (C3M), and the Financial Times database of TREC containing 210 158 documents of size 564 MB defined

by 229 748 terms with total of 29 545 234 inverted index elements. This study provides CBR efficiency and effectiveness

experiments using the largest corpus in an environment that employs no user interaction or user behavior assumption

for clustering.

r 2003 Elsevier Ltd. All rights reserved.

Keywords: Clustering; Cluster-based retrieval; Information retrieval; Performance; Query processing

1. Introduction

The well-known clustering hypothesis states that
‘‘closely associated documents tend to be relevant

to the same request.’’ It is this hypothesis that
motivates clustering of documents in a database
[1]. In the IR research, clustering has been
originally introduced with the expectation of
increasing the efficiency and effectiveness of the
retrieval process [2,3].

In best-match cluster-based retrieval (CBR), it is
assumed that there is a flat (one-level) clustering
structure. In this environment, the queries are first
compared with the clusters, or more accurately
with the cluster representatives called centroids.
Detailed query by document comparison is per-
formed only within the selected clusters. In
hierarchical (multi-level) clustering structures, it

ARTICLE IN PRESS

$Recommended by Ricardo Baeza-Yates.

*Corresponding author.

E-mail addresses: canf@muohio.edu (F. Can),

ismaila@cs.bilkent.edu.tr (I.S. Alting .ovde),

endemir@cs.bilkent.edu.tr (E. Demir).

URL: http://www.users.muohio.edu/canf/
1Present address: Computer Science and Systems Analysis

Department, Miami University, Oxford, OH 45056, USA.
2The majority of this work has been completed when the first

author was on sabbatical leave at Bilkent University.

0306-4379/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0306-4379(03)00062-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52922168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is possible to implement top-down or bottom-up
cluster-based search strategies [1,4,5].

As with any such algorithm, the efficiency of
CBR is important. In addition to being efficient,
CBR should be effective in the sense of meeting
user needs. Users may employ the clustering
structure in exploring the document space to
locate items close to some known documents. This
is called browsing. Documents within a cluster can
also be stored in close proximity to each other
within a disk medium to minimize I/O delays
[5, pp. 222–227]. However, it is shown that the
operational effectiveness of many clustering algo-
rithms is low [6]. It is also observed that the
efficiency of CBR is less than the efficiency of full
search, FS, i.e., inverted index search of all
documents [4,7–9].

In this paper we study the efficiency and
effectiveness of query processing in large clustered
document collections using the best-match strat-
egy. In the experiments we use the cover coeffi-
cient-based clustering methodology, C3M, which
we have introduced in our previous work. It is
known that C3M has superior performance with
respect to other algorithms of the literature [10]
and can be used in dynamic environments in an
incremental manner for cluster maintenance [11].
The contributions of this study are the following.

* It shows that for large databases it is possible to
perform CBR with an efficiency and effective-
ness level, which is comparable with that of FS
without considerable additional storage over-
head. The CBR method proposed in this paper
employs a simple and novel storage structure
that blends the cluster membership information
with the inverted file posting lists. As will be
shown this approach significantly reduces the
cost of similarity calculations during query
processing. Our new storage structure is generic
and clearly applicable with other clustering
algorithms.

* It provides CBR experiments using the largest
corpus in an environment with no user interac-
tion or user behavior assumption. In the
experiments we use the Financial Times data-
base of the TREC Disk 4 containing 210 158
documents of text size 564MB defined by

229 748 terms with total of 29 545 234 inverted
index elements. For example, the studies
reported in [12,13] provide experiments with
larger corpora; however, in their evaluations
they assume that the user picks the optimal
cluster or try to generate refined clusters with
user interaction from an existing global cluster-
ing structure. In our work, all decisions are
made automatically using similarity measures
based on a global clustering structure with no
user interaction.

There are various optimization techniques used
for inverted index searches [14–17]. They aim to
use only the most informative parts of inverted list
and try to increase efficiency of query processing
without deteriorating retrieval effectiveness. Such
techniques can be employed during query proces-
sing to further improve the query optimization
provided by CBR; however, search optimization
(or pruning) with techniques other than clustering
is beyond the scope of this study.

One of the advantages of cluster-based IR is
that users can browse the documents of the best-
matching clusters. This may give them the
opportunity of seeing additional relevant docu-
ments not ranked highly and that may or may not
have common term(s) with the submitted query
(intuitively documents with no common term with
the query but still relevant would have better
chance of being a member the best-matching
clusters; however, this needs further investigation).
Our approach provides efficient access to the
clustered documents based on the common terms
with the queries and browsing can also be
supported as an inherent advantage of clustering.
On the other hand, the best-matching clusters can
be too large to browse and users may prefer to see
a ranked document list; in such an environment
browsing using a method such as scatter/gather
may be practical [12]. This option has not been
considered in this study.

The rest of the paper is organized as follows.
Section 2 explains our clustering algorithm C3M
and the file structures that can be used for the
implementation of CBR including our new
approach. Section 3 describes the experimental

ARTICLE IN PRESS

F. Can et al. / Information Systems 29 (2004) 697–717698

environment in terms of document database and
queries. Section 4 covers the experimental results
and their discussion. Section 5 reviews the pre-
vious and related work. The conclusions and
pointers for future research are given in Section
6. A list of frequently used symbols and acronyms
is provided in Table 1.

2. Clustering algorithm and file structures for CBR

implementation

In this section we briefly explain our clustering
algorithm, the file structures that can be used for
CBR, and our new CBR file structure that blends
the clustering information with the traditional
inverted file.

2.1. Clustering algorithm: C 3M

As we indicated earlier, in the experiments we
use the C3M algorithm, which is known to have
good information retrieval performance. The C3M
algorithm assumes that the operational environ-
ment is based on the vector space model. Using
this model, a document collection can be ab-
stracted by a document matrix, D; of size m by n

whose individual entries, dij (1oiom; 1ojon),
indicate the number of occurrences of term jðtjÞ in
document iðdiÞ:

Determining the number of clusters in a collec-
tion is a difficult problem [18]. In other clustering

algorithms, if it is required, the number of clusters,
nc; is usually a user specified parameter; in C3M it
is determined by using the cover-coefficient (CC)
concept [10; 19, pp. 376–377]. In C3M, some of the
documents are selected as cluster seeds and non-
seed documents are assigned to one of the clusters
initiated by the seed documents. According to
CC, for an m by n document matrix the value
range of nc and the average cluster size (dc) are as
follows:

1pncpminðm; nÞ;maxð1;m=nÞpdcpm:

In C3M, the document matrix D is mapped into
an m by m cover-coefficient (C) matrix using a
double-stage probability experiment. This asym-
metric C matrix shows the relationships among the
documents of a database. Note, however, that
the implementation of C3M does not require the
complete C matrix. The diagonal entries of C are
used to find the number of clusters, nc; and
the selection of cluster seeds. During the construc-
tion of clusters, the relationships between a non-
seed document (di) and a seed document (dj) is
determined by calculating the cij entry of C; where
cij indicates the extent with which di is covered by
dj : Therefore, the whole clustering process implies
the calculation of ðm þ ðm � ncÞ � ncÞ entries of the
total m2 entries of C: This is a small fraction of m2;
since nc5m (for some database examples please
refer to Table 2). A thorough discussion and
complexity analysis of C3M are available in [10].

ARTICLE IN PRESS

Table 1

Expanded form and meaning of frequently used acronyms and symbols

Acronym Expanded form Symbol Meaning

C3M Cover coefficient-based clustering methodology dc Average no. of documents per cluster

CBR Cluster-based retrieval ds No. of documents selected during information retrieval

CVDVa Centroid vector document vector m No. of documents

CVIISa Centroid vector inv. index search n No. of terms

ICDVa Inverted centroid document vector nc No. of clusters

ICIISa Inverted centroid inverted index search ns No. of selected best matching clusters

ICsIISa Inverted centroid skip inv. index search nt Average no. of target clusters per query

FS Full search ntr Average no. of target clusters per query in random clustering

FT Financial times database (TREC Disk 4) tg Term generality (avg. no. of documents per term)

FTs, FTm FT small and FT medium size versions xd Depth of indexing (avg. no. of terms per document)

aCBR implementation method.

F. Can et al. / Information Systems 29 (2004) 697–717 699

The CC concept reveals the relationships
between indexing and clustering [10]. The CC-
based indexing-clustering relationships are formu-
lated as follows:

nc ¼ t=ðxd � tgÞ ¼ ðm � nÞ=t ¼ m=tg ¼ n=xd ;

and

dc ¼ m=nc ¼ tg:

In these formulas, the meanings of the variables
not used in the text so far are as follows:

t: the total number of non-zero entries in D

matrix, tg: t=n the average number of different
documents a term appears (term generality),
and xd : t=m the average number of distinct
terms per document (depth of indexing).

These relationships can be used to predict the
clustering structure that would be generated by the
algorithm.

It is shown that the algorithm can be used in a
dynamic environment in an incremental fashion
and such an approach saves clustering time and
generates a clustering structure comparable to that
of cluster regeneration by C3M [11,20].

C3M is a non-overlapping (partitioning) type
clustering algorithm. In this paper, we introduce a
new version of C3M that creates overlapping
clusters to test the effects of overlapping on
efficiency and effectiveness of CBR. In the over-
lapping version a document can be assigned to
more than one cluster. For this purpose we slightly
modified C3M: Let cij be the CC value used to
cluster di; i.e., let us assume that di joins to the
cluster initiated by dj since dj provides the highest
coverage of di among all cluster seeds. In the

overlapping version we define a tolerance threshold

hð1 > h > 0Þ and assign di also to the cluster
initiated by seed document dk if cik > h � cij :
Furthermore, non-seed documents can be assigned
to (at most) a preset maximum number of clusters.
We intuitively set the tolerance threshold to 0.9
and the maximum number of clusters to be
assigned, cluster ceiling (k), to five clusters. The
rationale for our choice of tolerance threshold
value is to limit the number of candidate clusters
to only those clusters that have reasonably close
CC values to the original cluster’s CC value (i.e.,
the CC value observed between the cluster seed
that provides the highest coverage for the docu-
ment to be clustered). For the cluster ceiling, k;
we aim to choose an appropriate value so that the
index structures would have a reasonable storage
size; especially for very large document collections
index size can be a concern. Our experimental
results (reported in Section 4.1.1) show that as
long as the tolerance threshold is high (e.g., 0.9 as
in our case), for a document to be clustered only a
few cluster seeds can reach the cover coefficient
value set by this threshold. In general, h and k

values may be determined by some preliminary
experiments: cluster overlap performance can be
predicted by observing the behavior for a small
sample of non-seed documents.

2.2. File structures for the implementation of CBR

2.2.1. Previous file structures for the implementat-

ion of CBR

The (best-match) CBR search strategy has two
components (a) selection of ns number of best-
matching clusters using centroids, (b) selection

ARTICLE IN PRESS

Table 2

Characteristics of the FT (TEC Disk 4) and some other databases

Database m; no. of
documents

n; no. of terms xd ; avg. no. of
distinct terms/doc.

nc; no. of
clusters

dc; avg. No. of

docs./clust.

BLISS-1a 152 850 166 216 25.7 6468 25

MARIAN 42 815 59 536 11.2 5218 8

INSPEC 12 684 14 573 32.5 475 27

NPL 11 429 7 491 20.0 359 32

FT 210 158 229 748 140.6 1640 128

aApproximate nc value is calculated using the cover-coefficient-based formula: nc ¼ n=xd :

F. Can et al. / Information Systems 29 (2004) 697–717700

of ds number of best-matching documents of the
selected best-matching clusters. For item (a) we
have two file structure possibilities: centroid
vectors (CV) and inverted index of centroids
(IC). For item (b) we again have two possibilities:
document vectors (DV), and inverted index of all

documents (IIS). One remaining possibility for (b),
a separate inverted index for the members of each
cluster, is ignored due to its excessive cost in terms
of disk accesses (for a query with k number of
terms it would involve k disk accesses for each
selected cluster). Hence, possible combinations of
(a) and (b) define the following CBR implementa-
tion policies: CVDV, ICDV, CVIIS, ICIIS.

As summarized in Fig. 1, CVDV means that for
cluster match use centroid vectors as they are and
for document selection from the selected clusters
use the document vectors of the member docu-
ments. In ICIIS the documents of the best-
matching clusters are selected using the results of
FS, which is implemented by IIS. Notice that
ICIIS is somewhat counter intuitive to the concept
of CBR, since CBR considers only a subset of the
database for retrieval purposes, but the IIS
component of ICIIS will be performed on the
complete database. However, ICIIS still has the
potential of being efficient, since query vectors
may contain a limited number of terms.

In [7], the efficiency of these methods is
measured in terms of CPU time, disk accesses,
and storage requirements in a simulated environ-
ment defined in [9]. The implementations from best
to worst efficiency performance are ordered in the
following way: ICIIS, ICDV, CVIIS, CVDV. It is
observed that the ICIIS strategy is significantly
better than the others. It is also shown that ICIIS
is significantly better (5.42 times faster) than a
hierarchical cluster search technique, which is

based on a complete link hierarchy [7]. However,
this earlier study has further revealed that ICIIS is
inferior to FS (1.5 times slower) in terms of
efficiency. In this study our aim is to introduce a
CBR implementation strategy that would outper-
form ICIIS and achieve comparable efficiency and
effectiveness with FS, and measure its performance
in a large document collection.

2.2.2. The new CBR implementation using skips

If we could generate a separate inverted index
for the members of individual clusters, this would
provide the most efficient computational environ-
ment for CBR. However, for a query with k terms
if we select ns best clusters this file structure implies
(k � ns) number of disk accesses, which is large
since ns would be large. To keep both the number
of computations and number of disk accesses at its
minimum, we have introduced a new CBR
implementation structure that we call ICsIIS (IC
skip IIS). In this structure IC has its usual
structure; however, the IIS component stores not
only the traditional posting list information but
also the cluster membership information. In this
organization, posting list information associated
with the members of a cluster are stored next to
each other, and this is followed by those of the
next cluster’s. At the same time we keep a pointer
from the beginning of one cluster sub-posting list
to the next one. During query processing we use
these pointers to skip the clusters, which are not
selected as a best-matching cluster. In the litera-
ture, another skip idea introduced by Moffat and
Zobel is used for efficient decompression of
inverted indexes [17]. They compress posting lists
by using some fixed length skips, which serve as
synchronization points, and are able to decom-
press posting lists from any point of skips without
decompressing the unwanted parts. For example,
the (posting) list (1, 5, 10, 13, 18, 23, 50, 57, 58, 60)
could be given four synchronization points: 1, 13,
50, and 60. For simplicity let us assume that we are
in a conjunctive Boolean query environment, and
also assume that another list has already been
processed and it is known that the query has no
answers between documents 13 and 50, then the
original list only needs to be accessed (and
decompressed) up to document 13 and after

ARTICLE IN PRESS

CVDV Use Centroid Vectors for cluster selection and
Document Vectors for document selection.

ICDV Use Inverted index of Centroids for cluster selection and
Document Vectors for document selection.

CVIIS Use Centroid Vectors for cluster selection and
Inverted Index Search for document selection.

ICIIS Use Inverted index of Centroids for cluster selection and
Inverted Index Search for document selection.

Fig. 1. Summary of possible file structure strategies for CBR

implementation (adapted from [7]).

F. Can et al. / Information Systems 29 (2004) 697–717 701

document 50—this means seven posting list posi-
tions instead of 10.

An example file structure for our approach is
provided in Fig. 2 for a D matrix, which is
clustered using C3M. In this figure each posting list
header contains the associated term, the number of
posting list elements associated with that term, and
the posting list pointer (disk address). The posting
list elements are of two types, ‘‘cluster number—
position of the next cluster,’’ and ‘‘document
number—term frequency’’ for the documents of
the corresponding clusters.

Our skip structure is simple yet novel. In the
previous CBR research a similar approach has not
been used. For example, Salton and McGill’s
classical textbook [5, pp. 223–224] defines three
cluster search strategies. Two of them are related
to hierarchical cluster search and their concern is

the storage organization of the cluster centroids.
In the third CBR strategy, documents (not their
inverted lists) are stored in cluster order, that is,
one access to the ‘‘document file’’ retrieves a
cluster of related documents. Our skip idea
provides a completely new way of implementing
CBR by clustering the individual posting lists
elements. This is certainly different than accessing
the ‘‘documents’’ in cluster order.

Salton wrote [4, p. 344]:

‘‘In general, the efficiencies of inverted-file
search techniques are difficult to match with
any other file-search system because the only
documents directly handled in the inverted-list
approach are those included in certain inverted
lists that are known in advance to have at least
one term in common with the queries. In a

ARTICLE IN PRESS

C1 1d2
1d1

C1 3d2
1d1

C1 1d2
1d1

C2 C31d4
1d7

C1 C21d2 d3
3 7d4

C2 C32d3 d5
1 1d7

1d6

d1
1 1d3

C2 C3 4d5
5d4

1d6
C1

D =

t1 t2 t3 t4 t5 t6

d2

d3

d4

d5

d7

d6

d11 1 0 0 1

1 3 1 1 0 0

0 0 0 3 2 1

0 0 1 7 0 0

0 0 0 0 1 5

0 0 0 0 1 4

0 0 1 0 1 1

1

t1

t3

3t2

3

t5

5t4

7

6

8t6

C1 = {d1, d2}

C2 = {d3, d4}

C3 = {d5, d6, d7}

Fig. 2. Example inverted file structure with skips.

F. Can et al. / Information Systems 29 (2004) 697–717702

clustered organization, on the other hand, many
cluster centroids, and ultimately many docu-
ments, must be compared with query formula-
tions that may have little in common with the
queries.’’

The CBR using the skip-based inverted index
search technique overcomes the problem stated by
Salton, i.e., it prevents matching many unneces-
sary documents with the queries. For example, in
the clustering environment of Fig. 2, if we assume
that the user query contains the terms ft3; t5g and
the best-matching clusters for this query are
fC1;C3g; using the ICsIIS approach during query
processing after selecting the best-matching clus-
ters we only consider the posting lists associated
with t3 and t5: While processing the posting list of
t3 we skip the portion corresponding to C2 (since it
is not a best-matching cluster). Similarly, while
processing the posting list of t5; we again skip the
unnecessary C2 portion of the posting list and only
consider the part corresponding to C3: In other
words, by using the skip approach we only handle
the documents that we really need to match with
the query.

In the implementation of the skip idea another
alternative is to store the cluster number and skip
information at the start of the posting lists. Here
we adopt the former approach illustrated in Fig. 2.
Practically, these two alternatives have no major
difference in terms of posting list I/O time, since in
almost all cases query term posting lists are read
in their entirety because a term usually appears in
enough number of different clusters that would
require inputting its whole posting list. In query
processing, a significant portion of the time cost
comes from similarity calculations for ranking,
and skipping information helps us in considerably
decreasing the cost of these calculations.

3. Experimental environment

3.1. Document database

In the experiments, Financial Times Limited
(1991–1994) document collection (referred to as
FT database) of TREC Disk 4 is used. The

document database includes 210 158 newspaper
articles published between 1991 and 1994. During
the indexing stage, we eliminated English stop-
words and numbers, indexed the remaining words,
and no stemming is used. The resulting lexicon
contains 229 748 terms. The D matrix contains
29 545 234 non-zero elements. The average number
of distinct terms per document, or depth of
indexing xd ; is 140.6, and the longest and shortest
documents contain 3220 and four distinct terms,
respectively. On the average each term appears in
128.6 different documents. This is the average
number of distinct documents per term (term
generality, tg).

For easy reference statistical characteristics of
the FT collection are provided in Table 2 along
with some other databases to give some sense of
sizes of the important variables in traditional
(INSPEC, NPL), and OPAC (BLISS, MARIAN)
[20,21] collections. In this table the number of
clusters, nc; is obtained by using C3M. The
numbers show that databases, more specifically
their vector spaces, show various degrees of
sparsity as indicated by the number of clusters.
For example, FT database is quite cohesive and
the number of clusters is not that high. On the
other hand, OPAC (library), BLISS-1 and MAR-
IAN, vector spaces are sparse and contain
relatively large number of clusters, since they
cover documents in many different subject areas.
The content cohesiveness of a database may be
uniformly distributed and clusters may contain
approximately the same number of documents or
it can be skewed and it may contain a few number
of large clusters containing relatively high number
of related documents. We will revisit this issue
later in Section 4.1 from our database’s point of
view.

3.2. Queries and query matching

We used the TREC-7 query topics correspond-
ing to the FT database of TREC Disk 4 collection
(queries 351–400) along with their relevance
judgments; on the average, there are 38.1 relevant
documents per query. In the experiments we used
four different types of query sets first two of which
are created from the TREC queries.

ARTICLE IN PRESS

F. Can et al. / Information Systems 29 (2004) 697–717 703

1. Qshort (short queries) created from the title field
of the TREC queries, i.e., these are title-only
queries.

2. Qmedium (medium length queries) created from
the title and description fields (combined) of the
TREC queries.

3. Qlong created from the top retrieved document
of each Qmedium query. We assume that the
relevance judgments of the original query also
apply to them.

4. Qgiant created by combining a number of
random documents from the original data set,
and is used for the purpose of evaluating
efficiency in its theoretical limits. For this single
query we do not measure effectiveness since we
have no relevance information for it.

There are 50 queries in each of the query sets
Qshort, Qmedium and Qlong, but only one query in
the Qgiant set. Table 3 provides query sets
summary information.

There are several query matching functions that
depend on the term weighting used for document
and query terms [22]. In this study, the document
term weights are assigned using the term frequency

x inverse document frequency (IDF) formulation.
While computing the weight of term tj in docu-
ment di; term frequency is computed as the
number of occurrences of tj in di; and IDF is
ln(number of all documents/number of documents

containing tj)+1. Once the term weights are
obtained, document vector is normalized using
cosine normalization [22].

The term weights for query terms are calculated
in a similar fashion to document term weights. In
this case, for computing term frequency compo-
nent, we use augmented normalized frequency
formula defined as ð0:5þ 0:5tf =max tf Þ: Here

max tf denotes the maximum number of times
any term appears in the query vector. IDF
component is obtained in exactly the same manner
with the document terms. No normalization is
done for query terms since it does not affect
document ranking.

After obtaining weighted document (d) and
query (q) vectors in an n dimensional vector space
the query-document matching is performed using
the following formula.

similarityðq; dÞ ¼
Xn

j¼1

wqjwdj :

The members of the best-matching clusters (note
that in CBR a subset of the entire collection is
under consideration) are ranked according to their
similarity to the query, and for the top 10 (20, 100)
documents the effectiveness measures precision
and recall are calculated. Precision is defined as the
ratio of retrieved relevant documents to the
number of retrieved documents, and recall is
defined as the ratio of retrieved relevant docu-
ments to total number relevant documents in the
collection.

4. Experimental results

In this section, we present various experiments
to compare the efficiency and effectiveness of three
retrieval strategies: FS, CBR combined with a full
inverted index (ICISS), and CBR incorporating
the skipping concept (ICsIIS). As stated before, it
has been shown that ICISS is more efficient than
some other CBR techniques in terms of paging and
CPU time, but inferior to FS [7]. In the following
set of experiments, we first investigate the validity
of C3M clustering for the FT database, and then

ARTICLE IN PRESS

Table 3

Query sets summary information (the last three columns indicate no. of terms)

Query set Source Average Min Max

Qshort TREC query titles 2.38 1 3

Qmedium TREC query titles and descriptions 8.16 2 19

Qlong Top relevant document 190.04 13 612

Qgiant Random documents 2175.00 2175 2175

F. Can et al. / Information Systems 29 (2004) 697–717704

examine the effectiveness and efficiency of the
three retrieval strategies (namely, FS, ICIIS, and
ICsIIS) as we vary several environment para-
meters. Actually, ICIIS and ICsIIS are the same in
terms of their effectiveness since they are two
different implementations of the same CBR
operation; therefore, for these two we can only
compare their efficiency. We also study the
scalability of our results. In the rest of the paper,
we use CBR interchangeably with ICIIS and
ICsIIS when it is appropriate.

The experiments are performed on dual proces-
sor Pentium III 866 PC with 1GB main memory
and 20GB SCSI HDD. The operating system
installed on this PC is Windows NT 4.0t. All three
retrieval strategies are implemented by using the C
programming language. The common data struc-
tures and operations are implemented in exactly
the same way for all of these strategies, to provide
a fair basis of comparison. The source code for the
prototype implementation is available at http://
www.cs.bilkent.edu.tr/Bismaila/ircode.htm.

4.1. Clustering structure: generation, characteri-

stics and validation

4.1.1. Cluster generation and characteristics of the

generated clustering structure

Our experiments yield 1640 clusters (in both
non-overlapping and overlapping cases) for the FT
collection. In the non-overlapping case the average
cluster size is 128 (vs. 176 in overlapping), and the
average number of distinct terms in a cluster is

4700 (vs. 5560). Note that in the overlapping case
the total number of documents in the clusters is
288 685 (vs. 210 158), which means 37% document
duplication.

The generated clustering structure of the non-
overlapping case follows the indexing–clustering
relationships implied by the CC concept. For
example, the indexing-clustering relationships nc ¼
ðm � nÞ=t ¼ m=tg ¼ n=xd ; and dc ¼ tg are all ob-
served in the experiments (for easy reference the
values of these variables are repeated here, m ¼
210 158; n ¼ 229 748; t ¼ 29 545 234; xd ¼ 140:6;
tg ¼ 128:6 and the values obtained for nc and dc

after clustering are 1640 and 128). For example, by
substituting the corresponding values (m; n; and t)
to the above formula, nc was implied as 1634 by
the relationships, which shows only a 0.4%
deviation from the real value obtained by actual
clustering. Similarly, the dc (128) value is almost
identical with tg: As shown in our related previous
work [7,10,11] for a given D matrix the clustering
structure to be generated by C3M is predictable
from the indexing characteristics of a database.

The size distribution of the clusters for the non-
overlapping case is presented in Fig. 3. In Fig. 3a
the x-axis (in logarithmic scale) shows the cluster
size in terms of documents and y-axis shows
the number of clusters for the corresponding size.
The figure shows that cluster sizes show variety,
there are a few large clusters (largest one contain-
ing 26 076 documents) and some small clusters,
and there are many clusters close to the average
cluster size. Fig. 3b shows that majority of the

ARTICLE IN PRESS

0

5

10

15

20

25

30

35

1 10 100 1000 10000 100000

Size of clusters

N
u

m
b

er
 o

f
cl

u
st

er
s

0.73

0.02
0.07 0.05

0.12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0-3 3-6 6-9 9-12 12-15 15-18 18-21 21-24 24-27

Size of clusters (thousands)

D
at

ab
as

e
co

ve
ra

g
e

(a) Cluster distributions in terms of no. of cluster
 per cluster size (logarithmic scale).

(b) Ratio of total no. of documents observed
 in various cluster size windows.

Fig. 3. Cluster size distribution information: (a) Cluster distributions in terms of no. of clusters per cluster size (logarithmic scale).

(b) Ratio of total no. of documents observed in various cluster size windows.

F. Can et al. / Information Systems 29 (2004) 697–717 705

http://www.cs.bilkent.edu.tr/~ismaila/ircode.htm
http://www.cs.bilkent.edu.tr/~ismaila/ircode.htm

documents (about 73% of them) are stored in
clusters with a size 1–3000. Please note that for
only 10% of the queries top 10 results include
documents from the largest cluster, which means
that our results are not significantly biased by the
existence of a large cluster.

4.1.2. Validation of the generated clustering

structure

Before using a clustering structure for IR we
must show that it is significantly different from, or
better than, random clustering in terms of reflect-
ing the intrinsic nature of the data. Such a
clustering structure is called valid. Two other
cluster validity issues, clustering tendency and
validity of individual clusters, are beyond the
scope of this study [18].

Our cluster validation approach is based on the
users’ judgment on the relevance of documents to
queries and follows the methodology defined in
[10]. Given a query, a cluster is said to be a target

cluster if it contains at least one relevant document
to the query. Let nt denote the average number of

target clusters for a set of queries. Next, let us
preserve the clustering structure and distribute all
documents randomly to these clusters. The aver-
age number of target clusters for this case is shown
by ntr and its value can be calculated without
creating random clusters by the modified form [10]
of Yao’s formula [23]; however, for the validity
decision we need the distribution of the ntr values.
The case nt > ntr suggests that the tested clustering
structure is invalid, since it is unsuccessful in
placing the documents relevant to the same query
into a fewer number of clusters than that of the
average random case. The case, ntontr; is an
indication of the validity of the clustering struc-
ture; however, to decide validity one must show
that nt is significantly less than ntr:

According to our validity criterion, we must
know the probability density function of ntr: For
this purpose, we perform a Monte Carlo experi-
ment and randomly distribute the documents to
the cluster structure for 1000 times and for each
experiment compute the average number of target
clusters. The minimum, maximum, and average ntr

values are observed as 27.78, 29.02 and 28.41 (see
Fig. 4 for the probability density function of the ntr

values). Then, we compute the nt value, and it is
20.1. Clearly, nt is significantly different than the
random distributions ntr; since it is less than all of
the observed random ntr values. These observa-
tions show that the clustering structure used in the
retrieval experiments is not an artifact of the C3M
algorithm, on the contrary, significantly better
than random and valid.

4.2. Determining number of best-matching clusters

for CBR

The experiments show that selecting more
clusters increases effectiveness since as we in-
crease ns (i.e., the number of selected clusters)
more relevant documents would be covered [3, p.
376]. In our previous research, it is observed that
effectiveness increases up to a certain ns value,
after this (saturation) point, the retrieval effective-
ness remains the same or improves very slowly [10,
Fig. 6]. For the INSPEC database, this saturation
point is observed when ns is about 10% of the
clusters and during the related experiments about
the same percentage of the documents is consid-
ered for retrieval. This percentage is typical for
(best-match) CBR [3, p. 376].

In our experiments, for a range of ns values, we
retrieved top 10 documents for the query set
Qmedium and measured the effectiveness in terms
of mean average precision (i.e., average of the
precision values observed when a relevant docu-
ment is retrieved) [24, p. 80]. The results depicted
in Fig. 5 also confirm the above observation

ARTICLE IN PRESS

0

5

10

15

20

25

27.6 27.8 28 28.2 28.4 28.6 28.8 29 29.2

ntr

R
el

at
iv

e
F

re
q

u
en

cy

Fig. 4. Histogram of ntr values for the FT database (nt ¼ 20:1).

F. Can et al. / Information Systems 29 (2004) 697–717706

regarding INSPEC, where the effectiveness in-
creases up to 164 clusters (10% of the cluster
number nc) and then no major change occurs.
Therefore, we use 10% of nc (ns ¼ 164 clusters) as
the number of clusters to be used in the retrieval
experiments.

In Fig. 6, we report the total number of
documents in the clusters for each value of ns:
Both figures show that, for example, if we select
the first best-matching 164 clusters (10% of the
existing clusters) we need to match 9.09% of the
documents with the queries, since this many
documents exists in the selected clusters (the
numbers are averages for all queries). The

observations show that there is a linear relation-
ship between the percentage of clusters selected
and the percentage of the database covered by
them.

Determining the centroid terms is also an
issue, since they may influence the effectiveness
and efficiency of CBR. In this paper, the most
frequent terms in clusters are chosen as centroid
terms. The weight of a centroid term tj is com-
puted by term frequency� IDF formula, where
term frequency is set to 1 and IDF is ln(number

of centroids/number of centroids including the term

j)+1. In Sections 4.3 and 4.4, we use the ad hoc
centroid length value of 250 terms for both
overlapping and non-overlapping cases. In Section
4.5, we further investigate the impact of various
centroid length and term weighting strategies on
the efficiency and effectiveness of query proces-
sing.

4.3. Effectiveness experiments

To evaluate the effectiveness of three IR
strategies, we retrieved the top 10, 20, and 100
documents for each of the query sets, namely,
Qshort, Qmedium and Qlong. The experiments are
conducted over both overlapping and non-over-
lapping clustering structures. The effectiveness
results are presented by using both a TREC-like
interpolated 11-point precision-recall graph [24,
pp. 76–77] and a single mean average precision
value (defined in the previous section) for each of
the experiments. For the sake of saving space, we
provide only top 10 effectiveness results for the

ARTICLE IN PRESS

No. (%) of
Selected Clusters

Avg. No. (%) of
Selected Documents

32 (1.95) 3857.08 (1.84)
64 (3.90) 8608.14 (4.10)
96 (5.85) 12 041.18 (5.73)

128 (7.81) 15 701.94 (7.47)
164 (10.0) 19 107.12 (9.09)
820 (50.0) 102 016.14 (48.54)

1640 (100.00) 210 158.00 (100.00)

0

10

20

30

40

50

60

0 10 20 30 40 50 60
% of Selected Documents vs. % of Selected Clusters

Fig. 6. Relationship between number of selected clusters and number of documents in the selected clusters.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 250 500 750 1000 1250 1500

Number of best clusters

P
re

ci
si

o
n

FS CBR

Fig. 5. For ds ¼ 10 and query set Qmedium, mean average

precision versus ns:

F. Can et al. / Information Systems 29 (2004) 697–717 707

experiments of the non-overlapping and over-
lapping clustering. For top 20 and 100 documents
we have similar results.

Table 4 provides the mean average precision
values for the retrieval strategies. For short
queries, FS gives the best performance and
it is followed by non-overlapping cases. In
the case of medium size queries, CBR outperforms
FS. For long queries, the reverse is true.
For a more detailed comparison consider Fig. 7.
They illustrate that the effectiveness of FS
and CBR are quite close to each other for
different sets of queries with varying lengths.
The effectiveness achieved over the overlapping
cluster structure can be comparable or sometimes
better than non-overlapping CBR and FS. For
instance, Table 4 shows that for Qmedium, non-
overlapping CBR is better than FS, and
overlapping CBR is even better than the non-
overlapping case.

In Table 5, for the same query sets and top 10
documents, we provide the effectiveness compar-
isons of individual queries during FS and CBR in
non-overlapping case. For instance, CBR achieves
better than FS in 6% of the Qshort queries.
These results further indicate that there is no
single best approach for IR, and either one of CBR

or FS can perform better for different queries.
Note that our CBR approaches that blend inverted
indexes with cluster-based retrieval lead to new
opportunities for combining the best results of
both strategies, in a way that has not been done

ARTICLE IN PRESS

Table 4

Mean average precision values for retrieval strategies (ns ¼ 164;
ds ¼ 10)

Query set FS CBR

(non-overlap.)

CBR

(overlap.)

Qshort 0.307 0.296 0.268

Qmedium 0.314 0.326 0.348

Qlong 0.383 0.354 0.350

PR Graph (top 10, Qshort)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

FS CBR CBR (overlap)

PR Graph (top 10, Qmedium)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

FS CBR CBR (overlap)

PR Graph (top 10, Qlong)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

FS CBR CBR (overlap)

Fig. 7. Interpolated PR graph for all query sets using top 10

(ds ¼ 10) documents.
Table 5

Effectiveness comparison of FS and CBR (ICIIS and ICsIIS),

for non-overlapping clusters

Query Set CBR=FS (%) CBR>FS (%) CBRoFS (%)

Qshort 76 6 18

Qmedium 70 10 20

Qlong 88 4 8

F. Can et al. / Information Systems 29 (2004) 697–717708

before. For example, during query processing
we can handle query terms as in FS or CBR
like a mixture depending on the query term
properties.

4.4. Efficiency experiments

4.4.1. Results in terms of processing requirements

We measure the efficiency of each retrieval
strategy for top 10, 20 and 100 documents for all
query sets. We evaluate the efficiency by using two
different measures: (i) number of processed (ac-
cessed) posting list elements, and (ii) actual query
processing time. In the following we provide the
results for only non-overlapping case. For the
overlapping case although the processing require-
ments are higher (due to the longer posting lists),
the relative efficiency performance of compared
algorithms does not exhibit a significant difference.

In Table 6, we present the average number of
document posting list elements processed for each
query set while ranking documents using the query
matching function. The posting lists brought to
memory for ICsISS are longer than those for FS
and ICIIS, as the skipping inverted index elements
of ICsIIS include cluster information. On the other
hand, in all cases, during the similarity calculations
the ICsIIS strategy visits much less posting list
elements than IIS and ICISS, since most of the
posting list elements of ICsIIS are skipped due to
our (skipping) storage structure. The last column
shows the percentage savings provided by ICsIIS
with respect to FS and ICIIS in posting list
processing (the entries of this column are obtained
from those of the second and third columns). The
savings in terms of realistic query cases (Qshort to
Qlong) savings range between 57% and 67%.

The average in-memory processing time per
query is reported in Table 7. The results reveal that
the savings indicated in Table 6 are proportionally
reflected to the actual execution times. In all cases,
ICsIIS performs faster than its competitors as the
candidate result set to be considered is significantly
reduced by the skipping technique proposed in this
paper. Also note that in our database the average
posting list length (or term generality tg) is short,
129 elements. Our heuristics save more time for
longer posting lists; therefore, we anticipate that
efficiency results would be even better in databases
with longer lists. This also explains why the
savings for Qshort is relatively less than it may
be expected.

Please note that our skipping optimization is in-
memory, whereas both ICIIS and ICsIIS have an
extra cost of disk access for inverted centroid index
entries. So, from a theoretical point of view CBR
approaches discussed here suffer from this extra
I/O cost. However, in practice, we observed that
the extra I/O operations associated with accessing
inverted centroid index entries are mostly compen-
sated with today’s file caching capabilities. In
particular, the size of the inverted centroid index is
only 1.5% of IIS (see Table 9 of Section 4.4.2) and

ARTICLE IN PRESS

Table 6

Average number of document posting list elements processed by each retrieval strategy for each query set and percentage savings

provided by ICsIIS

Query set FS and ICIIS ICsIIS % ICsISS savings w.r.t. FS and ICIIS

Qshort 9791 4238 57

Qmedium 49 415 16 342 67

Qlong 1 813 734 784 005 57

Qgiant 12 398 355 6 637 800 47

Table 7

Average in-memory processing time (sec) per query for each

retrieval strategy and relative performance of ICsIIS with

respect to FS

Query set FS ICISS ICsIIS ICsIIS/FS

Qshort 0.051 0.052 0.038 0.75

Qmedium 0.141 0.143 0.055 0.39

Qlong 1.090 1.107 0.442 0.41

Qgiant 4.319 4.385 2.418 0.56

F. Can et al. / Information Systems 29 (2004) 697–717 709

it can be effectively buffered or even totally stored
in main memory. For instance, the average overall
query processing times (in-memory computa-
tions+I/O overhead) for Qmedium is measured
as 0.265, 0.301 and 0.240 sec per query for FS,
ICIIS and ICsIIS, respectively. In this case, all
index structures are kept in the disk medium and
extra I/O cost is reduced by OS buffering
mechanism. Thus, we claim that ICsIIS is a
worthwhile retrieval strategy also in terms of
efficiency considerations.

4.4.2. Results in terms of storage requirements

As it is mentioned before, the ICsIIS strategy
proposed in this paper incorporates cluster mem-
bership information into the inverted index post-
ing lists. In Table 8, we present statistics about the
inverted index files stored on the disk for FS and
the non-overlapping and overlapping clustering
cases. It may be seen that the storage requirement
for cluster-skipping inverted index is modestly
higher than the ordinary inverted index file. The
index creation time is 182min for all structures
(i.e., IIS, skip IIS non-overlapping, and skip IIS
overlapping, the effect of skips on indexing time is
negligible). (Centroid generation time for both
non-overlapping and overlapping structures is
about 20min.)

The storage requirements of FS (using IIS) is
simply equal to ‘‘the total number of elements in
the posting lists’’ times ‘‘the size of an elements in
the posting list.’’ A posting list element consists of
a 4 byte (integer) document number and 8 byte
(double) term weight. There are 29 545 234 in-
verted index elements where each costs 12 bytes,
leading to a total of 338MB.

In ICsIIS, posting lists include extra elements
consisting of cluster number and the skip pointer.

These additional elements also take 12 bytes to
conform to the ordinary posting list elements
(including document number and term weight).
The average number of terms per cluster (avg.

terms/cluster) is equal to 4700 and 5560, respec-
tively, for the non-overlapping and overlapping
clustering cases. This means that in the non-
overlapping case the cluster number and the skip
pointer address are included in 4700 different
posting lists. This makes an additional cost of
88MB (4700� 1640 (total number of clusters)
� 12 bytes), i.e., total of 426MB.
In the ICsIIS overlapping case the extra cost

with respect to FS increases, avg. terms/cluster is
equal to 5560; therefore, the cost due skip infor-
mation is 104MB (5560� 1640� 12). Further-
more, in the overlapping case we have 78 527
additional (overlapping) documents (288 625–
210 158). For projection purposes if we assume
that each overlapping document is an average
document containing 141 terms, then the cost
these additional documents will introduce to IIS is
127MB (78 527� 141 (average number of terms
per document)� 12), thus both (104+127MB)
make a total of 231MB. In Table 8, the difference
between (actual) overlapping ICsIIS and FS is
slightly less than this number and is equal to
222MB (about 4% less than our projection).

It is possible to decrease the storage cost of
inverted file structures by almost 50% by replacing
the term weight information (8 bytes) by term
document frequency (2 bytes) [17]. If we do that,
relative retrieval performances are expected to
remain the same and the cost of individual posting
list elements drops from 12 (4+8) bytes to 6 (4+2)
bytes.

The detailed disk storage requirements for the
important file structures of each strategy are

ARTICLE IN PRESS

Table 8

Storage requirements (size in MB) and posting list (PL) information for inverted index files

Inverted index file Size Avg. posting list

length (docs/term)

Max. no. of

docs./PL

Min. no. of

docs./PL

IIS 338 129 93 693 1

Skip ISS (non-overlapping) 426 (26% >FS) 162 95 329 2

Skip IIS (overlapping) 560 (65% >FS) 215 132 328 2

F. Can et al. / Information Systems 29 (2004) 697–717710

shown in Table 9. The last two rows of the table
show the storage overhead of storing the indexing
terms to find the posting lists of the query terms.

The in-memory requirements of ICsIIS are
similar to that of ICIIS. However, ICsIIS does
not require cluster membership information to be
kept in the memory, since it is blended into the
posting lists, whereas ICISS does. Accordingly,
the most demanding internal storage requirement
for ICsIIS is for the so-called accumulator array,
which is used to store the similarity of documents
to the processed query. This requirement is clearly
the same for all three strategies described in this
paper. From these discussions, we can conclude
that ICsIIS is feasible in terms of memory and disk
storage costs.

4.5. Effects of centroid generation strategies

In the experiments, we investigated the impact
of centroid length and centroid term weighting
schemes on the effectiveness and efficiency of
cluster-based retrieval by using the Qmedium case
as a representative. All the experiments are
performed over clusters generated by both non-
overlapping and overlapping versions of the C3M
algorithm. We generated four sets of centroids
with fixed lengths 250, 500, 1000 and 2500. In an
additional experiment, we set the centroid length
of each cluster to the 10% of its unique terms. For
each of these lengths, we applied three different
centroid term weighting schemes: CW1, CW2, and
CW3, where the weight of a centroid term is
computed by the formula term frequency� IDF. In
CW1, term frequency is taken as 1, in CW2 and

CW3 it is taken as the number of occurrence of the
term in the cluster. In CW1 and CW2, IDF is taken
as ln(number of clusters/number of centroids

including the term)+1, in CW3, it is taken as
ln(sum of occurrence numbers in the centroids/

number of occurrence in the cluster)+1. All weights
are normalized once they are assigned.

For all of these experiments, the effectiveness of
CBR remains almost the same; whereas the
efficiency slightly degrades as accessing inverted
index elements for centroids requires more time
with increasing centroid length. However, in all
experiments, ICsIIS still outperforms ICISS in
terms of query processing time. Also, in most of
the experiments, ICsIIS achieved comparably well
as FS, which is not influenced from the change of
centroids.

4.6. Scalability experiments

The scalability of C3M, especially from an
incremental clustering point of view, has been
thoroughly studied in our previous work [11,20].
In this section we consider the scalability of our
skip-based CBR strategy in terms of its efficiency,
effectiveness, and storage structures. For obtain-
ing the clusters, we use a na.ıve implementation of
C3M based on ASCII files. In a PC environment,
this unrefined implementation clusters the FT
database in approximately 114min.

For the scalability experiments we obtained two
smaller versions of the FT database containing
approximately one-third and two-thirds of the
original collection. We refer to them as FT small
(FTs) and FT medium (FTm). The characteristics

ARTICLE IN PRESS

Table 9

Storage requirements (in MB) for individual components

Storage component Size FS ICISS ICsISS

IIS (inverted index for docs.) 338 a a

IIS with skip information 426 a

IC (centroid length 250) 5 a a

CM (cluster membership) 3 a

Wordlist 5 a a a

Centroid word list (cent. size 250) 5 a a

aMeans that corresponding component is required.

F. Can et al. / Information Systems 29 (2004) 697–717 711

of all FT databases are given in Table 10 (for easy
reference the original FT database is also repeated
in the same table). FTs and FTm, respectively,
contain the first 69 507 and 138 669 documents of
the original FT database. It may be noted in
passing that the indexing-clustering relationships
are again observed. For example, the indexing-
clustering relationship nc ¼ n=xd implies 989 and
1345 clusters, respectively, for the FTs and FTm
databases. The difference between actual numbers
and projected numbers is less than 4% as in the
case of FT (see Section 4.1.1).

In the scalability experiments, as a representa-
tive case, we only consider the non-overlapping
clustering structure and use the Qmedium query
set, which is the mid-way in terms of the query
sizes we used. In the experiments we retrieve 10%
of the clusters (ns ¼ 0:1nc), examine the top 10
documents (ds ¼ 10) for performance measure-
ment, and use centroids with 250 terms as in the
previous experiments.

4.6.1. Scalability of effectiveness

The experimental results in terms of single mean
average precision value are reported here. Table 11
shows that when we use the small database, FTs,
the CBR effectiveness is about 16% lower than
that of FS. In the case of FTm the performance of
CBR in terms of effectiveness improves and
it lags behind FS by only 1%. Finally, with the
full and largest database, CBR outperforms
FS by 4%. These observations confirm that our
CBR methodology scales well with the database
size and has the tendency of showing slightly
better performance than that of FS with
larger databases. This improvement of CBR
effectiveness can be attributed to the refinement
of cluster structures with increasing database
size.

4.6.2. Scalability of efficiency

Table 12 provides the average number of
posting list elements processed for a query with
each database. The values of the ICsIIS
column show that this approach is much more
efficient than the other two approaches. The
last column of the table shows the savings
provided by ICsIIS with respect to FS and
ICIIS in terms of the posting list elements
processed. For FTs, it provides 46% savings and
savings increase with the increase of the data-
base size and finally for FT the savings provided
by ICsIIS are a substantial 67%. As shown in
Table 13, these savings translate themselves to in-
memory processing time savings. The last column
of the table shows that the efficiency of ICsIIS
becomes more prevalent with increasing database
size. This again shows that ICsIIS scales well with
increasing database sizes. Note that comparable
efficiency results for overall query processing times
(with I/O) are also observed in our experimental
environment.

4.6.3. Scalability of storage and indexing structures

For the experimental databases FTs, FTm, and
FT the requirements of the individual storage
components are shown in Table 14. As the

ARTICLE IN PRESS

Table 10

Characteristics of the FT databases

Database m; no. of
documents

n; no. of terms xd ; avg. no. of
distinct terms/doc.

nc; no. of clusters dc avg. no. of

docs./clust.

FTs 69 507 144 080 145.7 955 73

FTm 138 669 191 112 142.1 1319 105

FT 210 158 229 748 140.6 1640 128

Table 11

Mean average precision values for retrieval strategies FS and

CBR with different databases (ns ¼ 10% of nc, ds ¼ 10) and

performance of CBR w.r.t. FS

Database FS CBR CBR/FS

FTs 0.285 0.238 0.84

FTm 0.335 0.332 0.99

FT 0.314 0.326 1.04

F. Can et al. / Information Systems 29 (2004) 697–717712

numbers show, the overhead of the secondary
storage structures (namely inverted index for
centroids (IC), cluster membership information
(CM), and the word lists used to find the posting
lists associated with the query terms, the last two
rows) is negligible. For example, the storage cost
of IC with respect to IIS is 2.6%, 1.8%, and 1.5%
for the databases FTs, FTm, and FT, respectively.
As the size of the database increases, the relative
cost of IC decreases, since the rate of increase in
number of clusters is lower than that of docu-
ments. The size of the IC storage structure also
indicates that in query processing the cost of
selecting the best-matching clusters is a small
fraction of the query processing time. In terms of
storage requirements, numbers are basically pro-
portional to the sizes of the document vectors used
for the creation of the index structures. As we

increase the size of the database, the cost of skip-
based IIS slightly decreases (from 0.30 to 0.26)
with respect to IIS. This is again due to the fact
that the rate of increase in number of clusters is
smaller than that of documents.

In terms of centroid (and IIS) generation,
we have the following time observations
respectively for FTs, FTm, and FT: 5(46),
11(109), and 20(182)min. The time requirements
of generating IIS and skip-based IIS are almost the
same. Since these are one-time costs and our
concern was the scalability of efficiency and
effectiveness, we did not try to optimize our
implementations for the generation of these
storage structures.

4.7. Discussion of results

From the experiments, we draw the following
conclusions:

1. In the non-overlapping clustering experiments,
all three retrieval strategies of FS, ICISS and
ICsIIS achieve similar effectiveness values. In
the efficiency experiments, the ICsIIS strategy
incorporated with a skip-based inverted index
outperforms the other strategies in terms of
in-memory operations and performs comparably

ARTICLE IN PRESS

Table 12

Average number of ‘‘document’’ posting list elements processed by each retrieval strategy for each database and percentage savings

provided by ICsIIS

Database FS and ICIIS ICsIIS % ICsISS savings w.r.t. FS and ICIIS

FTs 16 875 9214 46

FTm 32 916 14 161 57

FT 49 415 16 342 67

Table 14

Storage requirements (in MB) for individual components

Storage component FTs FTm FT

IIS (inverted index for docs.) 116 226 338

IIS with skip information (extra overhead w.r.t. IIS) 151 (0.30) 286 (0.27) 426 (0.26)

IC (centroid length 250) 3 4 5

CM (cluster membership) 1 2 3

Wordlist 3 4 5

Centroid word list (cent. size 250) 3 4 5

Table 13

Average in-memory processing time (sec) per query for each

retrieval strategy with each database and relative performance

of ICsIIS with respect to FS

Database FS ICISS ICsIIS ICsIIS/FS

FTs 0.043 0.044 0.022 0.51

FTm 0.092 0.091 0.045 0.49

FT 0.141 0.143 0.055 0.39

F. Can et al. / Information Systems 29 (2004) 697–717 713

well in terms of overall query processing times,
i.e., including I/O, with effective OS file caching
for centroid index.

2. In the overlapping clustering experiments; the
effectiveness values of ICISS and ICsIIS are
slightly improved in particular experiments, but
the efficiency results are not as good as the non-
overlapping case due to the increasing access
costs for both CBR strategies.

3. The results are independent of the centroid
lengths and weighting schemes, as the variations
over these parameters do not significantly affect
the presented results.

4. Storage requirements in the disk and memory
for ICIIS and ICsIIS are moderately higher
than FS, and current compression techniques
may further reduce these requirements. In
ICsIIS, such a reduction has the potential of
further improving the processing time, since by
using our skipping approach the decompression
time can be reduced significantly.

5. The experiments show that our results are
scalable: Effectiveness of CBR slightly increases
and efficiency of ICsIIS can improve signifi-
cantly with the increasing database sizes.

5. Previous and related work

A good survey of clustering in information
retrieval is provided in [25]. This work comes with
an impressive reference list. The books by Salton
[3,4], Salton and McGill [5] and van Rijsbergen [1]
also cover previous work on clustering in informa-
tion retrieval. A new survey of clustering in
various application areas can be found in [26]. A
good discussion of algorithms for clustering data
and cluster validation approaches is available in a
beautiful concise book by Jain and Dubes [18].

Our previous work on C3M includes its concepts
and effectiveness analysis [10], and how it works in
dynamic databases [11,20]. The CBR effectiveness
in terms of precision for the INSPEC database
is reported in [10]. The study shows that C3M is
15.1–63.5 (with an average of 47.5)% better than
four other clustering algorithms [27] in CBR. The
same study also shows that the IR effectiveness of
the algorithm is comparable with a demanding (in

terms of CPU time and main memory) complete
link clustering method that is known to have good
retrieval performance [8,9]. The experiments also
show that the CBR using C3M is slightly less
effective (1.0–6.9%) than FS. The experimental
observations reported in [20] show that the
incremental version of C3M is cost effective
and can be used for many increments of various
sizes.

C3M and its concepts have also attracted the
attention of other researchers in various applica-
tion areas, such as chemical information systems
[28,29], clustering tendency testing [30], automatic
hypertext structure generation [31], and search
output clustering [32].

Most clustering research in IR is related to
cluster search effectiveness [6,25,33–35]. The re-
search on efficiency aspects of cluster searches is
limited. For example, the works presented in [7,9]
considers storage, CPU, and I/O efficiency in the
same simulated environment. The Salton–McGill
book [5] approaches to the efficiency problem in
terms of page faults during information retrieval.

The studies reported in [12,13] provide experi-
ments using databases larger than our collection;
however, in their evaluations they assume that the
user picks the optimal cluster or try to generate
refined cluster via scatter/gather browsing para-
digm based on an existing global clustering
structure. In contrast to these approaches, in our
work all decisions are made automatically using
similarity measures based on a pre-existing clus-
tering structure with no user interaction or any
other assumption.

In FS only query term posting lists are accessed
from the disk medium. As a result, the efficiency of
FS decreases with increasing query length, since
for each query term another posting list must be
processed. It is possible to employ a partial
evaluation (or pruning) strategy that skips some
of the query terms to improve search efficiency
with similar search effectiveness [14,16,17,36].
However, as it is stated before such an approach
is beyond the scope of this study and inverted
index search optimization in CBR (i.e., in ICIIS
and ICsIIS) is an interesting research possibility
by itself, which can be further incorporated to
our work.

ARTICLE IN PRESS

F. Can et al. / Information Systems 29 (2004) 697–717714

6. Conclusions and future work

Our CBR implementation method employs a
storage structure that blends the cluster member-
ship information with the inverted file posting lists
using the concept of skips. In the skip approach,
posting lists contain the cluster membership
information in addition to traditional term weight-
ing information. During CBR, skip pointers
embedded in posting lists provide the information
to skip unnecessary (non-best matching) cluster
members. The indexing structure of the skip
approach can be used both for FS and CBR.
Our skip-based CBR significantly improves the
efficiency of query processing and this improve-
ment is especially due to in memory similarity
calculations. As Web search engines often need to
traverse very long posting lists in memory, our
skip-based CBR would improve the efficiency of
Web search engines that may employ clustering.
Our results are significant in the sense that the
efficiency and effectiveness of CBR have been
analyzed at this level for the first time for an
existing global clustering structure (note that the
clustering structure is static at the time of query
processing; however it can be updated in an
incremental manner at other times [11,20]).

We show that for large databases, CBR can
achieve a time efficiency and effectiveness compar-
able with FS. The storage requirement for CBR is
modestly higher than the ordinary inverted index
file. The experiments show that our results are
scalable: Effectiveness of CBR slightly increases
and efficiency of ICsIIS can improve significantly
with increasing database sizes.

There are several promising future research
directions:

1. In the experiments it is observed that CBR and
FS do not always return exactly the same set of
relevant documents even when they achieve the
same precision levels; therefore, our results are
also important in terms of data fusion or mixing
the results of FS and CBR [34,36]. Our skip-
based storage structure is especially suitable for
an unusual fusion method, which is a hybrid of
FS and CBR. For instance, for important query
terms with relatively high weights, we may turn-

off skipping, to retrieve some of the documents
that are not in the best-matching clusters but
still qualify to be in the top 10 (20) documents.
We are currently studying other possible
heuristics that may allow combining the best
possible results from FS and CBR, with the
least additional overhead.

2. It would be interesting to study the update of
the skip-based inverted index structures in a
dynamic retrieval environment with new and
deleted old documents.

3. Compression of the posting lists and its effect
on the system efficiency both in terms of
retrieval time and disk space is another promis-
ing research direction. There is every reason to
expect that compression will have positive
effects on performance, since with compression
a similar skip approach gives good results [17].

4. Another research direction is definition of
document vectors with different levels of
indexing exhaustivity [33] or by latent semantic
indexing (LSI) and measuring the system
performance [35,36].

5. Indexing of documents at a lower level, such as
paragraphs or sentences, looks promising from
CBR’s point of view. Since in such an environ-
ment FS inverted indexes could be extremely
long, our optimization with skip concept
combined with CBR may provide an important
efficiency leap during query processing.

6. For the calculation of the similarity values
instead of an accumulator array dynamic data
structures can be used for memory efficiency
[37]. A partial query evaluation or pruning
strategy and its effectiveness and efficiency
should also be investigated [15–17]. Our scal-
ability experiments (Table 13) and the results
reported in [17] imply that when our ICsIIS
approach is combined with the restricted

accumulators (quit and continue methods of
Moffat and Zobel), it can further improve the
efficiency performance.

7. For efficiency one may also consider a lazy

evaluation approach that delays computations
until they are requested. For example, the
method introduced by Buckley and Lewit [14]
calculates the approximate similarity values for
a certain number of top matching documents.

ARTICLE IN PRESS

F. Can et al. / Information Systems 29 (2004) 697–717 715

It is conceptually a ‘‘lazy evaluation’’ method,
since it does the computations if they are
needed to satisfy the user requests (in this case
certain number of top matching documents).
Such an approach could be adapted to our
framework to improve the system efficiency
without lowering the system effectiveness.

Acknowledgements

We appreciate the comments made by a referee;
they help us improve the presentation. We are
grateful to Berkant Barla Cambazoglu of Bilkent
University for always making himself available for
numerous valuable discussions; his pointers have
greatly improved the paper. We are thankful
to our colleagues Ediz Saykol, Nazlı Ikizler,
Eray .Ozkural, M. Mustafa .Ozdal, and Atacan
Conduroglu of Bilkent University for their support
of the project. We greatly appreciate the TREC 4
CD and other information made available by
NIST (http://trec.nist.gov/).

References

[1] C.J. van Rijsbergen, Information Retrieval, 2nd Edition,

Butterworths, London, 1979.

[2] N. Jardine, C.J. van Rijsbergen, The use of hierarchical

clustering in information retrieval, Inform. Storage

Retrieval 7 (1971) 217–240.

[3] G. Salton, Dynamic Information and Library Processing,

Prentice-Hall, Englewood Cliffs, NJ, 1975.

[4] G. Salton, Automatic Text Processing: The Transforma-

tion, Analysis, and Retrieval of Information by Computer,

Addison Wesley, Reading, MA, 1989.

[5] G. Salton, M.J. McGill, Introduction to Modern Informa-

tion Retrieval, McGraw-Hill, New York, NY, 1983.

[6] W.M. Shaw Jr, R. Burgin, P. Howell, Performance

standards and evaluations in IR test collections: cluster-

based retrieval models, Inform. Process. Manage. 33

(1997) 1–14.

[7] F. Can, On the efficiency of best-match cluster searches,

Inform. Process. Manage. 30 (1994) 343–361.

[8] E.M. Voorhees, The effectiveness and efficiency of

agglomerative hierarchical clustering in document retrie-

val, Ph.D. Thesis, Cornell University, Ithaca, NY, 1986.

[9] E.M. Voorhees, The efficiency of inverted index and

cluster searches, in: Proceedings of the Ninth Annual

International ACM-SIGIR Conference, ACM, New York,

1986, pp. 164–174.

[10] F. Can, E.A. Ozkarahan, Concepts and effectiveness of the

cover-coefficient-based clustering methodology for text

databases, ACM Trans. Database Systems 15 (1990)

483–517.

[11] F. Can, Incremental clustering for dynamic information

processing, ACM Trans. Inform. Systems 11 (1993)

143–164.

[12] M.A. Hearst, J.O. Pedersen, Reexamining the cluster

hypothesis: scatter/gather on retrieval results, in: Proceed-

ings of the 19th ACM-SIGIR Conference, ACM Press,

New York, 1996, pp. 74–81.

[13] C. Silverstein, J.O. Pedersen, Almost-constant-time

clustering of arbitrary corpus subsets, in: Proceedings of the

20th ACM-SIGIR Conference, ACM Press, New York,

1997, pp. 60–66.

[14] C. Buckley, A.F. Lewit, Optimization of inverted vector

searches, in: Proceedings of the Eighth Annual Interna-

tional ACM-SIGIR Conference, ACM, New York, 1985,

pp. 97–110.

[15] M. Persin, Document filtering for fast ranking, in:

Proceedings of the 17th ACM-SIGIR Conference, ACM

Press, New York, 1994, pp. 339–348.

[16] E.W. Brown, Fast evaluation of structured queries for

information retrieval, in: Proceedings of the 18th Annual

International ACM-SIGIR Conference, ACM, New York,

1995, pp. 30–38.

[17] A. Moffat, J. Zobel, Self-indexing inverted files for fast

text retrieval, ACM Trans. Inform. Systems 14 (1996)

349–379.

[18] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data,

Prentice-Hall, Upper Saddle River, NJ, 1988.

[19] C.T. Yu, W. Meng, Principles of Database Query

Processing for Advanced Applications, Morgan

Kaufmann, San Francisco, CA, 1998.

[20] F. Can, E.A. Fox, C.D. Snavely, R.K. France, Incremental

clustering for very large document databases: initial

Marian experience, Inform. Sci. 84 (1995) 101–114.

[21] S. Kocberber, F. Can, J.M. Patton, Optimization of

signature file parameters for databases with varying record

lengths, Comput. J. 42 (1999) 11–23.

[22] G. Salton, C. Buckley, Term-weighting approaches in

automatic text retrieval, Inform. Process. Manage. 24

(1988) 513–523.

[23] S.B. Yao, Approximating block accesses in database

organizations, Comm. ACM 20 (1977) 260–261.

[24] R. Baeza-Yates, R. Ribeiro-Neto, Modern Information

Retrieval, Addison Wesley, Reading, MA, 1999.

[25] P. Willett, Recent trends in hierarchical document cluster-

ing: a critical review, Inform. Process. Manage. 24 (1988)

577–597.

[26] A.K. Jain, M.N. Murty, P.J. Flynn, Clustering algorithms:

a review, ACM Comput. Survey 31 (1999) 264–323.

[27] P. Willett, A. El-Hamdouchi, Comparison of hierarchic

agglomerative clustering methods for document retrieval,

Comput. J. 32 (3) (1989) 220–227.

[28] F. Can, E.A. Ozkarahan, Two partitioning type clustering

algorithms, J. Am. Soc. Inform. Sci. 35 (1984) 268–276.

ARTICLE IN PRESS

F. Can et al. / Information Systems 29 (2004) 697–717716

http://trec.nist.gov/

[29] P. Willett, V. Winterman, D. Bawden, Implementation of

non-hierarchical cluster-analysis methods in chemical

information-systems—selection of compounds for bio-

logical testing and clustering of substructure search output,

J. Chem. Inform. Comput. Sci. 26 (1986) 109–118.

[30] A. El-Hamdouchi, P. Willett, Techniques for the measure-

ment of clustering tendency in document retrieval systems,

J. Inform. Sci. 13 (1987) 361–365.

[31] R.B. Kellogg, M. Subhas, Text to hypertext: can clustering

solve the problem in digital libraries, in: Proceedings of the

First ACM International conference on Digital Libraries,

ACM, New York, 1996, pp. 144–150.

[32] Y. Kural, S. Robertson, S. Jones, Deciphering cluster

representations, Inform. Process. Manage. 37 (2001)

593–601.

[33] R. Burgin, The retrieval effectiveness of five clustering

algorithm as a function of indexing exhaustivity, J. Am.

Soc. Inform. Sci. 40 (1995) 562–572.

[34] A. Griffiths, H.C. Luckhurst, P. Willet, Using interdocu-

ment similarity information in document retrieval systems,

J. Am. Soc. Inform. Sci. 37 (1986) 3–11.

[35] H. Sch .utze, C. Silverstein, Projections for efficient docu-

ment clustering, in: Proceedings of the 20th ACM-SIGIR

Conference, ACM Press, New York, 1997, pp. 74–81.

[36] J.H. Lee, Analyses of multiple evidence combination, in:

Proceedings of the 20th ACM-SIGIR Conference, ACM

Press, New York, 1997, pp. 267–276.

[37] I.H. Witten, A. Moffat, T.C. Bell, Managing Gigabytes

Compressing and Indexing Documents and Images, 2nd

Edition, Morgan Kaufmann, San Francisco, CA, 1999.

ARTICLE IN PRESS

F. Can et al. / Information Systems 29 (2004) 697–717 717

	Efficiency and effectiveness of query processing in cluster-based retrieval
	Introduction
	Clustering algorithm and file structures for CBR implementation
	Clustering algorithm: C3M
	File structures for the implementation of CBR
	Previous file structures for the implementation of CBR
	The new CBR implementation using skips

	Experimental environment
	Document database
	Queries and query matching

	Experimental results
	Clustering structure: generation, characteristics and validation
	Cluster generation and characteristics of the generated clustering structure
	Validation of the generated clustering structure

	Determining number of best-matching clusters for CBR
	Effectiveness experiments
	Efficiency experiments
	Results in terms of processing requirements
	Results in terms of storage requirements

	Effects of centroid generation strategies
	Scalability experiments
	Scalability of effectiveness
	Scalability of efficiency
	Scalability of storage and indexing structures

	Discussion of results

	Previous and related work
	Conclusions and future work
	Acknowledgements
	References

