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Abstract

This paper studies a ‘factor cost in advance’ model with increasing returns in production. In the
model both partial equilibrium and general equilibrium may exist since working capital of 'rms
limit their input demand. We provide a su7cient condition for the existence of partial equilibrium
of a 'rm operating on a non-convex choice set. Furthermore we establish the existence and
uniqueness of competitive equilibrium in the special case of logarithmic utility.
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1. Introduction

What determines the scale of operations of a 'rm? At which point does a 'rm
stop expanding its production and sales? For an economist the answer to this question
depends on the assumptions about technology on the one hand and competitiveness of
the product and possibly factor markets on the other. In this paper we point attention
to the usefulness of a third consideration, namely 'nancial constraints, in determining
the size of a 'rm.
Under constant and decreasing returns to scale in production, both perfect and imper-

fect competition are known as viable modeling approaches. Under perfect competition,
price taking behavior prevails. In case of constant returns to scale technologies, at all
levels of output, pure pro'ts turn out to be zero in a general equilibrium and hence
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the production level of a 'rm is determined solely by the quantity demanded. In case
of decreasing returns to scale technologies, however, a 'rm stops expanding its output
at a point where price of the product equals marginal cost. On the other hand, under
imperfect competition, typically, the price of the product is assumed to fall rather fast
with an expansion in output. Therefore the demand function and the associated decreas-
ing marginal revenue function together with a non-decreasing marginal cost function
determine the scale of operations.
Under increasing returns, however, imperfect competition and the corresponding mo-

nopolistic behavior has been considered as the only viable alternative in the literature.
The reason is clear. Price taking cannot be compatible with partial equilibrium when
marginal cost falls with output. The factor demands and product supply are unbounded,
giving rise to unbounded economic pro'ts.
In this paper, we explore the possible role of 'nancial constraints in limiting the

scale of operations of 'rms endowed with an increasing returns to scale technology. In
a model with time dimension, it is quite natural to model the 'rms in a factor cost in
advance (FCA) fashion. That is 'rms have to pay for their factors of production before
they collect their sales revenue. The use of this timing assumption on cash Kows is
becoming more common in macroeconomic models. Fuerst (1992) is the 'rst example
in the monetary business cycles literature to use this assumption. Fuerst assumes a
constant returns to scale technology and that operations are 'nanced through short-term
loans obtained from a competitive loan market. Barth and Ramey (2001) reviews the
developments of this class of limited participation models and provides strong empirical
support from time series data. Ba.s.c/ and SaNglam (2003) explore the general equilibrium
diOerences between the more traditional cash in advance (CA) models of the consumer
and the factor cost in advance (FCA) of self 'nanced 'rms under constant returns to
scale technologies.
Empirical work, however, points to the presence of statistically signi'cant increasing

returns to scale at least in some industries. Basu and Fernald (1997) reports increas-
ing returns in US durable goods manufacturing industry with a scale elasticity about
1.07. Using a large international trade data set, Antweiler and TreKer (2000) report
scale elasticities in the range 1.00–1.40 for various sectors from world economies.
The strongest scale elasticities they report are for petroleum and coal products (1.40),
pharmaceuticals (1.31) and electric and electronic machinery (1.20).
Under increasing returns, Fuerst’s (1992) approach of borrowing from the credit

market cannot possibly be applied. At any given money market interest rate, the optimal
credit demand is unbounded by the same reasoning as in paragraph 3 above. If such
'rms operate in a competitive world, there has to be a rationing of some sort on the
'nancial side. For simplicity in this paper, we study the case of self 'nancing. We
assume that owners’ initial money is used as working capital by the 'rm and revenue
generated, in part, is distributed as dividends to owners and, in part, is retained by the
'rm as following periods’ working capital. A very similar mechanism would work with
banks extending and renewing commercial credit lines to 'rms under a credit rationing
scheme.
Convexity of production sets is one of the basic assumptions of neoclassical gen-

eral equilibrium theory. It is widely observed, however, that for many industries the



H. Nur Ata, E. Bas'c'( / Journal of Economic Dynamics & Control 28 (2004) 2457–2473 2459

decreasing returns assumption in production implied by convex technologies is far from
reality. Due to this observation, the well-known non-existence problem of competitive
equilibrium under non-convex technologies gave rise to two branches of literature, one
motivated from a normative and the other from a positive viewpoint. The normative
approach deviated from the pro't maximization assumption in order to secure or ap-
proximate the fundamental theorems of welfare economics. Marginal cost pricing (e.g.,
Guesnerie, 1975; Beato, 1982; Khan and Vohra, 1987; Vohra, 1988, 1992) and aver-
age cost pricing (e.g., Brown and GeoOry, 1983) are two important lines of research
in this spirit. The positive approach, on the other hand, gave up the price taking as-
sumption for the 'rms, resulting in models of imperfect competition (e.g., Mankiw,
1985; Blanchard and Kiyotaki, 1987) in spirit of Chamberlin (1933). In this paper we
also take a positive standpoint, but explore the possibility of keeping both the price
taking assumption and the maximizing behavior of the 'rms in a model with 'nancial
constraints.
One of the main obstacles against the existence of an Arrow–Debreu equilibrium

under increasing-returns-to-scale (IRS) technologies is the unbounded factor demands
in face of a limited endowment of total factors of production. We eliminate this ob-
stacle by reverting to a version of the limited participation models recently used in the
business cycles literature (e.g., Fuerst, 1992; Christiano et al., 1997, 1998). In these
models 'rm need cash at the beginning of a production cycle and they meet this need
from a competitive loan market. Here, as in Ba.s.c/ and SaNglam (2003) we study the
case of self-'nancing under borrowing constraints. The presence of increasing returns
is a natural reason for credit rationing since the loan demands are unbounded for any
positive interest rate.
A second important obstacle is the loss of convenience from using the tools of

convex analysis and convex programming, once increasing returns is allowed for. In
this paper, our contribution is two-fold. First, we limit the labor demands by assum-
ing internal 'nancing via owners’ equity and retained earnings. Second, we study a
non-linear programming problem on a non-convex feasible set. The results are promis-
ing, indicating that usual Euler equations may be useful, even under increasing re-
turns to scale, provided that the utility function is su7ciently concave to avoid corner
solutions.
The paper is organized as follows. In Section 2 the general model is presented as

well as the su7cient condition for the existence of partial equilibrium of the producer.
Section 3 gives the existence result for the competitive equilibrium. Section 4 conducts
comparative statics and some quantitative assessment. Section 5 concludes with some
remarks.

2. The model

In our hypothetical 'nite-horizon economy, at each time t, we have two agents with
two diOerent types; ‘worker’ and ‘producer’. They diOer in their access to produc-
tion technology. There are two types of commodities: a factor of production, labor
Lt and a non-storable consumption good, apple qt . Agent 1 (worker) has only labor
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endowment RL¿ 0 and has no access to production technology. Agent 2 (producer) has
no labor endowment and has an increasing returns to scale (IRS) technology f2(L)=L�,
�¿ 1, to convert labor into apples. One can have apples only through these production
possibilities i.e. initially there are no endowment of apples.
Agents are indexed by i=1; 2. Preferences of the agents over the consumption good,

apple, are represented by the same instantaneous utility function U . We assume that
neither one of the agents values leisure. The preferences over the lifetime consumption
for both types of agents are given by an additively separable form

∑T
t=0 �

tU (Ci; t),
where �∈ (0; 1) is the common discount factor, and Ci; t is the consumption of agent
i at time t. We assume that U is twice continuously diOerentiable U ′(:)¿ 0 and
U ′′(:)¡ 0. The economy operates with money under cash-in-advance constraints in
both labor and apple markets. Money is perfectly storable and Mi; t denotes the money
holding of Agent i at time t. We assume that initially all the currency in the economy,
M0, is owned by Agent 2, that is, M1;0 = 0 and M2;0 = M0. Total money stock does
not change over time. The paper money is backed by the government with a promised
price of (1=p2) in the last period. This assumption is due to the 'niteness of time
horizon as explained below.

2.1. Markets

We will consider a market organization with three periods (t=0; 1; 2). Each period,
due to cash in advance constraints imposed on factor purchases, goods market opens
after the labor market closes. In period 0, Agent 2, who initially has all the currency in
the economy, purchases labor. Then Agent 2 produces apples with the IRS technology.
After the production of apples is complete Agent 1 has money, Agent 2 has apples and
goods market opens. Agent 2 sells part of his apples to Agent 1 in return for money
and now both Agent 1 and Agent 2 has apples to consume. Agent 2 also has money
to be used as working capital in the next period. In the last period, money held by
agents is backed by the government by selling apples to them.
With the endowment structure described above and given the strictly positive prices

wt , pt for each period t, 'nite horizon utility maximization problem of the two agents
can be written as
Agent 1 (Worker):

(P1) max
t=2∑
t=0

�tU (C1; t)

s:t: for all t = 0; 1; 2;

C1; t = qdt ;

Lst 6 RL;

M1; t+1 =M1; t + wtLst − ptqdt ;

where M1; t ; C1; t ; qdt ; L
s
t ¿ 0 for all t and M1;0 = 0 is given.
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Agent 2 (Producer):

(P2) max
t=2∑
t=0

�tU (C2; t)

s:t: for all t = 0; 1; 2;

C2; t = f(Ldt ) − qst ;

wtLdt 6M2; t ;

M2; t+1 =M2; t − wtLdt + ptqst ;

where M2; t ; C2; t ; qst ; L
d
t ¿ 0 for all t and qs2 = 0; M2;0 =M0 is given. In the last period,

i.e. t = 2, the producer will choose to set qst = 0 regardless of p2¿ 0 determined by
the government and hence M2;3 = 0 since there is no period 3 where money can be
used.
As an auxiliary assumption, suppose that Ldt =M2t =wt , that is, Agent 2 uses all of

his money to purchase labor, 1 then problem (P2) becomes

(P2)′ max
t=2∑
t=0

�tU
(
f

(
M2; t

wt

)
− M2; t+1

pt

)

s:t: for all t = 0; 1; 2

f
(
M2; t

wt

)
− M2; t+1

pt
¿ 0

and M2; t¿ 0 for all t, M2;3 = 0; M2;0 =M0¿ 0 and �∈ (0; 1).
An equilibrium in this economy consists of a 'nite sequence of apple prices, money

wages, labor demands, labor supplies, apple demands, apple supplies and money hold-
ings by the two agents such that at each date, demands, supplies and money holdings
are optimal under the given wage and price sequences, demand equals supply in both
labor and apple markets and money holdings sum up to the total money supply at each
time.
Formally, we say that 〈pt; wt ; Ldt ; Lst 〉t=2

t=0 and 〈qdt ; qst ; M1; t+1; M2; t+1〉1t=0 is an equilib-
rium if

(i) 〈Lst 〉2t=0, 〈qdt ; M1; t+1〉1t=0 solves (P1) and
〈Ldt 〉t=2

t=0, 〈qst ; M2; t+1〉1t=0 solves (P2) under 〈wt; pt〉2t=0,
(ii) Ldt = Lst ∀t,
(iii) qdt = qst for t = 0; 1,
(iv) M1; t+1 +M2; t+1 = RM ≡ M0 for t = 0; 1.

Since at t=2 the goods market will clear with the intervention of government where
the goods demand of workers is met by the government at price p2, the variables qd2 ,
qs2 and the corresponding M1;3 and M2;3 are excluded from the above de'nition.

1 The validity of this assumption is veri'ed by means of a ‘pro'tability condition’ later, in proof of
Proposition 5 in Section 3.
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Most of the following analysis will be an attempt to 'nd a solution to Agent 2’s
optimization problem. Therefore we will drop the index i in variables of interest and
the term ‘optimization problem’ will refer to Agent 2’s optimization problem until
Section 3.

2.2. Producer’s optimization problem

Let V : R2
+ → R and hi : R2

+ → R+ for i = 1; : : : ; 5 be de'ned as

V (M1; M2) = U
(
f

(
M0

w0

)
−M1

p0

)
+�U

(
f

(
M1

w1

)
−M2

p1

)
+�2U

(
f

(
M2

w2

))
;

h1 =M1¿ 0;

h2 =M2¿ 0;

h3 = C0 = f
(
M0

w0

)
− M1

p0
¿ 0;

h4 = C1 = f
(
M1

w1

)
− M2

p1
¿ 0;

h5 = C2 = f
(
M2

w2

)
¿ 0;

where U is the twice continuously diOerentiable, instantaneous utility function satisfying
U ′(:)¿ 0; U ′′(:)¡ 0 and limc→0U ′(C)=∞. f denotes the IRS production function and
satis'es f′(L)¿ 0; f′′(L)¿ 0. All the parameters {wt; pt ;M0; �}T=2

t=0 are assumed to be
strictly positive, � is the discount factor, �∈ (0; 1). Note that the objective function V
is bounded from above.
Three period utility maximization problem of Agent 2 can then be reformulated as

max V (M1; M2) over the constraint set;

� = {(M1; M2)∈R2
+|hi(M1; M2)¿ 0 i = 1; : : : ; 5}:

2.2.1. Properties of the constraint set
Fig. 1 shows the constraint set � on the (M1; M2) plane where M1; M2 ∈ R2

+. It is
easy to see that the set � ⊂ R2 is compact (closed and bounded) and non-convex.
On the non-linear section of the boundary M2 = p1f(M1=w1) we have C1 = 0, on the
vertical line M1 = p0f(M0=w0) we have C0 = 0 and the horizontal line M2 = 0 is the
set of points (M1; M2) where C2 = 0. At the corners which are numbered by 1,2,3 we
have C1 = C2 = 0; C1 = C0 = 0; C2 = C0 = 0, respectively.
At point (M1; M2)∈ int �, the distance d1 = p1f(M1=w1) − M2 = p1C1 measures

the consumption at t = 1 and d2 = p0f(M0=w0) − M1 = p0C0 measures consump-
tion at t = 0. Distance from the point (M1; M2) = x to the horizontal line (M1-axis),
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Fig. 1. Constraint set.

d3, is a monotone transformation g(C2) of the third period consumption C2. That is
d3 =M2 = w2f−1(C2) = g(C2). Note that the production function f is a continuous,
strictly increasing function (of L) hence it has an inverse and f−1=g is also monotone.

2.2.2. Characterizing the solution of producer’s optimization problem
Inspection of the choice set illustrated in Fig. 1 reveals that Kuhn–Tucker–Lagrange

(KTL) theory is not directly applicable to this problem. The the constraint set � is
not convex, therefore the KTL conditions are not su7cient for optimality. Moreover,
corners 1 and 2 do not satisfy constraint quali'cation, so that KTL conditions are not
even necessary on these corner points.
In order to avoid these technical problems, we impose the following condition on

the utility function of the consumer, in addition to monotonicity, twice diOerentiability
and strict concavity.

Condition (∗). U (0) = −∞ and limc↓0 U (c) = −∞.

This condition is satis'ed, for example, by the logarithmic utility function and the
more general constant relative risk aversion (CRRA) family. It is stronger than the usual
Inada condition which requires the derivative of the utility function to approach plus
in'nity as consumption approaches zero. Therefore, for example, the utility function
U (c) =

√
c does not satisfy Condition (∗). The possibility of a corner solution and
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the failure of su7ciency of KTL conditions with the square-root utility example is
elaborated in the appendix.

Proposition 1. Assume that the utility function U : R+ → R is twice continuously dif-
ferentiable, monotone increasing, strictly concave on R++ and satis es Condition (∗).
Let V and � be de ned as in (1). At least one global maximizer x∗=(M∗

1 ; M
∗
2 )∈ int �

of the inequality constrained problem max V (M1; M2) over the constraint set � exists.
Moreover, the point x∗ satis es the  rst-order (necessary) condition for a maximum,
that is

DV (x∗) = 0:

Proof. For a given �¿ 0 and a point x∈ @� de'ne the open ball Bx; � = {x′| ‖x −
x′‖¡�}. Consider the set ��=� \⋃

x∈@� Bx; �. Clearly, there exists an R�¿ 0 such that
the set �� is compact and non-empty for su7ciently small values of �, i.e. for �∈ (0; R�].
Notice that �0 = � and � R� is a singleton in the interior of �. Let �∈ (0; R�] be given.
Since the restriction of the value function V on the compact and non-empty set �� is
continuous, by the Weierstrass Theorem, there exists a maximum of V on this set. Let
V ∗(�) denote this maximum value. Now, by the Theorem of the Maximum, V ∗(�) is a
continuous function of � on the set (0; R�]. It follows from its de'nition that V ∗ is also
a non-increasing function of �. Moreover, as a result of Condition (∗), as � approaches
zero, V ∗ becomes Kat, i.e. a constant function. This constant is the maximum of V ∗

on � as well, and it is attained by some x∗ ∈ int �. Since it is an interior point and
since V is diOerentiable, the gradient of V has to vanish at x∗.

Remark 2. Note that this proof is valid regardless of the dimension and geometry of �,
provided that � is compact. This means that we have an existence result for the n-period
economy. However there are technical di7culties in determining the uniqueness of the
solution (M1; : : : ; Mn) to the 'rst-order condition DV (x∗) = 0. Therefore we prefer to
state the existence result for n= 2.

The 'rst-order condition (FOC) DV (x∗) = 0 is necessary for an optimum. In a
given problem, if we also can prove that the FOC has a unique solution, we will have
characterized the solution as a singleton in the choice set, �. We can openly write the
FOC as the following set of Euler equations:

− 1
p0
U ′

(
f

(
M0

w0

)
− M1

p0

)
+

�
w1

U ′
(
f

(
M1

w1

)
− M2

p1

)
f′

(
M1

w1

)
= 0; (1)

− �
p1

U ′
(
f

(
M1

w1

)
− M2

p1

)
+
�2

w2
U ′

(
f

(
M2

w2

))
f′

(
M2

w2

)
= 0: (2)

2.2.3. Unique solution for logarithmic utility
It is straightforward to check that the objective function V satis'es Condition (∗) if

we choose the instantaneous utility function U (C) as logarithmic. Then Proposition 1
says that there exists an interior global maximum x∗ of V . For the uniqueness of x∗
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we will use the following lemma, proof of which can easily be done by using ordinary
calculus.

Lemma 3. Let g1; g2 : [x0;∞) → R, g1; g2 ∈C2[x0;∞) be two functions satisfying the
following conditions:

(i) g1(x0)6 g2(x0),
(ii) g′

1(x0)¡g′
2(x0),

(iii) g′′
1 (x)¿g′′

2 (x) ∀x¿x0,
(iv) ∃ Rx¿x0 such that g1( Rx)¿g2( Rx).

Then there exists a unique point x̃∈ (x0; Rx) such that g1(x̃) = g2(x̃).

Proposition 4. For U (C)= ln(C) and f2(L)=L�; �¿ 1, the solution to the producers
optimal money demand problem is unique, under any given positive sequence of wages
(w0; w1) and prices (p0; p1).

Proof. Let M1 ≡ x and solve for M2 in terms of M1 in (1) and (2) to get

g1(x) =
p1(1 + ��)

w�
1

x� − ��p0p1M
�
0

w�
0w

�
1

x�−1;

g2(x) =
��p1

(1 + ��)w�
1
x�:

It is easy to check that with x0 = 0 conditions (i)–(iv) of Lemma 3 are satis'ed. This
means that Eqs. (1) and (2) can be solved to 'nd the unique solution x∗ = (M∗

1 ; M
∗
2 )

where

M∗
1 =

��(1 + ��)
(1 + �� + �2�2)

p0
M�

0

w�
0
;

M∗
2 =

(��)1+�(1 + ��)�−1

(1 + �� + �2�2)�
p�0p1

w�
1w

�2
0

M�2

0 ;

which is the unique global maximum of our optimization problem with U (C) = lnC
and f( RL) = RL�.

3. General equilibrium

3.1. Existence of competitive equilibrium

Let M0 ≡ RM ¿ 0 be the total money stock and RL¿ 0 be the labor endowment of
Agent 1.
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Proposition 5. Let U (C)=lnC and f(L)=L�. There exists a competitive equilibrium
of this economy which is characterized by

wt =
RM
RL

∀t;

p0 =
RM
RL�

(1 + �� + �2�2)
��(1 + ��)

;

p1 =
RM
RL�

(1 + ��)
��

;

p2 = p2 ∈
( RM
f( RL)

;∞
)
;

Ldt = Lst = RL ∀t;

qdt = qst =
RM
pt

for t = 0; 1;

M1; t+1 = 0 M2; t+1 = RM for t = 0; 1;

C1; t = qdt =
RM
pt

∀t;

C2; t = f( RL) −
RM
pt

for t = 0; 1;

C2; t = f( RL); t = 2:

Proof. Money market clearing condition is met since we have M2; t+1= RM and M1; t+1=0
for t=0; 1. Such a money holding plan is feasible for Agent 2 since (M∗

1 ; M
∗
2 )∈ int �

which means budget constraints are satis'ed at (M∗
1 ; M

∗
2 ). It is trivially feasible for

Agent 1.
By Proposition 4 we know that this plan is optimal for Agent 2 if and only if the

below two equations are satis'ed:

RM =
��(1 + ��)

(1 + �� + �2�2)
p0

RM�

w�
0
; (3)

RM =
(��)1+�(1 + ��)�−1

(1 + �� + �2�2)�
p�0p1

w�
1w

�2
0

M�2

0 : (4)

Labor market clearing conditions Lst = RL=Ldt = RM=wt ∀t can be used to 'nd the money
wages wt :

w0 = w1 = w2 =
RM
RL
: (5)
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Substituting (5) into (3) and (4) equilibrium prices pt can be solved:

p0 =
RM
RL
�
(1 + �� + �2�2)
��(1 + ��)

;

p1 =
RM
RL
�
(1 + ��)

��
:

Optimality for Agent 1: (i) Supplying RL¿ 0 for all t is always optimal for Agent
1 because his utility is strictly increasing in Lst . To see this consider the Agent 1’s
optimization problem:

max
T=2∑
t=0

�tU
(
Mt −Mt+1

pt
+
wt
pt
Lst

)

s:t: for all t;(
Mt −Mt+1

pt
+
wt
pt
Lst

)
= qdt ;

Lst 6 RL;

M1; t+1 =M1; t + wtLst − ptqdt ;

where Mt; Lst ¿ 0 and M1;0 = 0 is given. Since wt=pt ¿ 0 and U ′()¿ 0; U ((wt=pt)Lst )
increases if Lst increases. Therefore supplying RL is optimal for Agent 1.
(ii) Holding zero currency at each period is optimal for Agent 1, when the following

condition is satis'ed at each period:

U ′(Ct)¿
pt
pt+1

�U ′(Ct+1):

In period 0, with U (C) = lnC and Ct = RM=p0, pt = p0, pt+1 = p1, Ct+1 = RM=p1

above condition becomes �¡ 1 therefore it is automatically satis'ed. For the other
periods same argument applies.
Optimality for Agent 2 in the last period: Last period deserves attention. Agent 2

has two choices:

(i) Do not produce apples and use your money to purchase apples from the government
at Rp2.

(ii) Hire labor ( RL), produces (f( RM=w2) = f( RL)) and consume it all.

For Agent 2 to hire labor and produce apples Rp2 must satisfy

U
( RM

Rp2

)
¡U

(
f

( RM
w2

))
:

Since U ′(:)¿ 0 this means Rp2¿ RM=f( RL). So with the last periods price p2 is set
at Rp2, su7ciently high, Agent 2 will hire labor RL, produce f( RL) and consumes all.
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Government sells apples to Agent 1 at Rp2, thus Agent1 consumes c1;2 = RM= Rp2 which
is clearly decreasing in Rp2.
Indeed the condition Rp2¿ RM=f( RL) is a pro tability condition and should hold in

each period. But when we look at the equilibrium prices p0; p1 we see that this con-
dition is automatically satis'ed for the other two periods as well.
It is now clear that Agents 1 and 2 are maximized at the described equilibrium.

Remark 6. Since we have Rp2 ∈ ( RM=f( RL);∞) the government can use arbitrarily small
amount of resources to back the currency by setting Rp2 as high as she wishes.

Remark 7. We see that equilibrium prices p0 and p1 decrease with �2 so with impa-
tient 'rm type (low �) p0 and p1 will be higher at the equilibrium reducing the real
value of apples.

4. Quantitative analysis

We can express the scale elasticity parameter as

�=
AC
MC

: (6)

Indeed, the equation above is an identity as we have for average cost:

AC =
w RL
RL
� (7)

and for marginal cost

MC =
w RL1−�

�
: (8)

We can alternatively express the same elasticity as

�=
AC
MC

=
(

P
MC

) (
AC
P

)
: (9)

Therefore, based on the unique general equilibrium solution reported in Proposition 6
we can identify both the gross markup ratio (P=MC) and the gross pro't rate (P=AC).
For the second period (t = 1),

(P=AC)1 =
1
��

+ 1 (10)

and for the initial period (t = 0),

(P=AC)0 =
1

�� + (��)2
+ 1: (11)

Table 1 shows how, in our three period model, these ratios are eOected as we vary the
scale elasticity, �, in the range, from 1.00 to 1.30, that is compatible with estimates
reported by Antweiler and TreKer (2000).
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Table 1
Finite horizon case

t = 0 t = 1

� Markup (P=MC) Pro't (P=AC) Markup (P=MC) Pro't (P=AC)

1.0 1.54 1.54 2.05 2.05
1.1 1.61 1.46 2.15 1.95
1.2 1.69 1.41 2.25 1.87
1.3 1.77 1.36 2.35 1.81

Markup ratio and gross pro't rate in the three period economy. Here we set � = 0:95.

Although the rather high markup and pro't rates in Table 1 are consistent with
'ndings of Hall (1988), they are unreasonably large with regard to the 'ndings of
Basu and Fernald (1997). Basu and Fernald estimate a scale parameter of �=1:07 for
the durable goods manufacturing sector and a gross pro't rate of slightly above 1.03,
i.e. 3%. The implied markup ratio, in view of Eq. (6) then is 1.10. Although these
numbers cannot possibly be compatible with our three period model for empirically
plausible values of beta in the range [0.9, 1], it is quite possible that in an in'nite
horizon version of our model, we would obtain much lower markup and average cost
values. Indeed this can also be observed from Table 1 by the rise in pro't and markup
rate as the end of the economy approaches.
Following up from Remark 2, together with Eqs. (10) and (11) we can express

the limiting value of the initial period’s pro't of a 'nite horizon economy when the
horizon length grows to in'nity as

P=AC = limT→∞
1∑T

i=1(��)
i
+ 1: (12)

Therefore in case ��¡ 1 the series in the denominator converges to ��=(1 − ��) so
that the gross pro't rate is given by

P=AC =
1
��

(13)

in the in'nite horizon case. But then the markup ratio calculated from MC=�AC turns
out to be

P=MC =
1
�
: (14)

It is now possible to observe the compatibility of our model’s in'nite horizon version
and Basu and Fernald’s (1997) 'nding of net economic pro't rate (3%) and the one
standard deviation range for the scale elasticity estimate 1.05–1.09. Table 2 reports the
subjective discount parameters � that are consistent with the empirical 'ndings and the
in'nite horizon model solution.
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Table 2
In'nite horizon case

Estimate of scale Estimate of gross Implied markup Implied discount
elasticity (�) pro't (P=AC) (P=MC) factor �

1.05 1.03 1.08 0.92
1.07 1.03 1.10 0.91
1.09 1.03 1.12 0.89

Discount rates implied by the model in order to be consistent with empirical pro't and scale elasticities
reported by Basu and Fernald (1997).

5. Concluding remarks

In this paper, we have observed
(1) Even under increasing returns to scale in production, price taking equilibrium

may exist in a dynamic model with 'nance constraints,
(2) Standard Euler equations may continue to be useful in characterizing the optimum

if the utility function is concave enough to avoid corner solutions,
(3) In a short lived economy, a signi'cant positive amount of pro'ts may remain to

'rm owners in general equilibrium.
(4) In the in'nite horizon case, the pro't shrinks to a small but positive amount for

empirically reasonable technology and preference parameters.
In our example economy, the demand is unit elastic. Therefore a monopolistic equi-

librium does not exist. However a price taking equilibrium, which in this case can also
be thought of as a price cap set by a regulator, may exist. This price setting diOers
however from the practice of average cost pricing since some pro'ts are left to the
'rm owners in the dynamic general equilibrium.
To interpret the equilibrium as genuinely competitive, the same model with more

than one 'rms can be analyzed without any further technical problems. In such a case,
however, the allocation of initial money endowment to the 'rms would crutially aOect
the pro'tability of the 'rms. Therefore interesting capital accumulation and dividend
dynamics would emerge. This dynamic competition issue is left open as an interesting
research area.
Concerning the structure of the model used here, our existence results are not directly

comparable with the ones in the literature. Almost all of the general equilibrium papers
on increasing returns use standard assumptions of the classical complete markets setup
of the Arrow–Debreu model except for convexity of the production set. Existence issue
is analyzed in this framework and results are obtained when 'rms follow special pricing
rules without necessarily maximizing pro'ts. Moreover, important part of the theory is
devoted to the e7ciency considerations (in the context of the second welfare theorem)
which is not studied here. We, in a competitive setup with incomplete markets, show
the existence of equilibrium under increasing returns with 'rm type agents making
positive pro'ts at all times.
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The basic explanation for this non-standard result is as follows. We assume that factor
payments must be paid in cash and producer cannot use the money earned from selling
output in the goods market within the same period, to pay for factor services. This limits
the demand for labor. Therefore producer does not face unbounded pro't opportunities
because there is an upper bound on the labor input to be used in production. This
limited participation assumption as well as the 'nite time horizons are responsible for
our existence result.
If one looks at the equilibrium prices, one will see that the last period’s price Rp2 can

be set arbitrarily large without distorting the equilibrium. It is interesting to see in our
model the possibility that even if the horizon is 'nite, individuals may want to hold
money, under a negligible cost to the government of backing currency. Nevertheless,
this result is a peculinarity of the logarithmic utility function.
It would be a natural extension to search for the competitive equilibrium with in-

'nitely lived agents. Unfortunately, non-concavity of objective function causes prob-
lems in the application of dynamic programming techniques. Sotomayor (1987) claims
that, under certain restrictions, the value function for the dynamic optimization prob-
lem (resulting from a discrete time one-good model of optimal accumulation) is con-
cave and the optimal stationary policy exhibits properties similar to that obtained
in the model where the technology is assumed to be convex. However later on
Roy (1993) shows that the conditions on the utility and production function func-
tions imposed in Sotomayor’s paper are insu7cient to ensure the results claimed about
the concavity of the value function and other classical properties. These 'ndings sug-
gests that existence issue in in'nite horizon models still deserves further investiga-
tion and it may very well be the case to have indeterminacy with in'nite horizon.
Nevertheless, concerning the structure of the model, the solution technique introduced
and results obtained, our work is a new contribution to the literature when horizon
is 'nite.
There are some papers dealing with existence of equilibrium under increasing returns

but they are diOerent in one important aspect; in the assumption on the type of in-
creasing returns. They allow either an initial face of increasing returns or an aggregate
increasing returns with individual 'rms having CRS technology (external economies
of scale). For example Majumdar and Mitra (1993) have some existence results for a
dynamic optimization example with a non-convex technology in the case of a linear
objective function but the convexity is such that production function exhibits an initial
phase of increasing returns. By imposing 'nance constraints on producers, we conjec-
ture here that, such U-shaped average cost curves, as well as ever decreasing average
cost functions, can be studied in a Walrasian setup.
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Appendix. The Inada condition cannot avoid corner solutions under IRTS

Imposing the Inada Condition, limc→0U ′(C) = ∞, on the utility function U (C)
(instead of Condition (∗)) is not enough to ensure that the optimum will occur in the
interior of the constraint set, �. Two typical examples are U (C)=lnC and U (C)=

√
C,

both of which satisfy the so called ‘Inada condition’. Somewhat surprisingly U (C)=
√
C

supports this conjecture. If one tries to solve Eqs. (1) and (2) with U (C) =
√
C and

� = 2 numerically, one will see that the existence of an interior solution depends on
the parameter values. For example with all the parameters of interest {wt; pt ;M0}Tt=0,
except for �, set equal to one and with � = 2, FOC leads to the following set of
equations to be solved:

M2 =M 2
1 − 1

4�2
; (A.1)

M2 = 4�2M 3
1 − (4�2 − 1)M 2

1 : (A.2)

Equating (A.1) and (A.2) we get the cubic equation

4�2M 3
1 − 4�2M 2

1 +
1
4�2

= 0 (A.3)

which has double roots when �¿�critical = ( 2764 )
1=4. This means that for �¡�critical

Eq. (A.3) has no positive real solution at all.
The simple reason for U (C) =

√
C be appearing as a counterexample is that the

behavior of the value function V (M1; M2) depends on the � values. For �¡�critical,
V does not satisfy Condition (∗), which in fact is a su7cient condition. Following
observations can be made.
Case 1: 0¡�¡ 1

2 . Global maximum is attained at the point x̃(0; 0) on the boundary.
Case 2: 1

2 6 �¡ ( 2764 )
1=4.

The maximum is located at (1 − 1=4�2; 0) on the boundary.
Case 3: �¿ ( 2764 )

1=4. In this case maximum occurs at x∗ ∈ int �. But there are two
points which satisfy the 'rst-order condition, i.e. Euler equations. We are sure that one
of them will be the maximizer, but cannot immediately tell which.
What we observe here is that when � is low (�¡ 1

2 ), the producer chooses to
consume all the output in period 0, that is, does not carry over currency to be used
for the next period. As � rises, Agent 2 discounts future consumption less and we
observe a tendency towards a consumption smoothing behavior. For �¿ �critical we
have C0; C1; C2¿ 0.
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