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Abstract

We study the pairing correlations in a finite Fermi system from the quantum entanglement point of view. We investigate the

relation between the order parameter, which has been introduced recently to describe both finite and infinite superconductors,

and the concurrence. For a proper definition of the concurrence, we argue that a possible generalization of the spin flip

transformation is a time reversal operation. While for a system with indefinite number of particles concurrence is a good

measure of entanglement, for a finite system it does not distinguish between normal and superconducting states. We propose

that the expectation value of the radial operator for the total pseudospin can be used to identify entanglement of pairing.

q 2002 Elsevier Science Ltd. All rights reserved.
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Entanglement is a fundamental quantum mechanical

property [1] which plays a central role in the quantum

information theory [2]. On the other hand, proposed

measures of entanglement, including the entanglement of

formation which quantifies the resources needed to create a

given entangled state [3], are generally not very proper for

analytical calculations. Making use of a spin flip transform-

ation, Wootters [4] introduced the so-called the concurrence

to simplify the notion of entanglement of formation and

Martı́n-Delgado [5] extended and applied his results to a

many-body problem, namely the BCS ground state of

superconductivity [6,7]. In this work, we examine the same

problem for a finite system where the number of fermions is

fixed. For this purpose, we make use of an order parameter

proposed recently to describe both microcanonical and

grandcanonical superconductors [8].

Experimental works on superconducting metallic islands

at nanometer scale raised questions about pairing corre-

lations [9–13]. For a bulk system, superconductivity can be

described by a complex order parameter D. The equations

have the symmetry that if D is a solution, then eiuD is also a

solution [6,7]. However, in a finite system with fixed

number of electrons, the order parameter D ¼ kc2k#ck"l
vanishes since the operator does not conserve the number of

fermions. Here, c2k# and ck" are the annihilation operators

for time reversed states l2 k # l and lk " l; respectively. In

this case, superconductivity can be identified by nonvanish-

ing number parity effect parameter DP since the ground state

energy of the system increases or decreases, depending upon

whether the total number becomes odd or even, by addition

of a new electron [14,15]. Recently, an order parameter has

been proposed to unify the order parameter D of the bulk

limit and the number parity effect parameter DP of the

nanoscopic superconductors [8]. Using the pseudospin

representation [16,17] and the SU(2) phase states [18] a

quantum phase has been defined for a superconductor with

discrete energy levels along with modulus of the order

parameter which becomes equal to DP: As we go from the

nanoscopic limit to the bulk superconductor it has been

shown that the number parity effect parameter and the SU(2)

phase go to the amplitude and the phase of the bulk order
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parameter, respectively. On the other hand, we can think of

the long-range order in the superconducting phase as an

entangled state of Cooper pairs. In this paper, we first

discuss how to calculate concurrence as a measure of

entanglement and we examine the relation between

entanglement and the order parameter. We show that

while for a system with indefinite number of fermions

concurrence is a good measure of entanglement, for a finite

system it does not identify the pairing correlations. As a

possible solution, we propose the amplitude of our order

parameter, which is nothing but the expectation value of the

radial operator of the total pseudospin, to detect entangle-

ment of Cooper pairs.

For a finite Fermi system, such as a nanoscopic

superconductor, energy levels are also finite and discrete

and hence we can use a reduced form of the BCS model [19]

which was applied in nuclear physics and which has an exact

solution [20]. The model Hamiltonian is

H ¼
X
j;s

e jc
†
jscjs 2 g

X
j;j0

c†
j"c

†
j#cj0 #cj0 "; ð1Þ

where g is the pairing coupling constant for the time-

reversed states lj " l and lj # l; both having the energy e j:

Here, c†
js ðcjsÞ is the creation (annihilation) operator for state

ljsl where j [ {1;…;V} and s [ { "; # }: For the model

Hamiltonian introduced above it has been shown that there

exists a number parity effect, namely the ground state

energy for even number of electrons is lower in comparison

to neighboring odd number states [21–24] including

degenerate case [25].

The key point in Wootters’ formulation of concurrence is

the spin flip transformation. For a pure state of a single qubit

lcl it is defined by

l ~cl ¼ sylcpl; ð2Þ

where lcpl is obtained from lcl by taking complex

conjugates of expansion coefficients and sy is Pauli spin

matrix. For a single spin-1/2 particle, this is nothing but the

time reversal operation. The spin degree of freedom that we

discuss here should not be mixed with the pseudospin to be

introduced below. For the many body case, a natural

extension of the spin flip operation is the time reversal

operation [5]. The action of the time reversal operator UT on

the creation operator is:

UTc†
jsU†

T ¼ c†
j2s: ð3Þ

A similar relation holds for the annihilation operator. To

find the transformed state l ~cl (in the active picture) we can

simply rewrite the transformed Hamiltonian (in the passive

picture) and evaluate the corresponding eigenstate.

To define the order parameter, we introduce the

pseudospin variables [16,17]

sz
j ¼

1

2
ðc†

j"cj" þ c†
j#cj# 2 1Þ; s2j ¼ cj#cj" ¼ ðsþj Þ

†
; ð4Þ

which obey the fundamental commutation relations of the

SU(2) algebra:

½sþi ; s
2
j 	 ¼ 2dijs

z
j ; ½sz

i ; s
^
j 	 ¼ ^dijs

^
j : ð5Þ

It is possible to rewrite the model Hamiltonian as:

H ¼
X

j

2e j sz
j þ

1
2

� �
2 g

X
ij

sþi s2j : ð6Þ

The mapping from the Fermi operators to the pseudospin

operators is possible as long as all single particle states are

doubly occupied. Since the original Hamiltonian (1)

contains no terms which couple a singly occupied level to

others, the only role of such states will be blocking from

pairing interaction. Therefore, the summations in Eq. (6) are

over doubly occupied and empty states only. Both the above

mapping and the BCS wave function [6] lack proper

antisymmetrization due to separate treatment of singly

occupied states, but since the model Hamiltonian (1) does

not involve any scatterings into or out of such states,

antisymmetrization with respect to interlevel pair exchange

and intrapair electron exchange is sufficient.

Given SU(2) algebra, for example the one generated by

the components of the total pseudospin operator s ¼
P

i si;

we can introduce [18] the radial operator defined by

sr ¼
ffiffiffiffiffiffiffi
sþs2

p
; ð7Þ

and the exponential of the phase operator given by:

E ¼
Xm¼s

m¼2s

lS; sm þ 1lkS; sml: ð8Þ

Here, lS; sml are simultaneous eigenstates of s2 and sz

operators with eigenvalues sðs þ 1Þ and m, respectively. The

label S has been introduced to distinguish them from the

phase states to be defined below. For integer s or in the so

called Bose sector, the eigenstate of E with eigenvalue

expð2i2pn=ð2s þ 1ÞÞ is evaluated to be

lu; snl ¼
1ffiffiffiffiffiffiffiffi

2s þ 1
p

Xm¼s

m¼2s

exp i
2pn

2s þ 1
m

� �
lS; sml; ð9Þ

and a similar expression holds for half integer s or in the

Fermi sector.

In terms of the radial and the exponential of the phase

operators for the total pseudospin, it is possible to rewrite

the interaction part of the Hamiltonian (6) as 2gsrEE†sr:

Since E is unitary, we have EE† ¼ I but we are going to

keep E and E† without cancellation to introduce the phase

properly. Now, we define ksrl and kEl as the amplitude and

phase of the order parameter, respectively. It has been

proven that ksrl becomes identical to the modulus of the

BCS order parameter in the bulk limit while in the

nanoscopic limit it reduces to the number parity effect

parameter DP [8]. Furthermore, in the bulk limit, kEl
becomes identical to the phase of the BCS order parameter.

Next, we examine how the amplitude and the phase of the

order parameter is transformed under the time reversal

operation T. Eq. (3) implies that the components of the total
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pseudospin operator s transform according to:

UTsxU†
T ¼ 2sx; UTsyU†

T ¼ 2sy;

UTszU
†
T ¼ sz:

ð10Þ

The transformation has immediate consequences on the

order parameter. First, the amplitude ksrl remains

unchanged. Second, since kEl ¼ ksþl=ks2 2 s2
z 2 szl; the

exponential of the phase expectation value acquires a

minus sign or phase angle change by p. This is consistent

with the prediction of BCS mean field treatment [5]. Here,

we note that pseudospin operator does not transform exactly

like spin operator s whose components satisfy

UTsxU†
T ¼ 2sx; UTsyU†

T ¼ sy;

UTszU
†
T ¼ 2sz;

ð11Þ

in the standard representation of Pauli matrices [26].

For a given state lcl; the central quantity concurrence is

defined by [4]:

CðcÞ ¼ lkcl ~cll: ð12Þ

Since ½sr; sz	 ¼ 0; sr leads to a good quantum number even

for a finite system. The eigenstates and including the ground

state of the model Hamiltonian will be of the form

lcml ¼
X

s

cslS; sml; ð13Þ

because the interaction term commutes with s2 and sz while

the single particle part commutes with the latter, only. In

general, the total spin in is multiply degenerate. We can

calculate the expectation value of the radial operator as:

ksrl ¼
X

s

lcsl
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs þ 1Þ2 mðm 2 1Þ

p
: ð14Þ

Since the problem is exactly solvable, cs coefficients can be

found numerically [27]. In terms of these coefficients we can

write down the transformed state which will be same as Eq.

(13) except that all coefficients will be replaced by their

complex conjugates. Then we evaluate the concurrence as:

CðcÞ ¼
X

s

c2
s

					
					: ð15Þ

The BCS ground state, which is a superposition of states of

the form Eq. (13) with different m values, corresponds to

phase states lu; snl in our notation [8]. In other words, it is an

extended state in m-space and CðBCSÞ can be calculated

explicitly [5]. Here, we can evaluate the same quantity for

the phase states. However, since the phase states are defined

for a given s value, we need to generalize Eq. (13) by

lcul/
X
m

eimulcml; ð16Þ

from which we find that:

CðcuÞ /
X

s

c2
s

					
					
X
m

ei2mu

					
					: ð17Þ

The second term implies that concurrence vanishes in

contrast to the Fermi sea state. Hence, concurrence is a

distinguishing parameter for entanglement of Cooper pairs.

For a state with real expansion coefficients, assuming Eq.

(13) is normalized, concurrence is unity, i.e. it is same as

unpaired state. This is the case for a system with fixed

number of fermions. A simple and analytically solvable

example is a system composed of a single, d-fold degenerate

energy level [28,29]. Therefore, microcanonical entangle-

ment of pairing, which we define by following Martı́n-

Delgado as the difference between concurrence values of the

Fermi sea and the BCS ground state, vanishes. Although

concurrence does not distinguish between the normal and

the superconducting states, amplitude of the order parameter

ksrl still identifies pairing correlations and hence it can be

used as a signature of entanglement of Cooper pairs.

In conclusion, for a superconducting system with

indefinite number of particles, concurrence vanishes while

it is unity at the Fermi sea and hence it can be utilized to

detect the existence of entanglement. On the other hand, for

a finite system it is unity in the superconducting state, too.

However, the order parameter of superconductivity which

we propose can still be used to identify entanglement of

Cooper pairs.
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