
Journal of Economic Dynamics & Control 27 (2003) 1503–1515
www.elsevier.com/locate/econbase

On-line computation of Stackelberg equilibria
with synchronous parallel genetic algorithms

Nedim M. Alemdara, Sibel Sirakayab; ∗
aDepartment of Economics, Bilkent University, 06533 Bilkent, Ankara, Turkey

bDepartment of Economics, University of Wisconsin-Madison, Madison, WI 53706-1393, USA

Abstract

This paper develops a method to compute the Stackelberg equilibria in sequential games. We
construct a normal form game which is interactively played by an arti1cially intelligent leader,
GAL, and a follower, GAF. The leader is a genetic algorithm breeding a population of potential
actions to better anticipate the follower’s reaction. The follower is also a genetic algorithm
training on-line a suitable neural network to evolve a population of rules to respond to any
move in the leader’s action space. When GAs repeatedly play this game updating each other
synchronously, populations converge to the Stackelberg equilibrium of the sequential game. We
provide numerical examples attesting to the e7ciency of the algorithm. ? 2002 Elsevier Science
B.V. All rights reserved.

JEL classi(cation: C45; C63; C70

Keywords: Stackelberg equilibrium; Parallel genetic algorithms; Feed-forward neural networks

1. Introduction

In a sequential game, the player who has the 1rst move advantage is the natural
leader. If players’ costs are common knowledge, the leader can fully anticipate the
follower’s response to any move in her action space. Therefore, she will act so as to
elicit the most favorable response from the follower. Analytically, the leader’s problem
is tantamount to a cost minimization constrained by the follower’s reaction function.
The resulting equilibrium is also known as the Stackelberg equilibrium.

The Stackelberg equilibrium concept requires that the leader have the capacity to
fully anticipate the follower’s reactions to each and every move in her action space.

∗ Corresponding author. Tel.: +608-263-3856.
E-mail address: ssirakay@ssc.wisc.edu (S. Sirakaya).

0165-1889/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
PII: S0165 -1889(02)00069 -6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52922102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1504 N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515

This is indeed a strong form of rationality. An interesting question in this regard is
whether boundedly rational players can learn to play the Stackelberg equilibrium if they
have the opportunity to play repeatedly. That is, whether the Stackelberg equilibrium
of a one-shot sequential game where players are perfectly rational can be generated as
the equilibrium of a game where boundedly rational players start ignorant, but learn
as the game repeats. In this paper, our answer to this inquiry is a7rmative provided
that the leader learns to act by discretion while the follower learns to play by the
rule.

Towards that, we formulate a normal form game in which the leader’s strategy space
consists of a set of actions while the follower’s strategy space is comprised of a set of
rules. We then parameterize the follower’s strategy space by the weights of a suitable
feed-forward neural network, thereby transforming it from a set of rules to a set of
neural net weights.

Two arti1cially intelligent players, GAF and GAL, play the normal form game
generation after generation. The follower population evolves the weights of a given
feed-forward neural network to come up with a best response to the leader popula-
tion’s best action in the previous generation. As the search progresses in the leader’s
strategy space, the follower population is trained to best respond to any action of the
leader. The 1ttest individuals in the respective populations are then communicated to
each other via the computer shared memory. Equipped with the updated weights, the
leader is better able to anticipate the best response of the follower for all potential
actions in its population. The individuals which exploit this knowledge to their advan-
tage are 1tter, consequently, they reproduce faster. Ultimately, they dominate the leader
population also steering the follower’s search for the best set of rules in vicinity of
the Stackelberg solution.

Our method has computational advantages as well. We show that on-line synchronous
parallel genetic algorithms can compute the Stackelberg equilibria with e7ciency. In
our approach, the neural net is trained not over the entire strategy space of the leader
at once, but rather incrementally as it responds to any given action of the leader in the
course of the repeated game. This is important, because both players, GAF and GAL

start the game completely blind, but learn as the game unfolds.
It is worth emphasizing that our approach does not require any knowledge of the

follower’s reaction function. The neural network parameterization provides with a high
level of Gexibility and can be used for problems in which the follower’s reaction func-
tion cannot be analytically obtained. Thus, the computational eHort and time required
by an oH-line algorithm is considerably reduced. As a drawback, we can cite less
reliability of the follower’s training since it is on-line.

Li and BaIsar (1987) show that iterative on-line asynchronous algorithms converge
to the Nash equilibrium if players’ costs are private information. VallJee and BaIsar
(1999) use an o5-line genetic algorithm GA to compute the Stackelberg equilibria.
For each action in the leader population, they compute the follower’s best response
oH-line and then feed it back to the leader GA. The GA converges to the Stackelberg
equilibrium. This method, however, is computationally too intensive as one needs to
go oH-line every time the follower’s best response is needed to evaluate the 1tness of
an individual in the leader population.

N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515 1505

An alternative method, and perhaps a more e7cient one, would approximate the
follower’s reaction function oH-line by a suitable neural network in the leader’s strategy
space, and then use the trained neural net as a constraint in the leader’s problem. Either
way, an important drawback in computing the follower’s best responses oH-line is that
learning by the players is not interactive which violates the premise that the search for
the Stackelberg equilibrium be blind. Essentially, the repeated game played on-line by
our parallel GAs is a simultaneous move game in nature whose Nash equilibrium is
the Stackelberg action by the leader, GAL, and an evolved neural network which is
trained by the follower, GAF, to best respond to any action by the leader.

The balance of the paper is as follows. In Section 2, we brieGy discuss the Stackel-
berg equilibrium concept. Section 3 presents a short overview of the neural networks
and genetic algorithms, and how parallel genetic algorithms can be used to approximate
the Stackelberg equilibria in sequential games. Section 4 tests the parallel genetic algo-
rithm on sample problems provided in VallJee and BaIsar (1999). Conclusions follow.

2. Stackelberg equilibrium

We start with some preliminaries. Consider a one-shot simultaneous-move game
between two players, L and F. Let the respective strategy spaces U and V , with
typical members u and v, respectively, be nonempty, convex and compact subsets of
R. Further, let J i :U ×V → R be the player i’s cost function where i = L;F. Suppose
these costs are common knowledge.

The Nash equilibrium of this game is a pair of actions (uN; vN), which simultaneously
satis1es

J L(uN; vN)6 J L(u; vN); ∀u∈U; (1)

J F(uN; vN)6 J F(uN; v); ∀v∈V: (2)

If the game is sequentially played, let then player L be the 1rst to move so that he is
the ‘natural’ leader and player F will follow. Since the leader knows the follower’s cost
function, she also knows the follower’s reaction function. Thus, the leader’s Stackelberg
action, uS satis1es

J L(uS; v(uS))6 J L(u; v(u)); ∀u∈U; (3)

where v(u) denotes the follower’s reaction function which is given by

v(u) = argmin
v∈V

J F(u; v): (4)

Subsequent to the leaders’s move, uS, the follower will react by, vS = v(uS).
If the leader does not know the follower’s cost function, the above solution procedure

cannot be used to compute the Stackelberg equilibria. Instead, we suggest the following
algorithm. First, parameterize the reaction function of the follower by a neural network
as v(u) = 	(u; !), where 	 is the approximating function and !∈� ⊂ Rn are the
synaptic weights between the neurons. Then, construct a simultaneous-move repeated
game between two arti1cially intelligent players, GAF and GAL. Let GAF evolve a

1506 N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515

1xed size population of potential rules, 	(u; !), which are now parameterized by the
weights of some suitable neural network to respond to any given action by the leader.
In keeping with our previous discussions, let GAL operate on a population of u∈U to
breed increasingly e7cient potential solutions to its minimization problem. Next, inform
both GAL and GAF to synchronously update each other as to the best performing
individuals in their respective populations. Finally, keep up the evolutionary pressure
intact in both populations so that the search substantially covers the strategy spaces
of both players to guarantee convergence to uS; !S, and hence to vS = 	(uS; !S). The
intuition behind solution procedure is simple: As the search proceeds in the action
space of the leader, the follower will learn her reaction function. But, so will the
leader. Discovering the follower’s policy rule, the leader will then take advantage
of it.

In passing, we note that many neural networks can parameterize the reaction function
v(u). There exists no hard-and-fast rule of choosing a network architecture other than
a systematic trial and error approach. As a general rule, simpler architectures are more
preferable because they learn faster.

3. A brief note on neural networks and genetic algorithms

3.1. Neural networks

Neural networks are information-processing paradigms that mimic highly intercon-
nected, parallelly structured biological neurons. They are trained to learn and generalize
from a given set of examples by adjusting the synaptic weights between the neurons. 1

Consider an L layer (or L − 1 hidden layer) feedforward neural network, with
the input vector z0 ∈Rr0 and the output vector 	(z0) = zL ∈RrL . As in Narenda and
Parthasarathy (1990), we refer to this class of networks as NL

r0 ; r1 ;:::; rL . The recursive
input–output relationship is given by

yj = wjzj−1 + bj; (5)

zj = �̂j(yj) = (�j(y
j
1); �j(y

j
2); : : : ; �j(yj

rj))
′; (6)

where the connection and bias weights are respectively !={wj; bj}, with wj ∈Rrj×rj−1

and bj ∈Rrj for j=1; 2; : : : ; L. The dimension of y j and zj is denoted by rj. The scalar
activation functions, �j(:) are usually sigmoids, e.g. �j(:)=tanh(.) or �j(:) = 1=(1 +
exp(−(:)) in the hidden layers. At the output layer, the activation functions, �L(:), can
be linear, e.g. �L(:) = (:), if the outputs have no natural bounds. If, however, they are
bounded by �min6 zL6 �max, then one may choose:

�L(:) = �min +
�max − �min

1 + exp(−(:))
: (7)

1 For the sake of compactness, the notation of this section closely follows Narenda and Parthasarathy
(1990). A well documented theory of neural networks can be found in Hecht-Nielsen (1990) and Hertz et
al. (1991).

N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515 1507

Thus, the approximating function has the general representation

	(z0; !) = �̂L(wL�̂L−1(wL−1�̂L−2(: : : w2�̂1(w1z0 + b1) + b2) + b3)

+ · · · + bL−1) + bL): (8)

3.2. Genetic algorithms

A GA is a computational search heuristic which utilizes operators modelled after
natural evolution, such as mutation and crossover, to ‘breed’ increasingly e7cient so-
lutions to a given computational problem (Holland, 1992).

A basic GA consists of iterative procedures, called generations. In each generation,
the GA maintains a constant size population of individuals, P(t) = {x1; : : : ; xm}, where
each individual represents a candidate solution vector to the problem at hand. Each
individual is assigned a ‘1tness score’ according to how good a solution it is to the
problem. The relatively 1t individuals are given opportunities to ‘reproduce’, while the
least 1t members of the population are less likely to get selected for reproduction, and
so ‘die out’. During a single reproduction phase, relatively 1t individuals are selected
from a pool of candidates some of which undergo mutation and crossover to generate
a new population.

Crossover randomly chooses two members (‘parents’) of the population formed by
the selection process, then creates two similar oH-springs by swapping the correspond-
ing segments of the parents. Crossover can be interpreted as a form of exchanging
information between two potential solutions. Mutation randomly alters single bits of
the bit strings encoding individuals with a probability equal to the mutation rate pmut.
The mutation operator introduces additional diversity into the population.

A GA is inherently parallel. While it operates on individuals in a population, it
collects and processes a huge amount of information by exploiting the similarities in
classes of individuals, which Holland calls schemata: These similarities in classes of
individuals are de1ned by the lengths of common segments of bit strings. By operating
on n individuals in one generation, a GA collects information approximately about n3

individuals (Holland, 1975).
Parallelism can be explicit as well in the sense that more than one GA can gener-

ate and collect data independently and that genetic operators may be implemented in
parallel. Parallel genetic algorithms are inspired by the biological evolution of species
in isolated locales. To mimic this evolutionary process, a population is divided into
subpopulations and a processor is assigned to each to separately apply genetic operators
while allowing for periodic communication between them. Subpopulations, specialize
on one portion of the problem and communicate among themselves to learn about the
remainder. POzyQldQrQm (1997) and Alemdar and POzyQldQrQm (1998) utilize the ‘explicit’
parallelism in GAs to approximate Nash equilibria in discrete and continuous dynamic
games among players with conGicting interests. POzyQldQrQm and Alemdar (2000) show
that high-dimensional control problems can be approximated as the Nash equilibrium
of a k-person dynamic game played by k-parallel genetic algorithms.

1508 N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515

3.3. Parallel GAs and the Stackelberg equilibria

Consider now the simultaneous-move repeated game between two arti1cially intel-
ligent players GAL and GAF. Let U ⊂ R and � ⊂ Rn be the respective nonempty,
convex and compact search spaces. First, parameterize the reaction function of the
follower by an L-layer neural network as

v(u) = 	(z0; !); (9)

where !∈� are the connection and bias weights and z0 is the input to the network
approximating the follower’s reaction function. The input is an r0-dimensional (some-
times normalized=standardized) vector of the leader’s action, such as z0 = (u; u)′ or
z0 = (u; u; u)′ with u∈U . For notational simplicity, however, we assume here that
z0 = u.

At each generation t ∈T , GAL; operates on a M -size population, of potential solu-
tions, PL

t = {ut;1; ut;2; : : : ; ut;m; : : : ; ut;M}, where PL
t ⊆ U and ut;m ∈PL

t is any feasible
solution. GAF, on the other hand, evolves a K-size population of neural net weights:
PF
t = {!t;1; !t;2; : : : ; !t;k ; : : : ; !t;K}, where PF

t ⊆ � and !t;k ∈PF
t is any feasible solu-

tion. Each individual k in the follower population is a potential neural network that
approximates the follower’s reaction function at the leader’s previous best action, u∗t−1,
i.e., 	(u∗t−1; !t;k) ≈ v(u∗t−1).

GAL evaluates each individual m∈PL
t by computing its raw 1tness, J̃

L
(ut;m;

	(ut;m; !∗
t−1)), where !∗

t−1 stands for the GAF’s previous best weights. GAF, on the
other hand, processes raw 1tnesses, J̃

F
(u∗t−1; 	(u∗t−1; !t;k)).

The search is initialized from arbitrary populations PL
0 ∈U and PF

0 ∈�. Given the
weights of a random neural network, !0; k ∈PF

0 , GAL will 1nd the best performing
individual, m, such that

J̃
L
(u0;m; 	(u0;m; !0; k))¡J̃

L
(u0; l; !(u0; l; !0; k))

for l = 1; 2; : : : ; m− 1; m + 1; : : : ; M and will update GAF with u∗0 = u0;m. For an initial
1xed u0;m ∈PL

0 , GAF will 1nd the rule, say individual k, with the highest 1tness so
that,

J̃
F
(u0;m; 	(u0;m; !0; k))¡J̃

F
(u0;m; 	(u0;m; !0; l))

for l = 1; 2; : : : ; k − 1; k + 1; : : : ; K , and subsequently send !∗
0 = !0; k to GAL. Next,

using the evolutionary operators, a new generation of populations are formed from the
relatively 1t individuals. Their 1tness scores are recalculated in the light of the previous
choices of the opponent, and best performing individuals are exchanged.

The above procedures will be repeated in all generations. That is, at any generation
t the leader will proceed with the search if there exists an m such that:

J̃
L
(ut;m; 	(ut;m; !∗

t−1))¡J̃
L
(ut; l; 	(ut; l; !∗

t−1))

for l= 1; 2; : : : ; m− 1; m+ 1; : : : ; M . Analogously, the follower will continue training if
there exists an k such that:

J̃
F
(u∗t−1; 	(u∗t−1; !t;k))¡J̃

F
(u∗t ; 	(u∗t−1; !t; l))

N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515 1509

for l=1; 2; : : : ; k−1; k+1; : : : ; K . As the search evolves, 1tter individuals will proliferate,
thanks to the reproduction and crossover operators, until t′6T whence for any t ¿ t′

there exists no individuals m∈PL
t and k ∈PF

t such that

J̃
L
(ut;m; 	(ut;m; !S))¡J̃

L
(uS; 	(uS; !S)) and

J̃
F
(uS; 	(uS; !t;k))¡J̃

F
(uS; 	(uS; !S));

where vS = v(uS) = 	(uS; !S).
The following pseudocode outlines the steps involved in our parallel GA search for

the Stackelberg equilibrium.

procedure GAL; procedure GAF;
begin begin

Randomly initialize PL
0 ; Randomly initialize PF

0 ;
copy initial u to shared memory; copy initial weights to shared memory;
synchronize; synchronize;
compute v; compute v;
evaluate PL

0 ; evaluate PF
0 ;

t = 1; t = 1;
repeat repeat

select PL
t from PL

t−1; select PF
t from PF

t−1;
copy best u to shared memory; copy best weights to shared memory;
synchronize; synchronize;
crossover and mutate PL

t ; crossover and mutate PF
t ;

compute v; compute v;
evaluate PL

t ; evaluate PF
t ;

t = t + 1; t = t + 1;
until(termination condition); until(termination condition);

end; end;

At this point, a word of caution is in order about the selection operator. Note that at
any generation, t, the leader supplies the follower with only one data point to train
the neural net so that the follower has to learn on-line. Consequently, the weights that
out-perform others early in the search may actually do poorly over the range of the
leader’s action space. Moreover, given the leader’s previous action, there may exist
more than one unique vector of weights in the population mapping into the follower’s
same best response. Again, the search may stagnate if the rule which performs poorly
over the range of leader’s strategies is copied to the memory. An elitist selection
strategy to form new generations will fail on both accounts. Moreover, the search terrain
for the neural network generally is highly nonlinear. Thus, it becomes imperative that
a selection procedure be adopted that will sustain the evolutionary pressure.

In our simulations, we adopt (tness rank selection as our selection method. With
1tness rank selection, individuals are 1rst sorted according to their raw 1tness, and then
using a linear scale reproductive 1tness scores assigned according to their ranking. Rank
selection prevents premature convergence since the raw 1tness values have no direct

1510 N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515

impact on the number of oHspring. The individual with the highest 1tness may be much
superior to the rest of the population or it may be just above the average; in any case,
it will expect the same number of oHspring. Thus, superior individuals are prevented
from taking over the population too early causing false convergence. The follower’s
di7culties with its search may be further compounded due to the fact that it may be
over a highly nonlinear terrain as in our second example. Thus, the likelihood that the
search may get stuck at a local optimum is quite high. Rank selection performs better
under both conditions.

4. Examples

We test our algorithm on two numerical examples. The 1rst problem requires a linear
network, and the second, a nonlinear. In both, the algorithm approximates the Stackel-
berg equilibrium with success. We provide statistics for the average and the variations
in the performances as there are multiple runs with random initial populations. We
use the genetic operators in the public domain GENESIS package (Grefenstette, 1990)
in parallel. In every run, we use population sizes of 50, crossover rates of 0:60 and
mutation rates of 0:001 for each player.

4.1. An example with a linear network

Let the cost functions of the players be:

J L(u; v) = u2 + v2 + 10 + uv;

J F(u; v) = u2 + v2 + 10 − 5uv + 3v:

The follower’s reaction function is linear:

v(u) = 2:50u− 1:50:

If the leader knows the follower’s cost function, and if the game is played sequentially,
the unique Stackelberg solution is (uS; vS)=(0:462;−0:345) with the costs J L;S=10:1731
and J F;S = 10:0932. 2

When costs are initially unknown to either of the players, we adopt a simple linear
neural network with no hidden layers from N1

1;1 as shown in Fig. 1 to evolve the
follower’s rules. It consists of a bias unit, an input unit and an output unit.

In each generation GAF evolves a population where each string is a two-dimensional
vector of weights, ! = (w1; b1)∈ [− 3; 3]2. At each generation t, the input, u∗t−1, is
copied from the shared memory, while the bias unit has always a constant value of 1.
Finally, to evaluate the 1tness of each string, the output unit computes, v(u∗t−1; !t;m)
for ∀m∈M as:

v(u∗t−1; !t;m) = w1
t;mu

∗
t−1 + b1

t;m:

2 The Nash equilibrium solution is (uN ; vN)=(1=3, –2=3) and the corresponding costs are JL;N = 10:3333
and J F;N = 9:66667.

N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515 1511

Fig. 1. Neural network architecture for the follower’s reaction function.

Table 1
Linear network simulation results

v J F u JL

Stackelberg Sol. − 0.345 10.0932 0.462 10.1731

On-line Average Minimum Maximum St. dev.

w1 2.22 0.64 2.71 0.315
b1 − 1.38 − 1.60 − 0.74 0.139
v − 0.356 − 0.475 − 0.339 0.015
J F 10.0829 9.9411 10.1005 0.018
u 0.458 0.410 0.464 0.006
JL 10.1737 10.1731 10.1991 0.003
OH-line JL 10.1731 10.1731 10.1731 0.000
VallJee and BaIsar JL 10.1738 10.1731 10.2353 0.007

GAL evolves a population consisting of individuals u∈ [−1; 1]. In order to calculate
the 1tness of all individuals in the population, the follower’s potential best response to
each is needed. Thus, at each generation t, GAL copies !∗

t−1 = (w1∗
t−1; b

1∗
t−1) from the

shared memory to compute the follower’s best response to each m∈M as

v(ut;m; !∗
t−1) = w1∗

t−1ut;m + b1∗
t−1:

We run the experiment 100 times with diHerent initial populations for 4000 genera-
tions. Our results are summarized in the following table. Note that since the neural net
is interactively trained, learning may take longer. Thus, the variations in the weights,
J F and v must be noted duly. Nonetheless, the leader learns to take the advantage
of the follower’s reaction function around 1000th generation and converges to its al-
most perfect Stackelberg solution. Moreover, a large number of runs result in the exact
Stackelberg solution. As shown in Table 1, our on-line algorithm performs slightly
better than the simple GA of VallJee and BaIsar.

Next, for comparison, we train the same network oH-line. We run the training 100
times, each with a randomly initialized population. In every run, GAF evolves potential

1512 N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515

weights to approximate

min
!∈�

n∑

i=1

(vi − 	(ui; !))2 s:t vi = argmin
v∈V

J F(ui; v):

Here, {u1; u2; : : : ; un} ⊂ U are randomly generated with n = 100, and 	(ui; !) and !
are de1ned as in the on-line version. In all runs, GAF converges to the exact reaction
function around the 80th generation. Once the follower’s training is complete, we then
feed the best trained weights over all experiments to the leader, and GAL repeats the
search for each 100 independent runs. Having reduced the GAL’s equilibrium search
to a simple constrained minimization problem, and given the follower’s exact reaction
function, each run of GAL converges to the exact Stackelberg action, uS=0:462, around
30th generation. As expected, the oH-line method approximates the equilibrium better
largely because of the linearity of the follower’s reaction function.

Generally speaking, there is no compelling reason why a network that can be suc-
cessfully trained on-line will perform equally well when trained oH-line or vice versa.
Linearity of the follower’s reaction function, however, suggests that a linear network
be trained whether oH or on-line. One limitation of oH-line training, however, is that
the search for the Stackelberg equilibrium is not blind since players do not interact as
they are searching for the equilibrium. Furthermore, since oH-line methods require cal-
culation of the follower’s best responses, {vi(ui)}ni=1, it may become computationally
too intensive for more complex problems.

4.2. An example with a nonlinear network

For an example of a nonlinear rule, we simulate the so-called Fish war game. Two
countries are involved in a 1shing war with costs

J L = −log u−)L log (x − u− v*L)+;

J F = −log v−)F log(x − v− u*F)+;

where 0¡)i; *i¿ 1, 0¡+¡ 1, 0¡x¡∞, i = 1; 2, and (u; v)∈D = {(u; v): u¿ 0,
v¿ 0, u + v*L 6 x, v + u*F 6 x}.

The stock of 1sh in the region is x, and current consumption levels are u and v for L
and F, respectively. Second period costs are discounted by)L,)F. Each country min-
imizes its own cost, which depends also on the other country’s action. The follower’s
reaction function is given by

v(u) =
x − u*F

1 + +)F
:

In numerical simulations, the following set of parameters are used: (+; *L; *F;)L;)F; x)=
(0:2852; 1:1; 1:2; 0:8; 0:48; 1:259). 3

3 With these parameters, the Nash equilibrium is (uN ; vN) = (0:3; 0:9) and the corresponding costs are
JL;N = 1:1589 and J F;N = 0:3920.

N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515 1513

Table 2
Nonlinear network simulation results

v J F u JL

Stackelberg Sol. 0.01896 4.77 1.19426 0.49714

On-line Average Minimum Maximum St. dev.

b1 − 3.84 − 6.85 − 1.48 1.397
w1 3.89 1.48 6.99 1.424
v 0.00874 0.00002 0.68016 0.071
J F 5.80099 0.04000 9.94000 2.702
u 1.18638 0.54835 1.20567 0.069
JL 0.45995 0.33463 1.25765 0.089
OH-line JL 0.39263 0.39263 0.39263 0.000
VallJee and BaIsar JL 0.49721 0.49715 0.50102 N=A

If the leader knows the follower’s cost function, the unique Stackelberg solution is:
(uS; vS) = (1:19426; 0:01896) with costs J L;S = 0:49714 and J F;S = 4:77.

Assuming the leader to be ignorant of the follower’s cost function, we have experi-
mented with diHerent multi-layer neural network architectures (by varying the number
of hidden layers and neurons in each hidden layer, and adopting diHerent squashing
functions to capture nonlinearity) to approximate the follower’s best response func-
tion. The architecture that learns best on-line is still as in Fig. 1, but this time with a
nonlinear, tanh(:), output unit.

Again, GAF evolves a population of strings, each of which is a two-dimensional
vector of weights, !=(w1; b1)∈ [−10; 10]2. At each generation t, for 1tness evaluations,
u∗t−1 is copied from the shared memory and normalized as û∗t−1 =(u∗t−1−umin)=(umax −
umin). Finally, the potential best responses are calculated using

v(u∗t−1; !t;m) = −tanh(w1
t;mû

∗
t−1 + b1

t;m); ∀m∈M:

Given the constraint set D, the natural search domain for u is the interval
[0,1.21159]. 4 We again run the experiment 100 times with randomly initialized pop-
ulations for 4000 generations. Our results are summarized in the following table. The
convergence of weights take longer due to the nonlinearity inherent in the problem.
Relatively high variations in weights, J F and v all reGect this. In most runs, again the
leader converges to the equilibrium Stackelberg action around 2000th generation (see
Table 2).

On-line approximation of the Stackelberg equilibrium by our algorithm though, suc-
cessful, is not as good as the oH-line GA computation in VallJee and BaIsar. We attribute
this to the incremental nature of the GA learning in our algorithm.

As mentioned earlier, performances of nonlinear networks may diHer depending on
whether they are trained on or oH-line so that diHerent network architectures may
indeed be used for diHerent modes of training. Nevertheless, we still adopt the same
network architecture to see whether it can be successfully trained oH-line as well. In the

4 If the follower’s choice of weights violate D, she is punished by a high penalty; namely, 100 000 000v2.

1514 N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

u

v

On−line Best Response

Exact Best Response

Off−line Best Response

Fig. 2. Best oH-line and on-line reaction functions.

oH-line version our GA=neural network speci1cation, we de1ne 	(ui; !) and ! as in the
on-line algorithm. In our on-line simulations, the leader rarely chooses u¡uN and only
at the very beginning of her search. Hence, the follower’s network is not well-trained
for such actions. Thus, to make our results more comparable, we randomly generate
{ui}ni=1 from [uN; 1:21159] with n = 100. Given the best set of weights from GAF

over 100 runs, GAL in turn experiments 100 times with random initial populations.
GAL converges to u = 1:16777 with J L = 0:39263 around 50th generation, leading to
v=0:00112 with J F =7:19322. In this instance, the same network when trained oH-line
results in worse approximations to Stackelberg solution than as in our on-line search.
One simple reason may be that the on-line network may not be the suitable network
for oH-line training.

Also note that when training is on-line, the follower’s network receives more and
more input closer to the leader’s Stackelberg action as the game unfolds. Hence, a
suitable on-line network is one which better learns the follower’s best response function
around the leader’s Stackelberg action. This can also be observed in Fig. 2, which
shows the on-line and oH-line reaction functions using the best weights in corresponding
simulations. 5 When the same network is trained oH-line, however, inputs are usually

5 Follower’s analytical reaction function is: 1:1074 − 0:8796u1:2. The best oH-line and on-line weights
(w1; b1) are (1:69;−1:63) and (1:50;−1:49), respectively.

N.M. Alemdar, S. Sirakaya / Journal of Economic Dynamics & Control 27 (2003) 1503–1515 1515

randomly generated as in our experiments thus network training is not con1ned around
the equilibrium unless of course the researcher restricts it as such.

5. Conclusion

In this paper, we have shown that Stackelberg equilibrium can be computed on-line
with parallel genetic algorithms. We have parameterized the follower’s strategy space
by a neural network which is subsequently trained on-line to best respond to any move
in the leader’s action space. An important advantage of interactive learning approach is
that the search for the equilibrium is blind. Therefore, no knowledge of the follower’s
reaction function is needed, providing with a high level of Gexibility for problems in
which the follower’s reaction function cannot be analytically obtained. Thus, the com-
putational eHort and time required by an oH-line algorithm is considerably reduced. On
the negative side, the follower’s training is less reliable as players learn interactively.

For further reading

The following reference may also be of importance to the reader: Goldberg, 1989.

Acknowledgements

We would like to thank TarQk Kara for his valuable suggestions and comments. Of
course, any remaining errors are ours.

References

Alemdar, N.M., POzyQldQrQm, S., 1998. A genetic game of trade growth and externalities. Journal of Economic
Dynamics and Control 22, 811–832.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley,
Reading, MA.

Grefenstette, J.J., 1990. A User’s Guide to GENESIS Version 5.0, Manuscript.
Hecht-Nielsen, R., 1990. Neurocomputing. Addison-Wesley, Reading, MA.
Hertz, J., Krogh, A., Palmer, A.G., 1991. Introduction to the Theory of Neural Computation. Addison-Wesley,

Redwood City, CA.
Holland, J.H., 1975. Adaptation in Natural and Arti1cial Systems. University of Michigan Press, Ann Arbor.
Holland, J.H., 1992. Genetic algorithms. Scienti1c American 278 (1), 66–72.
Li, S., BaIsar, T., 1987. Distributed algorithms for the computation of noncooperative equilibria. Automatica

23 (4), 523–533.
Narenda, K.S., Parthasarathy, K., 1990. Identi1cation and control of dynamical systems using neural networks.

IEEE Transaction on Neural Networks 1, 4–27.
POzyQldQrQm, S., 1997. Computing open-loop noncooperative solution in discrete dynamic games. Journal of

Evolutionary Economics 7, 23–40.
POzyQldQrQm, S., Alemdar, N.M., 2000. Learning the optimum as a Nash equilibrium. Journal of Economic

Dynamics and Control 24, 483–499.
VallJee, T., BaIsar, T., 1999. OH-line computation of Stackelberg solutions with the genetic algorithm.

Computational Economics 13 (3), 201–209.

	On-line computation of Stackelberg equilibria with synchronous parallel genetic algorithms
	Introduction
	Stackelberg equilibrium
	A brief note on neural networks and genetic algorithms
	Neural networks
	Genetic algorithms
	Parallel GAs and the Stackelberg equilibria

	Examples
	An example with a linear network
	An example with a nonlinear network

	Conclusion
	Acknowledgements
	References

