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Abstract

In the scheduling literature, estimation of job �owtimes has been an important issue since the late 1960s. The previous
studies focus on the problem in the context of due date assignment and develop methods using aggregate information in the
estimation process. In this study, we propose a new �owtime estimation method that utilizes the detailed job, shop and route
information for operations of jobs as well as the machine imbalance information. This type of information is now available in
computer-integrated manufacturing systems. The performance of the proposed method is measured by computer simulation
under various experimental conditions. It is compared with the existing �owtime estimation methods for a wide variety of
performance measures. The results indicate that the proposed method outperforms all the other �owtime estimation methods.
Moreover, it is quite robust to changing shop conditions (i.e., machine breakdowns, arrival rate and processing time variations,
etc.). A comprehensive bibliography is also provided in the paper.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the job shop scheduling literature, estimation of job
�owtimes has always been an important issue since the late
1960s. Because the �owtime estimation is used to assign
order due dates, the problem has been mostly studied within
the context of due date assignment. In several previous stud-
ies [1,2], the term due date assignment has been often used
to describe the problem. However, beyond the objective of
due date setting, accurate �owtime estimates are also needed
for better management of the shop �oor control activities,
such as order review/release, evaluation of the shop perfor-
mance, identi<cation of jobs that requires expediting, lead-
time comparisons, etc. All these application areas make the
problem as important as other shop �oor control activities
(i.e., scheduling).
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The research problem studied in this paper is the estima-
tion of the jobs’ time spent in the system from their arrival
until the completion of all processing activities. The diD-
culty of the problem stems from the dynamic and stochastic
nature of the job shop environments (i.e., arrival of hot jobs,
sudden machine breakdowns and variations in machining
conditions, etc.) that precludes accurate predictions.

The existing studies in the literature examine the prob-
lem by identifying the key information sources required
in �owtime estimation. The results indicate that job- and
shop-related information are the key elements in the esti-
mation process. Researchers (e.g. [3]) used these informa-
tion sources in aggregate terms by ignoring the bene<ts of
using more detailed shop and route congestion information
in the �owtime estimation. Other important <ndings which
motivated our study to develop a new �owtime estimation
method are as follows.

First, previous studies indicate that total load on the route
of an arriving job provides valuable information in �owtime
estimation [3–7]. We also expect that the distribution of
the work load on the machines is as important as the total
load itself. The load information of the machines nearer
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to the beginning of the route of the job would aIect the
�owtime of that job more than the load of the machine
closer to the end of its route, because the system state can be
considerably diIerent when the job arrives at these machines
for its later operations. Thus, splitting the route information
in terms of operations of the job can improve the quality
of the �owtime estimation. Second, previous research also
indicate that consideration of total load of the jobs elsewhere
in the shop (i.e. the jobs which are not currently at the
machines on the route of the arriving job, but will visit them
later for processing) is also important [8]. This is because
these jobs will eventually bring additional workloads to the
route of the arriving job. Hence, both timing and distribution
of these so called “other jobs” should also be taken into
account in the estimation process.

Third, as shown by several researchers, dispatching rules
aIect the performance of the �owtime estimation methods
[3,9–14]. For example, Ragatz and Mabert [3] use diIerent
�owtime estimation models for diIerent dispatching rules.
Finally, it is observed that the performance of the �owtime
estimation methods are signi<cantly aIected by the load
balance in the shop (e.g., [5]).

In this study, we develop a new method by using these
four observations outlined above. Speci<cally, the proposed
method estimates �owtimes by employing the detailed job,
shop and route information for each operation of a job as
well as considering the machine imbalance and dispatching
rule information. Results indicate that it is quite eIective
in using these information sources to achieve better system
performance.

The rest of this paper is organized as follows. In Section
2, we present a literature survey. In Section 3, basic structure
and characteristics of the proposed method are described.
The key components of the model are also discussed using
an illustrative example. In Section 4, we de<ne the experi-
mental design and give the details of the simulation model.
Computational requirements of the proposed study are dis-
cussed in Section 5. Results of the simulation experiments
and statistical tests are presented in Section 6. Finally, the
concluding remarks are made and further research directions
are outlined in Section 7.

2. Review of the literature

Due date assignment is one of the main application
areas of �owtime estimation. As it is frequently observed
in the literature, most research eIorts directed towards
�owtime estimation are within the context of due date
assignment [4,12,15]. Hence, we will also review the due
date assignment literature to the extent that it deals with
�owtime estimation in production systems.

There are basically two �owtime estimation approaches in
the literature: analytical approach and simulation approach.
Cheng and Gupta [10] present an extensive survey of both
of these approaches for the due date assignment problem.

They also provide a framework for the scheduling prob-
lems in the due date assignment process. There are advan-
tages and disadvantages associated with each approach. The
analytical approach oIers an exact way of determining mean
and variances of �ow time estimates. However, the dynamic
and stochastic nature of production systems makes it dif-
<cult to develop realistic analytical models. On the other
hand, simulation approach does not always produce reliable
estimates. Moreover, a great number of computer runs may
also be needed in the latter case to obtain the accurate and
precise estimates. Since these two areas are complimentary
in nature, the literature has been developed in both direc-
tions. Our primary focus in this paper is on the simulation
methodology. Thus, we next discuss the simulation related
research in detail. For the analytical studies, the reader can
refer to the following research papers: Miyazaki [14], Enns
[13,16,17] Cheng [18,19], Shanthikumar and Buzacott [20],
Buzacott and Shanthikumar [21], Shanthikumar and Sumita
[22], and Lawrence [23]. The recent trend in analytical stud-
ies is to determine �owtime prediction errors and distribution
functions so that leadtime estimates can be derived (Enns
[24] and Lawrence [23]).

The <rst simulation-based study in this area is conducted
by Conway [11] who compares four �owtime estimation
methods: total work content (TWK), number of operations
(NOP), constant (CON), random (RDM). The results of
this study indicate that the methods which utilize the job
information perform better than the others. Conway also
observes the relationship between due date assignment meth-
ods and dispatching rules. Later, Eilon and Chowdhury [4]
use shop congestion information in estimating �owtimes.
In this work, TWK is compared with three other methods:
jobs in queue (JIQ), delay in queue (DIQ) and modi<ed to-
tal work content (MTWK). Results indicate that JIQ, which
employs the shop congestion information, outperforms other
methods.

In another study, Weeks [25] proposes a method which
combines both the job and shop information. This method
performs very well for the performance metrics such as mean
lateness, mean earliness, and number of tardy jobs. The re-
sults also indicate that �owtime estimation is aIected by the
structural complexity of the shop more than the size of the
system. Later, Bertrand [5] proposes a new method of �ow-
time estimation which exploits time-phased workload infor-
mation of the shop. Two factors are used in analyzing the
performance of the method: minimum allowance for wait-
ing (SL) and capacity loading limit (CLL). His results in-
dicate that time-phased workload and capacity information
signi<cantly decrease variance of the lateness.

Ragatz and Mabert [3] compare eight diIerent methods:
TWK, NOP, TWK-NOP, JIQ, WIQ (similar to JIQ except
that the total processing times of jobs on the route is used
instead of the number of them), WEEK’s method, JIS (sim-
ilar to JIQ except that the number of jobs at the system
is used instead of the number of jobs on the route), and
response mapping rule (RMR). Among them, RMR utilizes
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thek response surface methodology to identify the signi<-
cant factors in �owtime estimation. The results indicate that
the job and workload information along the process routes
are very important for predicting �owtimes.

In another study, Cheng [9] exploits a hypothetical job
shop to determine the main and interaction eIects of due
date assignment methods, dispatching rules, and shop load
ratios. Multiple regression analysis is used to identify rela-
tions between these factors for the percentage of late jobs
measure. Kanet and Christy [26] compare TWK with the
processing plus waiting (PPW) method via computer sim-
ulation in a job shop with forbidden early shipment. PPW
estimates a job’s �ow allowance by adding an estimate of
the waiting time, which is proportional with the number of
operations, to the total processing time of a job. The results
indicate that TWK is superior to PPW in terms of the mean
tardiness, proportion of tardy jobs, and mean inventory level
measures. Fry et al. [27] also investigate the job and shop
characteristics which aIect a job’s �owtime in a multistage
job shop. They construct two linear and two multiplicative
nonlinear models to estimate the coeDcients of the factors.
This study shows that (1) models using product structure and
shop conditions estimate �owtimes better than the others,
(2) linear models are superior to the multiplicative models,
and (3) the predictive ability of the models also improves
as the utilization increases.

Vig and Dooley [6] propose two new �owtime estima-
tion methods: operation �owtime sampling (OFS) and con-
gestion and operation �owtime sampling (COFS). These
methods are also compared with JIQ and TWK-NOP un-
der various shop conditions. The results indicate that COFS
and JIQ yields the overall best performance. Vig and Doo-
ley [7] extend their work by combining static and dynamic
estimates to obtain job �owtime estimates. In this method,
the dynamic estimates are produced obtained by COFS and
OFS.

Gee and Smith [8] propose an iterative procedure for
estimating �owtimes when due date dependent dispatching
rules are used. Two �owtime estimation methods are em-
ployed, the one is based on local (job related) information
and the other one utilizes global (both job and shop related)
information. Their results indicate that the global rule yields
better estimation. They also compare the iterative approach
with the RMR approach of Ragatz and Mabert [3] and <nd
that the quality of �owtime estimation is improved by the
iterative approach when used with due-date based dispatch-
ing rules. Later, Enns [16,17] proposes a dynamic estima-
tion method which employs a dynamic version of the PPW
method. By using exponentially smoothed �owtime esti-
mation error feedback, the lateness variance is estimated.
The author also describes a method of setting due dates to
achieve of the desired percentage of tardy jobs. In a recent
study, Enns [24] develops a new work load balancing dis-
patch mechanism and investigates the relationships between
internal and external measures. The results indicated that
a new shop load balance index which considers both shop

load and variability has a very strong relations with lead
times.

In another study, Kaplan and Unal [28] propose a cost
based model in setting due dates. In this approach, the due
dates are calculated by summing the �owtime estimate with
a multiple of the estimated standard deviation of the �ow-
time estimation error. Their procedure is composed of two
stages. In the <rst stage, a �owtime estimation model is
derived. In the second stage, the coeDcient are obtained by
optimizing the total cost function.

Finally, Philipoom et al. [29] investigate the feasibility of
using neural networks in �owtime estimation. In this study,
the authors estimate the coeDcients of the methods with
neural networks instead of multiple regression. The results
indicate that the neural network approach oIers certain ad-
vantages over the conventional approaches. From the above
literature review, we make the following observations:

• There are signi<cant interactions between the �owtime
estimation methods and the dispatching rules. Hence, the
dispatching rule used in a system in�uences the perfor-
mance of the �owtime estimation method [9–14,3].

• Both shop and job characteristics are important for �ow-
time estimations [3,5–7,11,13,14,3,6,7,25,30].

• Splitting the shop congestion information as the load on
the route and the load out of the route enhances predictive
power of the �owtime estimation methods. Especially,
the load information along the route of a job is seen to
be more useful than the other general shop information
[3,4,6,7].

• Due date based dispatching rules perform better than the
due date independent rules [4,17].

• Shop balance information signi<cantly aIects the perfor-
mance of the �owtime estimation methods [6,7,28].

• Using aggregate information leads to almost the same
performance when compared with the use of more detailed
information with RMR [3].

3. Proposed method

In this section, we describe the basic structure and charac-
teristics of the proposed �owtime estimation method. First,
we outline the main ideas that motivated us to develop a
new model.

(1) Previous studies indicate that total load on the route
of an arriving job provides valuable information in
�ow time estimation [3–7]. We also expect that the
distribution of the work load on the machines is as
important as the total load itself. The load information
of the machines nearer to the beginning of the route of
the job would aIect the �owtime of that job more than
the load of the machine closer to the end of its route,
because the system state can be considerably diIerent
when the job arrives at these machines for its later
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operations. Thus, splitting the route information in
terms of operations of the job can improve the quality
of the �owtime estimation.

(2) Previous research also indicate that consideration of
total load of the jobs elsewhere in the shop (i.e. the jobs
which are not currently at the machines on the route of
the arriving job, but will visit them later for processing)
is also important [8]. This is because these jobs will
eventually bring additional workloads to the route of
the arriving job. Hence, both timing and distribution of
these so called “other jobs” should also be taken into
account in the estimation process.

(3) Many researchers have demonstrated that dispatching
rules aIect the performance of the �owtime estimation
methods [3,9–14]. For example, Ragatz and Mabert [3]
use diIerent �owtime estimation models for diIerent
dispatching rules. In this study, we also employ diIer-
ent dispatching rules. But the use of dispatching rule
information is quite diIerent in our case; instead of
using a separate �owtime estimation model for each
rule, we use the same model but measure the values
of the variables in a diIerent way for each dispatch-
ing rule. For example, when total work load is used
as a variable in the model, the total operation times
of all the jobs in the queue is calculated for the FCFS
rule whereas the total operation time of the jobs with
smaller operation times than the arriving job is used for
the SPT rule. Thus, the measurement of the variables
in our model is slightly diIerent for each dispatching
rule.

(4) Previous studies indicate that the performance of the
�owtime estimation methods are signi<cantly aIected
by the load balance in the shop. Bertrand [5] uses this
information implicitly in the model. In our study, how-
ever, we will explicitly consider the long run shop load
balance information.

3.1. Model

We now give the detail structure of the proposed model
whose motivating points are discussed in the introduction
section. The following variables are used:

(a) Total work load on the machine at which the job is to
be processed.

(b) Total load of the jobs elsewhere in the shop (i.e., at
other machines), but are expected to visit that ma-
chine during the time the job under consideration is
processed.

(c) Processing time of the job.

The generic regression model is as follows:

PFkji = c
k
1jX

k
1ji + c

k
2jX

k
2ji + c

k
3jX

k
3ji ; (1.1)

where PFkji is the partial �owtime of job i for its kth oper-
ation at machine j. X k1ji is the sum of processing times of

the relevant jobs 1 at the queue of machine j that job i will
have its kth operation. X k2ji is the sum of processing times
(on machine j that job i will have its kth operation) of the
relevant jobs at the machine queues other than machine j
but require machine j in the future. X k3ji is the processing
time of job i at machine j for its kth operation. ck1j ; c

k
2j ; c

k
3j

are the regression coeDcients.
When job i arrives to the system, the PFkji values are

calculated for each operation by using the above equations.
Then, the total �owtime estimate Fi is the summation of
these values.

In the balanced shop case (i.e., the case in which the long
term utilization of the machines are nearly the same), the
above model is simpli<ed by removing the machine index
from the formulation. Hence, we have

PFki = c
k
1X

k
1i + c

k
2X

k
2i + c

k
3X

k
3i : (1.2)

The meaning of the variables are the same as before. For
example, the following equations need to be developed for
an unbalanced job shop with 5 machines

Machine 1:

PF1
1i = c

1
11X

1
11i + c

1
21X

1
21i + c

1
31X

1
31i

PF2
1i = c

2
11X

2
11i + c

2
21X

2
21i + c

2
31X

2
31i

PF3
1i = c

3
11X

3
11i + c

3
21X

3
21i + c

3
31X

3
31i

PF4
1i = c

4
11X

4
11i + c

4
21X

4
21i + c

4
31X

4
31i

PF5
1i = c

5
11X

5
11i + c

5
21X

5
21i + c

5
31X

5
31i

Machine 2:

PF1
2i = c

1
12X

1
12i + c

1
22X

1
22i + c

1
32X

1
32i

PF2
2i = c

2
12X

2
12i + c

2
22X

2
22i + c

2
32X

2
32i

PF3
2i = c

3
12X

3
12i + c

3
22X

3
22i + c

3
32X

3
32i

PF4
2i = c

4
12X

4
12i + c

4
22X

4
22i + c

4
32X

4
32i

PF5
2i = c

5
12X

5
12i + c

5
22X

5
22i + c

5
32X

5
32i

Machine 3:

PF1
3i = c

1
13X

1
13i + c

1
23X

1
23i + c

1
33X

1
33i

PF2
3i = c

2
13X

2
13i + c

2
23X

2
23i + c

2
33X

2
33i

PF3
3i = c

3
13X

3
13i + c

3
23X

3
23i + c

3
33X

3
33i

PF4
3i = c

4
13X

4
13i + c

4
23X

4
23i + c

4
33X

4
33i

PF5
3i = c

5
13X

5
13i + c

5
23X

5
23i + c

5
33X

5
33i

1 Only a subset of jobs are used in calculating the values of the
variables. These jobs are called the relevant jobs. The criteria for
selecting these relevant jobs are given in Section 3.2.
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Machine 4:

PF1
4i = c

1
14X

1
14i + c

1
24X

1
24i + c

1
34X

1
34i

PF2
4i = c

2
14X

2
14i + c

2
24X

2
24i + c

2
34X

2
34i

PF3
4i = c

3
14X

3
14i + c

3
24X

3
24i + c

3
34X

3
34i

PF4
4i = c

4
14X

4
14i + c

4
24X

4
24i + c

4
34X

4
34i

PF5
4i = c

5
14X

5
14i + c

5
24X

5
24i + c

5
34X

5
34i

Machine 5:

PF1
5i = c

1
15X

1
15i + c

1
25X

1
25i + c

1
35X

1
35i

PF2
5i = c

2
15X

2
15i + c

2
25X

2
25i + c

2
35X

2
35i

PF3
5i = c

3
15X

3
15i + c

3
25X

3
25i + c

3
35X

3
35i

PF4
5i = c

4
15X

4
15i + c

4
25X

4
25i + c

4
35X

4
35i

PF5
5i = c

5
15X

5
15i + c

5
25X

5
25i + c

5
35X

5
35i.

3.2. Determination of relevant jobs

In the proposed method, to calculate the values of X1ij

and X2ij for an arriving job i, we use a subset of the jobs
instead of all the jobs in the queue. This subset which we
call “relevant” jobs are constructed in a slightly diIerent
way for each variable and dispatching rule.

All of the jobs are considered to be “relevant” for FCFS.
For SPT, only the jobs which have smaller operation times
than the arriving job are selected as the “relevant”jobs. For
MOD, the following procedure is used: let k be the index
for a job waiting at the queue of the machine j and let i
be the index for the arriving job. We calculate two priority
indices for each job and select job k as “relevant” if its
priority index is lower than the job i’s index. The priority
index for job k, Ik , is assigned just as the modi<ed operation
due date, whereas the priority index of job i is assigned as
the ready time plus a fraction of its total �ow allowance.
This fraction is calculated by dividing the total processing
time until the job i <nishes its operation on machine j by
the total processing time required for all of its operations.

The above procedures are valid for X2ji. For the vari-
able X2ji, the priority index for job i is calculated in the
same way as before except that the jobs residing at the
queues of the machines other than the machine j are also
considered.

Note that the use of dispatching rule information is quite
diIerent in our case than the studies in the literature, i.e.,
instead of using a separate �owtime estimation model for
each rule, we use the same model but rede<ne the variables
for each dispatching rule. For example, when total work load
is used as a variable in the model, the total operation times
of all the jobs in the queue is calculated for the FCFS rule
whereas the total operation time of the jobs with smaller
operation times than the arriving job is used for the SPT rule.

Thus, the meaning of the variables in our model is slightly
diIerent for each dispatching rule.

3.3. An illustrative example

In this section, we explain the proposed method in more
detail via an example.

Let us suppose that job i has just arrived at the shop
with <ve machines. Assume that this job has to visit three
machines in the following order: Machines 5, 3 and 2. The
proposed method estimates the �owtime of this job as

PF1
5i = c

1
15X

1
15i + c

1
25X

1
25i + c

1
35X

1
35i ; (1.3)

PF2
3i = c

2
13X

2
13i + c

2
23X

2
23i + c

2
33X

2
33i ; (1.4)

PF3
2i = c

3
12X

3
12i + c

3
22X

3
22i + c

3
32X

3
32i : (1.5)

When the job arrives to the shop, we collect the values of
the X k:ij variables and plug them into the equations to obtain
the partial �owtimes (PFs) for each operation of the job.
The total �owtime of the job i is obtained as:

Fi = PF1
5i + PF2

3i + PF3
2i : (1.6)

Note that if the visitation sequence of the job had been
Machines 2, 3 and 5, then the �owtime estimate would have
been

Fi = PF3
5i + PF2

3i + PF1
2i : (1.7)

As can be noted, this new �owtime estimate is quite dif-
ferent than the one given before (Eq. (1.6)). Because the
diIerent PF values are used for the diIerent visitation se-
quences even though the job visits exactly the same set of
machines. This enables us to utilize the route information
eIectively. Moreover, the distribution of the loads along and
outside the route of job i is also captured with the machine
and operation speci<c information provided by the variable
X k:ij . Thus, the <rst and second motivating points discussed
in the introduction section are fully exploited by the pro-
posed method.

Note that the X k:ij variables can take diIerent values for
each dispatching rule. For example, X k1ij is the total load
of the machine j when the dispatching rule is FCFS. But
for the MOD rule, the total load is calculated by summing
the operation times of the relevant jobs which have smaller
modi<ed operation due dates than job i’s calculated priority
index. This property of the proposed method is the third
motivating point discussed earlier in the paper.

Finally, machine balance information is utilized explicitly
in the proposed method. The machine indexed coeDcients
carry the necessary machine load information. The equations
for the highly utilized machines would have larger coeD-
cient values that results in larger partial �owtime estimates.
If all the machines have the same utilization, machine in-
dices would not be needed, and hence the equations would
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reduce to the formulation given by (1.2). This property of
the proposed method achieves the objective of the forth
motivating point.

4. Simulation model and experimental conditions

In this section, we discuss system considerations, simula-
tion model, experimental factors, data collection, and com-
putational requirements.

4.1. System considerations

A traditional job shop system is modeled in the SIMAN
simulation language [31]. The simulated shop is comprised
of <ve machines. Job arrivals follow a Poisson process.
The number of operations of a job is determined from a
discrete uniform distribution from 1 to 5. It is assumed
that a particular machine cannot be assigned to more
than one operation of a job (i.e., non-reentrant job shop).
The jobs are randomly routed in the shop. The opera-
tion times are generated from an exponential distribution
with the mean of 2.5 time units. Mean utilization (or
load) of the shop is adjusted by controlling the job arrival
rates.

4.2. Experimental factors

In the simulation experiments, four factors are considered:
(1) �owtime estimation method, (2) shop load balance, (3)
system load (or utilization level), and (4) dispatching rule.

In this study, we test the performance of the following
<ve �owtime estimation methods: (1) operation-based esti-
mation (OBE), (2) total work content (TWK), (3) jobs in
queue (JIQ), (4) operation �owtime sampling (OFS), and
(5) congestion and operation �owtime sampling (COFS).
OBE is the proposed method developed in this study. COFS
and OFS are two methods that have demonstrated good
performances in the recent studies [6,7]. JIQ is one of the
well known methods in the literature [3,8,29], etc. The well
known TWK method is also included in this study as the
base line rule.

All these methods are tested under two shop conditions:
bottleneck and uniform shop environments. Two machine
utilization levels are considered. In the uniform job shop
environment, the mean system utilization is 65% and 85%
for the low and high levels, respectively. In the nonuniform
(i.e., bottleneck) case, the utilization of the bottleneck ma-
chine is set at 75% for the low level, and 95% for the high
level. The other machines’ utilization decrease by 5% with
respect to the bottleneck machine (e.g. 70%, 65%, 60% and
55% for the low level). Note that the average shop utiliza-
tions being compared in the balanced and unbalanced cases
are the same. These settings are determined based on pilot
simulation runs.

We use three dispatching rules in the experiments: <rst
come <rst served (FCFS), modi<ed operation due date
(MOD), and shortest processing time (SPT). These rules
are selected because they are most frequently used rules in
the literature, each with diIerent characteristics. MOD is a
very eIective due date oriented rule that assigns priorities
that change over time (i.e., dynamic in that sense). On the
other hand, static rules assign priorities that do not change
over time as long as the job information does not change.
SPT is such a rule [3]. This rule is also very eIective in
reducing �owtimes. FCFS is used as the base line rule
in the experiments. This rule is commonly assumed in
most analytical model formulations. Besides, it is the
preferred rule among practitioners even though several
other dispatching rules are strongly recommended by
researchers.

4.3. Performance measures

We use the following criteria to evaluate the performance
of the �owtime estimation methods:

• mean lateness: ML =
∑n

i=1 Li=n,
• standard deviation of lateness: STDL =

(
∑n

i=1(Li − SL)2=n)1=2,
• mean tardiness: MT =

∑n
i=1 Ti=n,

• mean squared lateness: MSL =
∑n

i=1(Li)
2=n,

• mean absolute lateness: MAL =
∑n

i=1 |Li|=n,
• mean semi-quadratic lateness: MSQL =

∑n
i=1 Vi=n,

Vi = L2i if Li ¿ 0,
Vi = |Li| if Li ≤ 0,

• mean �owtime: MF =
∑n

i=1 Fi=n,
where Fi is the �owtime estimate of job i, ri the release
time of job i, Ci the completion time of job i, Due date
of job i : di = ri + Fi, Lateness: Li = Ci − di, Tardi-
ness: Ti = max(0; Ci − di), and n the number of jobs
completed.

The quality of the �owtime estimator can be determined
in terms of accuracy and precision. Vig and Dooley [7]
de<ne accuracy of an estimate as the closeness of the
individual estimates to their true values and, precision as
the variability of the prediction errors. We use ML, MAL
and MT to measure the accuracy; and, STDL and MSL to
measure the variability of the estimates. MSQL is a hy-
brid performance criterion and can be a measure of both
accuracy and precision.

Even though, MT is a commonly used criterion in the
scheduling literature, it is not preferred for �owtime es-
timation. This is because tardiness is calculated only as
the positive lateness. Since ML can lead to misleading re-
sults when large negative and positive lateness values cross
each other, we use MAL as the accuracy criterion. Be-
sides, MAL is an important performance metric in prac-
tice since it measures how close to their due dates jobs are
completed.



I. Sabuncuoglu, A. Comlekci / Omega 30 (2002) 423–442 429

MF is not a commonly used performance indicator for
�owtime estimation [6,7]. This is because when FCFS or
SPT is used, the �owtime estimation method and the dis-
patching rule are completely independent. We use MAL and
STDL as our primary criteria to measure the accuracy and
precision of �owtime estimates. But we also report the statis-
tics for other measures to give a complete picture about the
�owtime estimation methods.

4.4. Data collection and computational requirements

The computational experiments are carried out in three
stages; (1) data collection and estimation of the regres-
sion coeDcients, (2) comparison of the �owtime estimation
methods against various performance measures, and (3) test-
ing the sensitivity of the results to the changes in operating
conditions.

At the <rst stage, the coeDcients of �owtime estimation
methods are determined for each combination of the ex-
perimental factors. For example, 12 sets of coeDcients are
determined for OBE (3 dispatching rules, 2 levels of sys-
tem balance, and 2 levels of system utilization). The data
required for the regression coeDcients are collected by tak-
ing long simulation runs. A single simulation run is ade-
quate for the dispatching rules which do not rely on due
date information (e.g., SPT, FCFS). However, for the due
date based rules such as MOD, there must be a mechanism
to set due dates which in turns depends on �ow allowances.
Gee and Smith [8] propose an iterative procedure for this
case. According to this method, coeDcients are estimated at
each iteration and then they become input for the next iter-
ation (i.e. the �ow allowances are set by these coeDcients
at the next iteration). In our study, we use this procedure
(with six iterations) to obtain the coeDcients. A common
random number (CRN) variance reduction technique is also
implemented to stabilize the coeDcients within the <rst few
iterations.

The regression coeDcients are estimated by using the data
sets of 160 simulation runs (60 runs for the <rst iteration of
all dispatching rules, and 100 runs for the additional itera-
tions of the MOD dispatching rule). The data is collected
during the steady state. Based on pilot runs, the warmup
period is set to 20,000 time units (approximately equal
to 10,000 job completions). This transient period is deter-
mined by taking several replications at diIerent experimen-
tal conditions and analyzing the data points with graphical
methods. Hence, it is very conservative estimate. At each
simulation run, 5000 steady-state observations are collected
for each regression equation. In order to achieve indepen-
dence, observations are collected after every 50 job comple-
tions. Hence, each simulation run length consists of 250,000
job completions. This corresponds to about 3 h of SUN
SPARC 2/50 workstations for each run.

The results of extensive simulation experiments and linear
regression analysis are summarized in more than 40 tables,
but only a representative sample is given in the appendix

(Table 1). During this stage we also made the following
observations:

• R2 values of all �owtime estimation methods are quite
high for the FCFS rule. This indicates that the regression
equations estimated for FCFS explain a larger proportion
of variation of the �owtimes than the regression equations
estimated for other rules (i.e., SPT and MOD). This ob-
servation can be attributed to the fact that SPT and MOD
create a more dynamic environment in which the shop
conditions change rather quickly as compared to FCFS
(i.e., dispatching by SPT and MOD creates more variabil-
ity in the shop due to the changes in the relative ranking
of jobs in the queues).

• After a few iterations of the iterative procedure, the coef-
<cients are stabilized for almost all �owtime estimation
methods. The only exception is for TWK and JIQ due to
fewer factors involved in these rules.

• In the proposed method (OBE), R2 values of equations
for the earlier operations in the process route (<rst or
second operations of a job) are quite high as compared to
R2 values of the equations of the later operations, when
the dispatching rule is FCFS (i.e., estimating �owtimes
for the <rst few operations of the job is important). Even
though the FCFS rule produces low R2 values for the
later operations, such values are still higher than the ones
obtained for SPT and MOD.

• R2 values of OFS and COFS are quite high when com-
pared to other methods. This is due to the fourth transfor-
mation applied on �owtimes to estimate the coeDcients.
Weisberg [32] proposes that if the order of transformation
is higher than 3, the models <t very well to the data but
serious numerical problems may arise. Neter et al. [33]
also claim that when the order is high, one can get a better
<t, but it may result in poor interpolation and extrapola-
tions.

• Number of operations parameter of COFS and OFS are
sometimes found as the insigni<cant factor during the
�owtime estimation.

At the second stage, we compare the �ow time estimation
methods by using the coeDcients estimated in the previous
stage. We implement the method of batch means and run the
simulation model for each of 60 design points. Speci<cally,
we take 40 batches of simulation runs, each consisting of
2500 job completions. Thus, each simulation steady state
run equals to 100; 000 job completions.

Finally, we measure the sensitivity of the results to
the changes in arrival rate, machine breakdown events,
and processing time variations. During this stage, we
take 40 batches of simulation runs each consisting of
2500 job completions (or 100; 000 job completions).
We replicate these runs for each experimental condition,
speci<cally 120 simulations runs for machine breakdown,
120 runs for processing time variation and 60 runs for
load variation, resulting in 300 runs. The results of the
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Table 1
CoeDcients, p-values and R2 values for OBE/FCFS/Unbalanced Shop/High Utilization

PFkji = c
k
1jX

k
1ji + c

k
2jX

k
2ji + c

k
3jX

k
3ji

jk ck1j ck2j ck3j pk1j pk2j pk3j R2

11 1.0157 0.0452 1.1843 0.0001 0.0001 0.0001 0.9978
12 0.9846 0.1737 1.0434 0.0001 0.0001 0.0001 0.9816
13 0.9570 0.2849 0.8153 0.0001 0.0001 0.0001 0.9703
14 0.9527 0.2977 0.8646 0.0001 0.0001 0.0001 0.9604
15 0.9387 0.3646 0.8176 0.0001 0.0001 0.0001 0.9530
21 1.0256 0.0329 1.1859 0.0001 0.0001 0.0001 0.9942
22 0.9523 0.1289 1.0034 0.0001 0.0001 0.0001 0.9430
23 0.8998 0.1841 1.0741 0.0001 0.0001 0.0001 0.8960
24 0.8495 0.2101 1.0938 0.0001 0.0001 0.0001 0.8634
25 0.8115 0.2472 1.1091 0.0001 0.0001 0.0001 0.8211
31 1.0388 0.0332 1.1341 0.0001 0.0001 0.0001 0.9865
32 0.8875 0.1207 1.0425 0.0001 0.0001 0.0001 0.8745
33 0.7813 0.1562 1.0914 0.0001 0.0001 0.0001 0.8005
34 0.6556 0.2073 1.0911 0.0001 0.0001 0.0001 0.7198
35 0.5870 0.2251 1.1451 0.0001 0.0001 0.0001 0.6803
41 1.0502 0.0292 1.1723 0.0001 0.0001 0.0001 0.9798
42 0.8472 0.1101 1.0588 0.0001 0.0001 0.0001 0.8233
43 0.6878 0.1419 1.1672 0.0001 0.0001 0.0001 0.7265
44 0.5592 0.1618 1.2049 0.0001 0.0001 0.0001 0.6506
45 0.4482 0.1729 1.2938 0.0001 0.0001 0.0001 0.5962
51 1.0642 0.0284 1.1204 0.0001 0.0001 0.0001 0.9678
52 0.7555 0.0904 1.1797 0.0001 0.0001 0.0001 0.7560
53 0.5923 0.1227 1.1493 0.0001 0.0001 0.0001 0.6576
54 0.4319 0.1319 1.2748 0.0001 0.0001 0.0001 0.5942
55 0.3192 0.1284 1.4083 0.0001 0.0001 0.0001 0.5358

second and third stages are presented in the subsequent
sections.

5. Computational results

In this section, we present the results of the �owtime es-
timation methods for various performance criteria (Tables 2
and 3). But the emphasis will be on the primary measures
(MAL and STDL). In tables, the <rst number in each cell
represents the result of the balanced case. The second num-
ber (or the number in the parenthesis) represents the unbal-
anced case.

5.1. Mean absolute lateness (MAL)

With respect to the MAL criterion, OBE outperforms
other �owtime estimation methods (highlighted by the bold-
face numbers in the tables). We also apply the paired t-test
to measure the statistical signi<cance between OBE and the
next best method at the 5% alpha level. As shown by “?”
(indicating that the diIerence is signi<cant), OBE is bet-
ter than the other methods. It seems that JIQ exhibits the
next closest performance. However, TWK gives the sec-

ond best results when the utilization is high and the dis-
patching rule is SPT. This <nding con<rms our expectation
that processing time is more valuable information than route
information when the shop is highly loaded. The other two
methods (COFS and OFS) display the poorer performance
than TWK.

Among the dispatching rules, MOD produces the lowest
MAL values in most of the shop conditions for all the �ow-
time estimation methods. This is an expected result because
MOD utilizes the due date information. The results also in-
dicate that the performance of the �owtime estimation meth-
ods deteriorates as the system load increases and/or when
the shop is not balanced (i.e. bottleneck situation). In such
cases, diIerence in the relative performance of the �owtime
estimation methods is magni<ed.

We also analyzed the results using ANOVA. As indicated
in Table 4, the main factors (�owtime estimation method
(F), dispatching rule (D), shop balance (B) and utilization
level (U)) are signi<cant at 5% signi<cance level. We note
that the blocking factor (A) which represents experimental
conditions is also signi<cant. This indicates that the com-
mon random number (CRN) variance reduction technique
is quite eIective in reducing variability in the experiments.
All two-way and higher interactions of factors are also found
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Table 2
Results at low utilization (65%)

Performance Dispatching rate OBE TWK JIQ COFS OFS
measure

Mean Lateness FCFS 0.60 3.07 0.96 −1.11 −0.43∗
(0.86) (3.45) (0.92) (−1.34) (−0.28∗)

MOD 0.64 0.71 −0.02∗ −0.94 −1.17
(0.82) (−0.06∗) (−0.28) (−1.28) (−1.04)

SPT 0.97 0.36 −0.22∗ −1.40 −1.35
(1.19) (0.54) (−0.13∗) (−0.73) (−0.70)

Std. dev. of lateness FCFS 6.56∗ 12.35 7.86 15.72 14.74
(6.81∗) (14.71) (8.54) (17.96) (16.40)

MOD 5.99∗ 8.00 6.59 11.59 11.90
(7.36∗) (10.08) (8.71) (13.17) (13.05)

SPT 7.62∗ 8.70 8.21 15.22 15.18
(9.64∗) (11.11) (10.74) (16.78) (16.80)

Mean tardiness FCFS 2.48∗ 6.07 3.19 4.60 4.84
(2.69∗) (7.03) (3.38) (5.03) (5.43)

MOD 2.15 2.77 1.97∗ 2.95 2.91
(2.42) (2.64) (2.07∗) (3.01) (3.12)

SPT 2.75 2.86 2.40∗ 3.70 3.72
(3.09) (3.18) (2.71∗) (4.21) (4.22)

Mean squared FCFS 43.61∗ 164.67 62.94 251.44 218.72
lateness (47.35∗) (234.18) (74.14) (330.73) (271.02)

MOD 36.67∗ 65.22 43.81 135.93 143.82
(56.25∗) (105.27) (78.76) (176.04) (172.63)

SPT 59.68∗ 76.70 68.32 235.42 233.99
(96.61∗) (127.75) (119.20) (286.21) (286.62)

Mean absolute FCFS 4.37∗ 9.07 5.42 10.32 10.12
lateness (4.52∗) (10.61) (5.84) (11.40) (11.15)

MOD 3.67∗ 4.82 3.96 6.87 6.98
(4.02∗) (5.34) (4.41) (7.29) (7.28)

SPT 4.54∗ 5.36 5.02 8.80 8.79
(83.78∗) (107.52) (100.75) (114.63) (115.93)

Mean semi-quadratic FCFS 29.38∗ 132.15 44.93 74.00 82.96
lateness (32.91∗) (188.75) (51.94) (91.22) (109.73)

MOD 29.63∗ 51.09 33.68 40.86 40.44
(47.31∗) (82.81) (65.11) (53.14) (62.43)

SPT 49.99∗ 58.37 52.34 68.25 69.10
(83.78∗) (107.52) (100.75) (114.63) (115.93)

Mean �owtime FCFS 19.44 19.44 19.44 19.44 19.44
(21.37) (21.37) (21.37) (21.37) (21.37)

MOD 14.78 14.57 14.90 15.37 15.32
(15.55) (15.30) (15.67) (16.23) (16.15)

SPT 14.28 14.28 14.28 14.28 14.28
(14.87) (14.87) (14.87) (14.87) (14.87)

∗Statistically signi<cant at 5%.
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Table 3
Results at high utilization (85%)

Performance Dispatching rate OBE TWK JIQ COFS OFS
measure

Mean lateness FCFS 0.42 9.24 1.26 −0.62 1.31
(0.39∗) (15.59) (1.34) (−2.61) (3.68)

MOD 0.72 −1.02 −1.92 −0.19 −0.17
(−2.46) (−0.70) (−2.77) (0.30) (1.26)

SPT −1.21 −1.04 −1.90 0.27∗ 0.39
(−2.26) (−1.85∗) (−4.02) (2.02) (2.15)

Std. dev. of lateness FCFS 11.36∗ 29.89 13.87 24.83 24.07
(12.59∗) (43.84) (16.27) (36.37) (35.61)

MOD 12.17∗ 19.71 16.38 18.51 20.00
(27.94∗) (47.59) (42.49) (40.34) (43.51)

SPT 22.50∗ 25.51 25.46 30.86 30.94
(49.05∗) (58.56) (64.59) (62.15) (62.28)

Mean tardiness FCFS 4.03∗ 16.42 5.54 8.49 9.53
(3.04∗) (5.57) (4.15) (5.61) (6.33)

MOD 2.17∗ 3.60 2.47 4.03 4.26
(3.04∗) (5.57) (4.15) (5.61) (6.33)

SPT 4.46∗ 5.01 4.71 7.31 7.38
(6.55∗) (7.32) (10.25) (10.35) (10.42)

Mean squared FCFS 130.94∗ 1028.64 195.96 634.70 589.08
lateness (165.19∗) (2587.75) (274.82) (1567.49) (1409.42)

MOD 159.34∗ 420.18 290.33 354.03 414.92
(1132.58∗) (3312.89) (2659.13) (2247.65) (2598.84)

SPT 535.65∗ 691.62 691.14 987.48 991.32
(15.36∗) (16.48) (24.52) (18.69) (18.69)

Mean absolute FCFS 7.64∗ 23.60 9.82 17.60 17.76
lateness (94.07∗) (2130.42) (174.83) (468.89) (900.17)

MOD 5.03∗ 8.21 6.86 8.26 8.68
(8.54∗) (11.85) (11.08) (10.93) (11.41)

SPT 10.14∗ 11.05 11.33 14.36 14.37
(3139.04∗) (4691.55) (5414.94) (5014.48) (5030.09)

Mean semi-quadratic FCFS 75.66∗ 798.74 126.91 246.26 317.60
lateness (94.07∗) (2130.42) (174.83) (468.89) (900.17)

MOD 140.02∗ 350.93 246.09 219.65 246.33
(1025.48∗) (3198.49) (2556.11) (2005.43) (2356.47)

SPT 411.60∗ 598.06 600.97 617.15 626.81
(2625.94∗) (4505.78) (4880.54) (4413.72) (4434.25)

Mean �owtime FCFS 45.30 45.30 45.30 45.30 45.30
(63.09) (63.09) (63.09) (63.09) (63.09)

MOD 26.58 24.74 26.61 26.40 26.23
(33.41) (30.20) (33.15) (32.46) (31.59)

SPT 22.27 22.27 22.27 22.27 22.27
(26.07) (26.07) (26.07) (26.07) (26.07)

∗Statistically signi<cant at 5%.
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Table 4
Analysis of variance

Source DF Sum of squares F value Pr gt F

Mean absolute lateness
Model 98 103532.844689 167.94 0.0001
Error 2301 14475.054701

A 39 4508.8870716 18.38 0.0001
F 4 13507.6697131 536.81 0.0001
D 2 15137.8065276 1203.18 0.0001
B 1 5265.7548754 837.06 0.0001
U 1 33835.4790550 5378.59 0.0001
F*D 8 11588.6314787 230.27 0.0001
F*B 4 338.5049736 13.45 0.0001
F*U 4 2409.7964481 95.77 0.0001
D*B 2 361.4696643 28.73 0.0001
D*U 2 4748.8748836 377.45 0.0001
B*U 1 3466.1594554 550.99 0.0001
F*D*B 8 1468.6904112 29.18 0.0001
F*D*U 8 5284.0927552 105.00 0.0001
F*B*U 4 229.8215686 9.13 0.0001
D*B*U 2 277.2954482 22.04 0.0001
F*D*B*U 8 1103.9103597 21.94 0.0001

Standard deviation of lateness
A 39 86632.500732 16.50 0.0001
F 4 41043.803271 76.21 0.0001
D 2 40280.073090 149.57 0.0001
B 1 79176.330130 588.02 0.0001
U 1 267204.708797 1984.45 0.0001
F*D 8 12194.895406 11.32 0.0001
F*B 4 2217.584826 4.12 0.0025
F*U 4 7896.206921 14.66 0.0001
D*B 2 15610.863893 57.97 0.0001
D*U 2 35011.285724 130.01 0.0001
B*U 1 57411.829662 426.38 0.0001
F*D*B 8 1518.875345 1.41 0.1870
F*D*U 8 4719.294630 4.38 0.0001
F*B*U 4 1574.983285 2.92 0.0200
D*B*U 2 14211.381096 52.77 0.0001
F*D*B*U 8 926.740971 0.86 0.5495

A: block eIect, F: �owtime estimation method, D: dispatching rule, B: shop balance, U: utilization

to be signi<cant. An analysis of these interactions indicate
that increasing the system load signi<cantly aIects the per-
formance of the methods regardless of the dispatching rule
in use. We note that some �owtime estimation methods are
more sensitive to the system load level than others. For ex-
ample, the performance of TWK deteriorates much more,
when the dispatching rule is FCFS and MOD. In the SPT
case, however, JIQ is aIected more than any other method.
In general, OBE is quite robust to the changes in the system
load.

The analysis of the �owtime estimation method and the
shop balance interaction indicate that deterioration of the
shop balance negatively in�uences the MAL criterion. This

in�uence is rather modest when the shop is lightly loaded.
However, the eIect is magni<ed in the highly loaded en-
vironment. This agrees with previous research [6,7,28]. It
can also be noted that JIQ is aIected more than any other
method with the SPT rule in the high utilization case. This
means that JIQ reacts more nervously to the changes of the
shop balance and system load when the dispatching rule is
SPT. In order to identify the diIerences of the �owtime es-
timation methods, we applied Duncan’s Multiple Range test
for the main eIects of the factors. The results are given in
Table 5. In this table, N represents the number of observa-
tions and the methods are grouped by levels and each level
is represented by a letter. The levels which are statistically
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Table 5
Duncan’s multiple range tests for MAL

MAL Performance STDL Performance

Levels Mean N Method Levels Mean N Method

All factors included
A 12.5706 480 OFS A 25.4546 480 OFS
A 12.3921 480 COFS A 25.3725 480 COFS
A 12.3598 480 TWK A 24.1703 480 TWK
B 8.7746 480 JIQ B 19.1416 480 JIQ
C 6.7764 480 OBE C 14.9658 480 OBE

Utilization = 65%
A 8.96967 240 COFS A 15.07308 240 COFS
A 8.90987 240 OFS B 14.67967 240 OFS
B 6.83592 240 TWK C 10.82333 240 TWK
C 5.03192 240 JIQ D 8.44104 240 JIQ
D 4.35242 240 OBE E 7.32979 240 OBE

Utilization = 85%
A 17.8838 240 TWK A 37.517 240 TWK
B 16.2313 240 OFS A 36.229 240 OFS
B 15.8146 240 COFS A 35.672 240 COFS
C 12.5173 240 JIQ B 29.842 240 JIQ
D 9.2003 240 OBE C 22.602 240 OBE

Balanced shop
A 11.11608 240 OFS A 19.4736 240 OFS
A 11.03367 240 COFS A 19.4573 240 COFS
B 10.35300 240 TWK B 17.3600 240 TWK
C 7.06763 240 JIQ C 13.0612 240 JIQ
D 5.89696 240 OBE D 11.0341 240 OBE

Unbalanced shop
A 14.3667 240 TWK A 31.436 240 OFS
BA 14.0250 240 OFS A 31.288 240 COFS
B 13.7506 240 COFS A 30.981 240 TWK
C 10.4816 240 JIQ B 25.222 240 JIQ
D 7.6557 240 OBE C 18.897 240 OBE

diIerent from each other at a signi<cance level of 5% are
labeled with diIerent letters. The methods are also ranked
from the worst to the best. The results indicate that OBE is
the best and JIQ is the next best �owtime estimation method
for the MAL measure. OFS, COFS and TWK are grouped
to the same level indicating no statistical diIerence between
them. However, the relative ranking of these methods change
when the shop conditions (balance or utilization) are set to
diIerent levels.

5.2. Standard deviation of lateness

As discussed earlier in the paper, this criterion is used to
assess the precision of the �owtime estimation methods.

From the results summarized in Tables 2 and 3, OBE
is again the best �owtime estimation method. This is also

veri<ed by the results of the paired t-test. It appears that
JIQ is the second best except for the case in which the shop
is highly loaded and the dispatching rule is SPT. COFS and
OFS still display poor performance. However, COFS be-
comes the third best method in conjunction with the MOD
rule when the shop load is high. Among the dispatching
rules, FCFS yields the best STDL values whereas SPT is the
worst. This is again due to the dynamic nature of the SPT
rule that increases variability in the system. As was also
observed by Schultz [34], SPT results in very long waiting
times for some jobs when compared with FCFS. This prob-
lem can be alleviated by using the truncated version of SPT
(i.e., increase the priority of a job which is in the queue for
more a certain amount of time). Similar to MAL, an increase
in the system load and/or deterioration in machine load
balance negatively aIects the STDL performance and
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magni<es diIerences between the �owtime estimation
methods.

The ANOVA results (Table 4) indicate that all the main
factors and the blocking factor are signi<cant. Most of the
two-way and three-way interactions are also signi<cant. By
examining these interactions, we note that the system load
has adverse aIects on the performance of the �owtime es-
timation methods; TWK is most aIected method when the
dispatching rule is FCFS and MOD. When the rule is SPT
and the shop is unbalanced, the performance of JIQ deterio-
rates more than any other method as a result of the increased
system load. The results also indicate that shop balance
considerably aIects the STDL performance of the �owtime
methods. We observe that the impact of the shop balance is
minimum for OBE and JIQ in conjunction with the FCFS
rule. With the other rules, impact of the balance on the �ow-
times estimation methods is nearly the same. According to
Duncan’s multiple range test results (Table 5), OBE is again
the best rule and is followed by JIQ, TWK, COFS and OFS.
In general, COFS and OFS display very poor performance.

5.3. Other performance measures

The results for other performance measures are also
given in Tables 2 and 3. These are: mean lateness (ML),
mean tardiness (MT), mean squared lateness (MSL), mean
semi-quadratic lateness (MSQL), and mean �owtime (MF).
General observations are as follows:

• There is no de<nite best method for theML criterion. OBE
is the best when used with FCFS at the high utilization.
In other cases, the relative performance of the methods
change as the experimental conditions vary. We note that
OFS and COFS which were worst with respect to MAL
and STDL, now display better performance.

• In the tardiness case, when the dispatching rule is FCFS,
OBE is the best. However, when dispatching rule is either
MOD or SPT, OBE yields the best performance only at
the high system load level. At the low load case, however,
JIQ is slightly better than OBE. This improved perfor-
mance of JIQ is partly due to the fact that it overestimates
the �owtimes of the jobs and consequently it results in
early job completions with small tardiness values. This is
veri<ed by the negative ML values obtained for JIQ.

• As expected, the results for MSL are similar to the STDL
case since both measures aim to quantify the variability
of lateness.

• MSQL displays a mixed behavior of MAL and MSL since
it is a combination of these two measures. Also note
that when ML takes negative values, MSQL takes quite
smaller values. This is because MSQL penalizes the early
jobs only with the absolute value of the earliness whereas
it penalizes the late jobs with the square of the lateness.

• Another observation is that exactly the same MF values
are obtained for each �owtime estimation method when
the dispatching rule is FCFS and SPT. This is proba-

bly due to the use of common random numbers and the
rules FCFS and SPT which do not utilize any �owtime
allowance information.

6. Sensitivity analysis

In addition to the standard conditions discussed above,
we also test the methods for changing shop conditions such
as machine breakdowns, processing time variation, and load
variation. Here, we do not develop new regression equations
for the �owtime estimation methods. Instead, we use the
coeDcients obtained at the <rst stage experiments.

6.1. Machine breakdown

Machine breakdowns are modeled using the busy time
approach proposed by Law and Kelton [35] who recommend
that the following gamma distributions can be used for busy
time distribution and down time distribution in the absence
of data:
busy time distribution:

Gamma (�b = 0:7; �b = davg × �=0:7(1− �));
down time distribution:

Gamma(�d = 1:4; �d = davg=1:4);

where �b and �b are the shape and scale parameters of the
busy time distribution, davg is mean duration of the down
times and � is eDciency level (long-run ratio of the machine
busy time to total busy and down times). We use two lev-
els of the mean duration of breakdowns (or, mean down
time), davg = 5pavg and davg = 15pavg, where pavg is the
average operation time. For eDciency, we again use two
levels: �=80% and 90%. By changing the mean down time
for each eDciency level, we obtain two diIerent cases. In
the former case, machines are broken down frequently but
repaired quickly (i.e., davg = 5pavg). In the latter case, the
frequency of the breakdowns is smaller but the mean down
time is much larger than the former case (i.e., davg=15pavg).

Even though the simulation runs are made at every ex-
perimental condition, the system saturates (i.e., the system
becomes unstable) at high utilization rates even for the
low machine breakdowns. For that reason, the results are
presented for only the low utilization case. Furthermore,
because of the space limitation, we give the results with the
MOD rule.

First, as displayed in Tables 6–8, the performance of the
�owtime estimation methods deteriorates for all shop con-
ditions as the eDciency level (e) is decreased (i.e., more
frequent breakdowns are allowed to occur). Moreover, we
observe that increasing the mean duration of breakdowns
(e.g., d=15p) negatively aIects the performance of the all
the methods for all criteria. It seems that the well known
TWK method is the most sensitive method to the changes
in the eDciency level in the system. This is because TWK
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Table 6
Machine breakdown results for MOD at low utilization

� d level Methods ML STDL MT MSL MAL MSQL MF

Balanced shop
90% d = 5p OBE 4.40 11:19∗ 5.50 145:75∗ 6:60 140.12 21.03

TWK 6.55 14.64 7.63 261.97 8.71 255.67 20:41∗

JIQ 3.55 12.19 5.10 163.59 6.65 155.26 21.31
COFS −1.51 15.78 4:02∗ 252.11 9.55 92:50 22.64
OFS −1:18∗ 15.99 4.16 258.92 9.50 99.92 22.55

d = 15p OBE 7.28 18:07∗ 8.55 381:73 9.82 373:87 25.78
TWK 11.07 22.66 12.15 640.29 13.23 633.82 24:93∗

JIQ 6.04 18.65 7.91 386.43 9:78 373.92 26.34
COFS −1.27 22.80 6:27∗ 523.71 13.82 243.00 28.23
OFS 0:09∗ 22.76 6.84 520.03 13.59 274.12 27.84

80% d = 5p OBE 9.92 21.09 10.63 559.27 11:33 555.35 30.52
TWK 15.50 28.08 15.93 1061.49 16.37 1059.51 29:37∗

JIQ 8.98 23.54 10.10 651.80 11.43 645.41 31.28
COFS −2.47 19:99∗ 4:64∗ 411:48 11.75 178:34∗ 34.98
OFS 0:27∗ 20.75 5.59 437.84 11.45 251.90 33.93

d = 15p OBE 16.13 28.80 17.05 1099.93 17.97 1092.99 40.51
TWK 25.35 38.22 25.79 2133.03 26.22 2131.03 39:22∗

JIQ 14.26 30.35 15.79 1137.68 17.32 1125.44 41.81
COFS −2.93 27.69 7:52∗ 778.99 17.97 342:67∗ 46.70
OFS 1:90∗ 27:36 9.52 756:32 17:14 478.15 45.40

Unbalanced shop
90% d = 5p OBE 4.84 15:02∗ 6.04 258:02∗ 7:24∗ 250.02 22.77

TWK 6.64 20.95 8.02 508.47 9.40 498.81 22:00∗

JIQ 3.90 18.19 5.69 368.56 7.48 357.73 23.05
COFS −1.45 18.51 4:34∗ 350.91 10.13 159:37∗ 24.72
OFS −0:50∗ 18.54 4.73 351.39 9.95 194.15 24.26

d = 15p OBE 7.84 21:15∗ 9.22 517:93∗ 10:60 506.51 27.84
TWK 11.31 27.04 12.67 878.88 14.02 869.29 26:67∗

JIQ 6.47 23.33 8.56 600.11 10.65 585.02 28.09
COFS −1.01 24.27 6:52∗ 593.66 14.05 294:21∗ 30.35
OFS 0:81∗ 24.28 7.33 595.29 13.84 364.82 29.99

80% d = 5p OBE 14.29 82.98 15.29 10979.27 16:28 10965.42 41.02
TWK 22.45 101.83 22.96 17728.16 23.46 17725.50 37:81∗

JIQ 13.67 91.88 15.38 12400.27 17.09 12384.94 41.08
COFS −0:74∗ 61:47∗ 8:36∗ 6033:46∗ 17.46 5567:01∗ 48.34
OFS 5.45 86.03 12.11 12450.21 18.77 12128.56 47.02

d = 15p OBE 20.27 77.98 21.42 10216.06 22:57 10199.20 50.73
TWK 31.24 94.20 31.76 13314.55 32.27 13311.82 46:60∗

JIQ 19.11 90.06 21.10 12244.02 23.08 12222.33 51.59
COFS −1:08∗ 62:49∗ 10:83∗ 5740:43∗ 22.73 5080:94∗ 61.16
OFS 7.54 75.30 15.16 8191.36 22.79 7837.68 57.13

is based on only job information. All the other methods
that utilize the shop information work eIectively and hence,
they show some level of robustness with respect to machine
breakdowns.

In general, OBE is the best method when used with FCFS.
For the MOD and SPT rules, there is no single �owtime
estimation method which is the best for every condition.
It appears that OFS and COFS now compete with OBE,
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Table 7
Machine breakdown results for FCFS al low utilization

� d level Methods ML STDL MT MSL MAL MSQL MF

Balanced shop
90% d = 5p OBE 3.54 10:91∗ 5:60∗ 131:93∗ 7:66∗ 111:57∗ 30.65

TWK 14.27 19.29 15.67 583.43 17.07 570.29 30.65
JIQ 4.70 12.72 6.94 184.45 9.19 160.61 30.65
COFS −4.97 25.67 6.01 691.05 16.99 148.20 30.65
OFS −0:49∗ 21.53 7.37 465.19 15.23 196.94 30.65

d = 15p OBE 5.26 17:03∗ 8:18∗ 318:77∗ 11:11∗ 282:09∗ 38.59
TWK 22.22 26.73 23.50 1220.84 24.78 1208.91 38.59
JIQ 6.89 18.76 9.81 401.12 12.72 361.52 38.59
COFS −8.09 37.34 8.38 1475.19 24.85 324.62 38.59
OFS 0:86∗ 29.64 10.97 881.74 21.09 450.33 38.59

80% d = 5p OBE 8.57 15:63∗ 10.46 318:92∗ 12:35∗ 296.03 51.58
TWK 35.21 32.34 35.69 2333.23 36.17 2329.63 51.58
JIQ 11.22 18.49 13.26 470.98 15.10 445.62 51.58
COFS −16.79 43.87 6:42∗ 2272.70 29.63 210:61∗ 51.58
OFS 0:99∗ 29.55 11.28 880.62 21.57 444.25 51.58

d = 15p OBE 11.92 25:15∗ 15.48 775:91∗ 19:05∗ 711.75 66.82
TWK 50.44 41.74 50.87 4354.75 51.30 4351.50 66.82
JIQ 15.48 27.93 18.77 1023.57 22.05 961.45 66.82
COFS −26.60 62.22 8:80∗ 4703.74 44.20 422:83∗ 66.82
OFS 4:54∗ 38.76 16.88 1530.01 29.21 914.80 66.82

Unbalanced shop
90% d = 5p OBE 4.02 11:42∗ 6:04∗ 147:17∗ 8:07∗ 126:38∗ 35.23

TWK 17.31 23.76 18.94 889.30 20.57 871.44 35.23
JIQ 4.84 13.86 7.40 217.13 9.95 185.96 35.23
COFS −6.90 31.16 6.56 1045.77 20.01 183.65 35.23
OFS 0:52∗ 24.39 8.90 599.79 17.28 291.32 35.23

d = 15p OBE 5.73 17:78∗ 8.71 350:37∗ 11:69∗ 309:75∗ 43.89
TWK 25.97 30.61 27.41 1644.93 28.86 1629.11 43.89
JIQ 6.86 19.97 10.24 448.29 13.63 394.61 43.89
COFS −11.29 43.90 8:68 2111.39 28.66 360.78 43.89
OFS 2:38∗ 32.01 12.69 1034.72 23.00 580.33 43.89

80% d = 5p OBE 12:09 20:13∗ 14.39 570:59∗ 16:69∗ 533.18 87.82
TWK 69.91 61.84 70.38 9954.84 70.85 9951.02 87.82
JIQ 18.07 25.22 19.92 1028.52 21.77 1001.07 87.82
COFS −61.66 107.78 6:58∗ 20493.23 74.82 381:29∗ 87.82
OFS 13.77 52.73 27.10 3403.72 40.43 2611.44 87.82

d = 15p OBE 15:25∗ 27:85∗ 18.87 1023:75∗ 22:49∗ 951.60 101.11
TWK 83.20 67.47 83.64 13030.48 84.08 13026.86 101.11
JIQ 21.35 32.62 24.53 1589.56 27.72 1523.02 101.11
COFS −80.31 129.79 7:80∗ 33532.62 95.91 499:08∗ 101.11
OFS 18.94 57.02 32.23 4126.43 45.53 3322.97 101.11

because they use the �owtime information of the most re-
cently completed jobs. This information helps in capturing
the changes of the shop conditions more eIectively as com-
pared to the other information used in the methods.

6.2. Processing time variation

In practice, processing times are estimated by some mech-
anisms (e.g., statistical methods, work-time study, etc.).
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Table 8
Machine breakdown results for SPT at low utilization

� d level Methods ML STDL MT MSL MAL MSQL MF

Balanced shop
90% d = 5p OBE 5.38 13:91∗ 6.73 224:64∗ 8:08∗ 216.83 20.14

TWK 6.22 15.37 7.65 278.56 9.08 269.47 20.14
JIQ 3.87 14.98 6.10 242.26 8.34 227.32 20.14
COFS −2.19 22.93 5:67∗ 535.17 13.53 195:59∗ 20.14
OFS −1:67∗ 22.58 5.83 517.17 13.33 201.99 20.14

d = 15p OBE 8.65 20:78∗ 10.17 510:56∗ 11:69∗ 500.54 24.63
TWK 10.71 23.07 12.15 653.28 13.59 644.00 24.63
JIQ 6.80 22.24 9.59 545.41 12.38 521.48 24.63
COFS −1.81 31.37 8:56∗ 993.88 18.93 431:48∗ 24.63
OFS −0:71∗ 30.60 8.90 942.64 18.51 451.49 24.63

80% d = 5p OBE 12.28 26:26∗ 13.24 866:20∗ 14.19 860.36 29.11
TWK 15.19 28.89 15.83 1098.26 16.48 1095.01 29.11
JIQ 10.05 28.36 12.07 935.47 14:09∗ 919.69 29.11
COFS −2.86 35.26 8:44∗ 1278.11 19.74 643:24∗ 29.11
OFS −1:29∗ 34.53 8.92 1221.06 19.13 676.69 29.11

d = 15p OBE 19.30 35:17∗ 20.57 1631:59∗ 21:84∗ 1621.18 38.79
TWK 24.86 38.63 25.53 2139.07 26.19 2135.52 38.79
JIQ 16.38 37.55 19.33 1703.06 22.28 1669.16 38.79
COFS −2.98 45.85 12:90∗ 2132.43 28.78 1055:47∗ 38.79
OFS 0:34∗ 44.18 13.93 1971.26 27.52 1141.49 38.79

Unbalanced shop
90% d = 5p OBE 5.90 19:22∗ 7.42 425:17∗ 8:94∗ 413:75∗ 21.47

TWK 7.13 21.74 8.62 551.75 10.11 541.92 21.47
JIQ 4.36 21.46 6:90 506.51 9.45 487.62 21.47
COFS −0.29 27.04 6.91 756.26 14.11 430.26 21.47
OFS 0:18∗ 26.86 7.07 745.86 13.96 440.11 21.47

d = 15p OBE 9.23 24:93∗ 10.97 722:99∗ 12:71∗ 707:66 26.29
TWK 11.96 28.66 13.44 993.80 14.93 983.92 26.29
JIQ 7.41 27.95 10.62 863.06 13.83 832.25 26.29
COFS 0:75∗ 34.37 10:05∗ 1202.37 19.34 710.93 26.29
OFS 1.75 33.94 10.40 1175.41 19.05 737.82 26.29

80% d = 5p OBE 18.21 93:54∗ 19.42 13215:85∗ 20:62∗ 13205:82∗ 37.22
TWK 22.88 100.32 23.51 14925.52 24.15 14922.21 37.22
JIQ 14.74 100.03 18.19 14543.78 21.64 14501.94 37.22
COFS 3:97∗ 102.11 15:92∗ 14613.95 27.87 13629.89 37.22
OFS 6.09 101.95 16.65 14625.33 27.20 13782.86 37.22

d = 15p OBE 24.69 93:40 26.34 13545:21∗ 27:99∗ 13525:72 46.77
TWK 32.43 101.44 33.09 15845.06 33.76 15841.40 46.77
JIQ 20.83 100.69 25.21 15059.67 29.60 14991.13 46.77
COFS 4:99∗ 103.01 20:33∗ 14939.49 35.68 13615.13 46.77
OFS 8.72 102.49 21.66 14927.20 34.59 13890.89 46.77

These estimates are then used to make various decisions such
as due date assignment and scheduling. However, actual pro-
cessing times realized on the machines can be quite diIerent
than the estimated quantities due to variations in machining

conditions, material, etc. In order to model this situation, we
perturb the processing times in the experiments. The initial
estimates are still drawn from the exponential distribution
but only some percentages (plus or minus) of the sampled
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Fig. 1. Mean absolute lateness (MAL) versus processing time vari-
ation (PV).

quantities are used as the actual processing times in simula-
tion runs. We use the following model for processing time
variation:

p′
ij = (1 + V × U [− 1;+1])× pij;
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Fig. 2. Standard deviation of lateness (STDL) versus processing
time variation (PV).

where pij is the processing time value drawn from the
exponential distribution function (estimate of the process-
ing time), V is the level of the processing time variation,
U [ − 1;+1] is the uniform distribution with a minimum
value −1 and a maximum value +1, p′

ij is the processing
time deviated from its estimated value (actual value of pro-
cessing time).
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Table 9
Load variation results for MOD at low utilization (65%)

LV Flowtime ML STDL MT MSL MAL MSQL MF
level estimation

Balanced shop
LV = 10% OBE 0.62 6:04∗ 2.15 37:49∗ 3:68∗ 30:34∗ 14.76

TWK 0.67 8.10 2.76 67.56 4.85 53.12 14:54∗

JIQ −0:05∗ 6.66 1:95∗ 45.08 3.96 34.76 14.88
COFS −0.97 11.66 2.94 137.50 6.86 41.69 15.28
OFS −1.17 11.96 2.90 145.23 6.98 41.74 15.27

LV = 20% OBE 0.55 5:96∗ 2.10 36:46∗ 3:65∗ 29:28∗ 14.58
TWK 0.49 8.19 2.70 69.57 4.90 53.94 14:35∗

JIQ −0:12∗ 6.64 1:91∗ 45.09 3.94 34.61 14.70
COFS −0.89 11.48 2.95 133.21 6.79 40.68 15.11
OFS −1.11 11.86 2.92 142.58 6.95 41.63 15.09

Unbalanced shop
LV = 10% OBE 0.82 7:40∗ 2.42 57:11∗ 4:01∗ 48:17∗ 15.55

TWK −0:07∗ 10.16 2.65 107.55 5.37 84.69 15:30∗

JIQ −0.29 8.79 2:07∗ 80.85 4.42 67.15 15.69
COFS −1.35 13.24 3.00 178.40 7.35 54.42 16.21
OFS −1.11 13.07 3.10 173.45 7.31 62.97 16.13

LV = 20% OBE 0.75 7:73∗ 2.39 63:23∗ 4:03∗ 53:92∗ 15.43
TWK −0:19 10.76 2.68 123.55 5.55 98.70 15:17∗

JIQ −0.37 9.16 2:05∗ 89.56 4.47 75.34 15.53
COFS −1.26 13.52 3.05 186.23 7.36 58.61 16.03
OFS −1.08 13.54 3.14 187.14 7.36 69.83 15.98

The �owtime methods are tested under three levels of
processing time variation, V = 0:2, 0.4 and 0.6 for both the
balanced and unbalanced shop conditions.

As displayed in Figs. 1 and 2, the performance of the
�owtime estimation methods deteriorate as the processing
time variation level (V ) increases. In general, OBE is the
best rule. It is also robust with respect to processing time
variations. The processing time variation aIects the perfor-
mance of the methods at the same rate except for the TWK
and OFS methods. When the system is unbalanced, OFS
reacts more to the changes in processing time variation for
both MAL and STDL. The same behavior is observed for
TWK in the balanced shop for the MAL performance.

6.3. Load variation

In our study, we also consider load variations to model
possible changes in the demand rates due to external factors.
In the model, load variation is adjusted by varying the arrival
rate of the jobs to the system. This means that the load level
of system (consequently, the utilization of the machines)
changes over time. Based on pilot experiments, we change
the system load level after the completion of every 500 jobs.
The arrival rate is updated to a new value as follows:

a′ = U [aHLV ; a
L
LV];

where LV is the load variation level, a′ the updated arrival
rate, aHLV the arrival rate which makes the load level of the
system LV percent higher than the average load level of the
system and aLLV is the arrival rate which makes the load level
of the system LV percent lower than the average load level
of the system.

Again two levels of load variation is used in the experi-
ments (LV = 10% and 20%).

The results are given in Table 9. In contrast to the pre-
vious two cases, the �owtime estimation methods are not
considerably aIected by the load variation. This means that
the system compensates itself in the long-run for the arrival
rate variations. We also note that the system recovers from
the load variation easily at low utilization. It is also observed
that OBE performs better than the other estimation methods
for all dispatching rules except for the ML and MT perfor-
mance measures.

7. Discussion

In this study, we developed a new method for estimat-
ing the job �owtimes in a dynamic job shop environment.
The proposed method uses the detailed job, shop and
route information for each operation of a job and produces
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�owtime estimates on the operational basis. The method
considers explicitly the machine imbalance information in
the estimation process.

To test the performance of the �owtime estimation meth-
ods, we conducted a full factorial design with four factors
(�owtime estimation method, dispatching rule, shop utiliza-
tion and shop balance). The proposed method was compared
with two popular methods (JIQ and TWK) and two recently
proposed methods (COFS and OFS). A wide variety of per-
formance measures were used to compare the estimation
methods.

First stage experiments with regression analyses indicated
that the estimated equations for FCFS explain a larger pro-
portion of variation of the �owtimes when compared to
MOD and SPT rules. This is due to the fact that SPT and
MOD create a more dynamic environment which makes it
diDcult to estimate the job �owtimes.

Second stage analysis showed that as the shop balance
deteriorates and/or the utilization level increases, the per-
formance of the estimation methods also deteriorate. The
results also indicated that the proposed method (OBE) per-
formed better than other methods with some exceptions with
respect to the mean lateness and mean tardiness measures.
Duncan’s Multiple Range test also reinforced the fact that
OBE is the overall best.

At the <nal stage, we measured the sensitivity of the �ow-
time estimationmethods to variability in the shop conditions.
The results showed that the �owtime estimation methods are
quite sensitive to machine breakdowns and processing time
variation but not so much to load variations.

The results presented in this paper also provide useful
information for practitioners. First, as shown in this paper,
the performance of the manufacturing systems can consider-
ably be improved by using the information intensive meth-
ods rather than the simple methods (i.e., TWK). Second, the
use of detailed information in estimating �owtimes provides
signi<cant improvement in the system performance over the
other methods that utilize more aggregate information. In
today’s computer based environments, it is relatively easy
now to collect and process the detailed information. Hence,
the shop managers can implement more sophisticated and
information intensive methods such as OBE.

Third, the results of this study indicated that estimating
�owtimes for each operation (i.e., operation by operation) is
a better approach than the traditional job based estimation.
Note that similar conclusions were drawn in the scheduling
literature in which operation-based due date rules were found
better than the job-based rules. And fourth, managers should
pay attention to the reliability of machines and variability
in operation times in the �owtime estimation. Because our
results indicated that variability in the system can aIect the
system performance more than the load level. The practical
implication of this <nding is that variability and uncertainty
are two real enemies of modern production systems and
reducing their levels may worth more than bene<ts of using
more sophisticated shop �oor planning and control systems.

As to the implementation issues, the parameters of the
proposed approach can be determined either using the real
data or simulated data. Of course, the latter approach is
easier to implement since a valid simulation model of the
system can quickly produce the necessary data for the
analysis. In the former case, however, the data is col-
lected either automatically by sensors and computer sys-
tems or by the help of human operator. With today’s
computing power and easy-to-use statistical packages in
computer-integrated manufacturing systems, the analy-
sis can also quickly be done in the oI-line mode. Besides,
one does not have to change the parameters frequently.
The analysis can be done whenever there is a need for
that (i.e., when there is major changes production prac-
tice). Even if the system conditions change during the
daily operations of the system, the regression coeDcient
can be obtained from the table look-up functions which
could be established in advance for each experimen-
tal condition. In short, the computational burden of the
proposed method is not high. Besides, the other �owtime
estimation methods (e.g., TWK) also require one or more
parameters to be estimated in the same fashion.

As a further research topic, the proposed �owtime esti-
mation method can be combined with a due date setting pro-
cedure to attain some other system performance objectives
(i.e., minimization of costs or meeting some service level
constraints, etc.). Secondly, operational �ow time estimates
generated by the proposed method can be used in several
shop �oor decisions such as scheduling, rerouting of jobs,
order review/release, expedition of jobs, or any other area
which makes use of �owtime information. Thirdly, in the
analysis of simulation results we note that R2 values of re-
gression coeDcients are relatively higher for the <rst few
operations of the jobs. Thus, we expect that the same good
performance from OBE in large systems as the �owtime es-
timates of the earlier operations in the sequence can dom-
inate the entire estimation process. Since it also employs
more detailed information about the shop status, we expect
OBE to perform better than the other methods in larger sys-
tems (i.e., a system with more than 5 machines). But this
conjecture remains to be tested in future studies. Finally,
the methodology proposed in this study can be extended to
the environments in which the eIects machine breakdowns,
processing time variations and load variations are explicitly
considered during model constructions.
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