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Abstract

In this paper, a moving object detection method in video sequences is described. In the first step, the camera motion is
eliminated using motion compensation. An adaptive subband decomposition structure is then used to analyze the motion
compensated image. In the “low—high” and “high—low” subimages moving objects appear as outliers and they are detected
using a statistical detection test based on fractional lower-order statistics. It turns out that the distribution of the subimage
pixels is almost Gaussian in general. On the other hand, at the object boundaries the distribution of the pixels in the subimages
deviates from Gaussianity due to the existence of outliers. By detecting the regions containing outliers the boundaries of the
moving objects are estimated. Simulation examples are presented.
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1. Introduction

In this paper, a moving object detection method in
video sequences based on adaptive subband decom-
position and fractional lower-order statistics (FLOS)
is described. Detection of moving objects can be a
complicated task especially when there is noise and
the video camera is in motion. In some classical ob-
ject detection methods [1,12,3,7], variances of the ob-
ject and the background is compared to distinguish the
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object from the background. In this paper, we take ad-
vantage of the fact that objects produce outliers and
local extrema in the motion compensated images and
the wavelet (or subband) domain. We determine the
object boundaries by detecting the regions having ex-
trema and outliers using FLOS.

In our method, the first step is the elimination of
the camera motion using motion compensation. After
motion compensation, the resulting image basically
contains the moving regions and objects. This image is
further processed using a two-dimensional (2D) adap-
tive filter bank [5] in which the filters are updated
according to a least mean square (LMS) type adapta-
tion algorithm. In this filterbank structure, each pixel
is adaptively predicted using an appropriate neigh-
borhood structure and four subimages are obtained.
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Fig. 1. Adaptive subband decomposition structure.

It turns out that the distribution of the “low—high”
and “high—low” subimage pixels is almost Gaussian in
general. However, moving objects produce outliers in
the residual image as the pixels of the moving objects
or their boundaries cannot be predicted accurately us-
ing the neighboring pixels. We detect the outliers us-
ing a fractional lower-order statistical test. In static
regions the test statistic is close to zero whereas in
regions containing the moving object(s) it produces
high values. Subimages are analyzed in small blocks
and moving objects are determined by estimating the
FLOS-based statistic in each block.

In Section 2, we present the 2D adaptive subband
decomposition method which tries to eliminate the
static background in highbands. In Section 3, we
review the FLOS-based statistical test that we use
for moving object detection over highband sub-
images, and present the results of simulation studies
in Section 4.

2. Adaptive subband decomposition

The concept of adaptive subband decomposition is
developed in [4,5]. Adaptive subband decomposition
can be considered as a trade-off between the adap-
tive prediction and ordinary lifting [11] based wavelet
transform.

The adaptive subband decomposition structure
[4-8] is shown in Fig. 1. The structure was developed
for 1D signals, but we can apply it to 2D signals by
using the row-by-row and column-by-column filtering
methods as in 2D separable subband decomposition
(or wavelet transform).

The first subsignal u; is a downsampled version of
the original signal u, a 1D signal which is usually a
column or a row of the input image. As u; is the result
of a down-sampling by 2 operation, it contains only
the even samples of the signal u. The sequence u; is a
shifted and downsampled by 2 version of #, containing

only odd samples of u. We predict u; using u; and
subtract the estimate of «; from u, to obtain the signal
uy, which contains unpredictable regions such as edges
of the original signal.

Various adaptation schemes can be used for the pre-
dictor P; [5]. In our work, we used the adaptive FIR
estimator, as it proved to be good for the sample im-
ages that have been tested. This adaptive FIR estima-
tor is obtained by predicting the odd samples u;(n)
from the even samples u;(n) as follows:

N
dy(n) =Y Wy (n—k) (1)
k=—N
or
N
dy(n) =Y Wauu(2n — 2k). (2)
k=—N

The filter coefficients w, ;’s are updated using an
LMS-type algorithm as follows:

v.e(n)
(V112
where W(n) = [wy,_n,..., W, n] is the weight vector
at time instant n,

Vo =[ui(n — N),uy(n — N +1),...,u1(n + N)]".

(4)

wn+1)=wmn)+u

(3)

The subsignal uy, is given by

up(n) = uy(n) — iy(n), 5

where uy, is the error we make in predicting the odd
samples from the even samples, thus,

e(n) = up(n) = up(n) — ¥, (M)W(n). (6)

Both /' and /% norms can be used in normalizing
the update equation in (3) depending on the character-
istics of the signal [2]. The use of /! norm in (3) pro-
duces more robust results, if the images are corrupted
by salt and pepper type noise which can be modelled
via a-stable random process or epsilon contaminated
Gaussian process concept. In this paper, the images
are directly obtained from either a CCD camera or an
infrared camera and they are almost noise free. There-
fore, regular Euclidian norm is used in experimental
studies. For the initial filter one can use a typical
lowpass FIR filter of length 2N + 1 for the adaptive
predictor. The convergence of the adaptive filter
is observed to be fast in natural images, and we have
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not observed any divergence problem in all images
that we have analyzed.

This structure is the simplest adaptive filterbank.
Other adaptive filterbanks in which the “low-band”
subsignal is a lowpass filtered and downsampled ver-
sion of the original signal can be found in [5].

If the motion compensated image is processed by an
adaptive filterbank we expect that small moving object
boundaries cannot be predicted as good as the other
static pixels. Thus outliers and/or local extrema will
appear in u,[n] in regions corresponding to moving
objects.

The extension of the adaptive filterbank structure
to two dimensions is straightforward. As in the case
of ordinary subband decomposition, we process the
image rowwise first and obtain two subimages. Con-
sequently, these two subimages are processed colum-
nwise and the low—low subimage x;;, the low—high
subimage x;,, the high—low subimage xj;, and the
high—high subimage x;;, are obtained.

In general, the “low—high” and “high—low” images
are sharper (smother) at the edges of the objects (static
image regions) in adaptive subband compared to reg-
ular subband decomposition. This is due to the fact
that static pixels can be predicted very effectively us-
ing the neighboring pixels whereas the pixels belong-
ing to moving objects cannot be predicted from the
background pixels. Adaptive subband decomposition
gives better results in moving target detection for this
reason.

3. Fractional lower-order statistical test

In our approach, the video containing a moving ob-
ject(s) is (are) analyzed as follows:

e A motion compensated image is obtained from two
consecutive images [10].

e Adaptive subband decomposition of the motion
compensated image is computed.

e The resulting subimages x;,[m, n] and x;;[m, n] are
summed and analyzed block-by-block by using the
lower-order statistical detection test, and

e The blocks in which the lower-order statistics
exceeds a threshold are marked as the region(s)
containing the moving object.

In Fig. 2, an image of a moving minivan extracted

from a video is shown. The motion compensated im-

Fig. 2. An image of a moving minivan from a video sequence.

Fig. 3. Motion compensated image.

age obtained using this image frame and the next one
is shown in Fig. 3. In this video the camera is fixed,
therefore, the image shown in Fig. 3 is simply obtained
by subtracting the two consecutive image frames from
each other. In Fig. 4, the subimage x;;, and in Fig. 5
the subimage x;; are shown, respectively.

It is experimentally observed that in regions with no
moving objects, the subimages x;;[m, n] and xj;[m, n]
have Gaussian like distribution in most natural im-
ages whereas regions containing moving objects have
outliers and the distribution of pixels deviate from
Gaussianity (the high—high subimage x;,[m,n] con-
tains almost no information for most practical images
and it is not used in our algorithm). The appearance
of outliers at object boundaries in subimages is due
to the fact that pixels of a moving object cannot be
accurately predicted using the surrounding pixels as
shown in Figs. 4 and 5.
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Fig. 4. The low—high subimage obtained using adaptive subband
decomposition of the motion compensated image.

Fig. 5. The high-low subimage obtained using adaptive subband
decomposition of the motion compensated image.

In [3,7], variance or power is used to distinguish
the objects from the background in the motion com-
pensated image. It is assumed that the object and the
background have different variances. Since the data
that we analyze is essentially non-Gaussian and con-
tains outliers due to moving objects FLOS is used in-
stead of variance in this paper. The use of FLOS brings
robustness and reduces the number of false alarms.

Recently Gonzales and Arce [6] proposed a frame-
work called zero-order statistics to analyze very im-
pulsive processes, and they defined a statistic called
geometric power. We use the geometric power as a
test statistic in the analysis of motion compensated
image. The geometric power is defined as

. 1 M N
So= exp<M — Zzlog|e[m,n1|) NG

m=1 n=1
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Fig. 6. Computation of the test statistic in overlapping windows.

where e[m,n] represents the sum of the pixel val-
ues xyu[m,n] and xp[m,n] and M x N is the size
of the region in which S is estimated. As pointed
above, the subimages x;, and x;; are obtained by
processing the motion compensated image using the
adaptive subband decomposition. The high—high
subimage xp,[m,n] contains almost no information
for most practical images and it may contain noise
thus it is not used in our algorithm. The statistic S,
can also be expressed as follows:

M ON 1/(MxN)
So= (H 11 |e[m,n]|> : ®)

m=1 n=1

Subband images, x;;, and x;;, are zero-mean images
as they do not contain any low-frequency information
(Figs. 4 and 5). In static regions pixels of x;; and
xp are close to zero. Therefore, we expect that the
geometric power takes small values in static image
regions and it should take large values around moving
objects due to outliers in e[m, n].

We divide the image to be analyzed into M by
N blocks. The FLOS-based statistic (8) is calculated
within each block inside the image. These blocks may
overlap as shown in Fig. 6. In our experimental work
we used blocks of size M = 8 by N = 8 where over-
lapping occurs at 4 pixel steps. If the FLOS-based
statistic exceeds a threshold value in a block then this
block is marked as a region containing a moving ob-
ject or part of a moving object if the object size is
larger than 8 x 8. The above procedure is carried out
over the entire video sequence.

As described above in each image block a statisti-
cal test is carried out to detect the moving object(s).
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The detection procedure can be considered as a hy-
pothesis testing problem in which the null hypothesis
Hy corresponds to the no moving object case and H;
corresponds to the presence of a moving object

e Hy: Sy < Ty,

(] Hll §0 = Th.

The threshold 7, is experimentally determined as de-
scribed in the next section. The blocks in which the
test statistic exceeds the threshold, T}, are marked as
regions containing moving objects.

Another statistical detection approach is based on
estimating the parameter o of Symmetric a-stable dis-
tribution in overlapping image blocks. We expect that
the parameter o should be close to 2 in static regions
where the distribution of image e[m,n] pixels is al-
most Gaussian, and o takes lower values than 2 around
moving objects due to outliers in e[m, n].

4. Experimental results

In this section, we present simulation studies. We
test the performance of the detection scheme by ana-
lyzing 10 video sequences containing moving objects
on various backgrounds. As described in Sections 1
and 2, motion compensated images are obtained in
the first step. A classical block matching based mo-
tion compensation algorithm with subpixel accuracy
is used [12].

In the second step, motion compensated images are
filtered using the adaptive wavelet transformer and the
subimages x;,[m, n] and x;;[m, n] are obtained. Finally,
the test statistic values are obtained in small over-
lapping blocks.

In our detection scheme we use an adaptive thresh-
old value which is determined from the first two
images of the video sequence. The image e[m,n]
is divided into three horizontal strips. In each strip the
mean and the variance of the test statistic is estimated
and a threshold is determined for each strip as follows:
Th,,*:/vli‘f'/”LGl‘, 1= 1,2,3, (9)
where y; and o; are the mean and the standard devi-
ation of the test statistic in the strip i, respectively.
The parameter 1 is usually selected as 3 as a rule of
thumb which is based on the fact that in regular dis-
tributions including the Gaussian distribution almost

Fig. 7. The detected moving object: Regions exceeding the thresh-
old based on FLO statistic, geometric power.

Fig. 8. Regions exceeding the variance-based threshold.

all of the observations fall within the segment deter-
mined by the 3 g;. Anything exceeding the threshold
Ty,i 1s considered to be an outlier. In our experiments
the parameter / is selected as 2.5 to further reduce the
rate of missed targets.

The image shown in Fig. 7 shows the small re-
gions exceeding the threshold based on the geometric
power, the FLO statistic defined in Eq. (7). The mini-
van shown in Fig. 2 is clearly detected. The image
shown in Fig. 8 shows the small regions exceeding
the variance-based threshold. The minivan is detected
but there are four other false alarms.

In all of the 10 test videos the moving targets are
successfully detected. 26 detection results are sum-
marized in Table 1. In these detection experiments
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Table 1

Comparison of variance, geometric power and HOS-based detection methods in 26 different scenarios in 10 videos

Detection method Variance based HOS based Geometric power based
Number of False False False
Scenario targets in frame alarms Miss alarms Miss alarms Miss
1 1 0 0 1 0 2 0
2 1 6 0 0 0 1 0
3 1 1 0 0 0 0 0
4 1 1 0 2 0 2 0
5 1 4 0 6 0 4 0
6 1 4 0 0 0 2 0
7 1 2 0 0 0 3 0
8 2 2 0 0 0 1 0
9 2 4 0 1 0 1 0
10 1 9 0 0 0 0 0
11 1 7 0 0 0 0 0
12 2 3 0 0 0 0 0
13 3 4 0 1 0 2 0
14 4 5 0 2 0 1 0
15 4 2 0 1 0 1 0
16 1 2 0 0 0 2 0
17 1 4 0 0 0 1 0
18 1 4 0 0 0 1 0
19 3 2 0 1 1 0 0
20 3 2 0 0 0 0 0
21 3 0 0 0 0 0 0
22 1 2 0 0 0 2 0
23 1 7 0 7 0 4 0
24 2 1 1 0 1 0 1
25 1 3 0 9 1 2 0
26 1 3 0 4 0 2 0
Total 43 84 1 35 3 34 1

the number of false alarms for variance, higher-order
statistics (HOS) and geometric power-based detection
methods are 3.23, 1.35, and 1.31 per image, respec-
tively. The use of geometric power significantly re-
duces the number of false alarms compared to the
variance-based detection method. Miss rate of geomet-
ric power-based method is less than the HOS-based
test statistic which utilizes third- and fourth-order cor-
relations [13].

Variance or geometric power-based detection meth-
ods rarely miss moving objects in all the videos that
we have tried. Even if a moving object is missed in
the current and previous image frames it is always de-
tected in the next two or three image frames.

The performance of the adaptive predictor to the
wavelet transform, and adaptive subband decompo-

sition [5] is compared in [13]. If regular subband
decomposition is used instead of adaptive subband
decompositions then in the above data set the
false alarm rates increase to 8.65 per image for
variance-based detection method and 1.92 per image
in FLOS-based detection method, respectively. In
general, adaptive subband decomposition provides a
good trade-off between regular 2D adaptive predic-
tion and the ordinary wavelet transform in terms of
detection performance and the computational cost.

The computational cost of the adaptive prediction-
based method [13] is much higher than the adap-
tive subband decomposition-based method in which a
quarter size image x;; + x;; is analyzed. Whereas in
adaptive prediction-based method FLOS test computa-
tions are carried out over the entire image x.
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5. Conclusion

In this paper, a moving target detection method
is proposed. The method is based on adaptive sub-
band decomposition and fractional lower-order statis-
tics. Experimental results indicate that the proposed
method is more robust compared to second-order
statistics based methods.

The FLOS-based detection method can be com-
bined with other segmentation clues as in [7] to
achieve an automatic detection of the moving objects
from the background.

The new video coding standard MPEG-4 [1,7] is an
object-based method in the sense that objects in video
can be defined and coded separately. Due to this rea-
son the problem of object boundary estimation receive
a lot of attention [3,7,9]. The proposed FLOS-based
method can be used for this application as well. In
our approach a tight region containing the moving ob-
ject is determined. Detecting the exact boundary of
the object within this region is a much easier prob-
lem than analyzing the entire image. For example, the
active-contour-based boundary detection method pro-
posed in [9] can be applied inside the detected region
instead of the entire frame.

The proposed method is computationally efficient as
the detection operation is carried out over quarter size
subband images instead of the full size image frame.
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