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Abstract

This study compares the performances of di erent methods for the di erentiation and localization of commonly encountered
features in indoor environments. Di erentiation of such features is of interest for intelligent systems in a variety of applications
such as system control based on acoustic signal detection and identi/cation, map building, navigation, obstacle avoidance,
and target tracking. Di erent representations of amplitude and time-of-2ight measurement patterns experimentally acquired
from a real sonar system are processed. The approaches compared in this study include the target di erentiation algorithm,
Dempster–Shafer evidential reasoning, di erent kinds of voting schemes, statistical pattern recognition techniques (k-nearest
neighbor classi/er, kernel estimator, parameterized density estimator, linear discriminant analysis, and fuzzy c-means clustering
algorithm), and arti/cial neural networks. The neural networks are trained with di erent input signal representations obtained
using pre-processing techniques such as discrete ordinary and fractional Fourier, Hartley and wavelet transforms, and Kohonen’s
self-organizing feature map. The use of neural networks trained with the back-propagation algorithm, usually with fractional
Fourier transform or wavelet pre-processing results in near perfect di erentiation, around 85% correct range estimation and
around 95% correct azimuth estimation, which would be satisfactory in a wide range of applications.
? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Intelligent systems, especially those which interact with,
or act upon their surroundings need the model of the envi-
ronment in which they operate. They can obtain this model
partly or entirely using one or more sensors and/or view-
points. An important example of such systems is fully or
partly autonomous mobile robots. For instance, consider-
ing typical indoor environments, a mobile robot must be
able to di erentiate planar walls, corners, edges, and cylin-
ders for map-building, navigation, obstacle avoidance, and
target-tracking applications.
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Reliable di erentiation is crucial for robust operation and
is highly dependent on the mode(s) of sensing employed.
Sonar sensing is one of the most useful and cost-e ective
modes of sensing. The fact that sonar sensors are light,
robust, and inexpensive devices has led to their widespread
use in applications such as navigation of autonomous vehi-
cles through unstructured environments [1–3], map building
[4–6], target tracking [7], and obstacle avoidance [8]. Al-
though there are diHculties in the interpretation of sonar
data due to poor angular resolution of sonar, multiple and
higher-order re2ections, and establishing correspondence
between multiple echoes on di erent receivers [9,10],
these diHculties can be overcome by employing accurate
physical models for the re2ection of sonar. Sonar rang-
ing systems commonly employ only the time-of-$ight
(TOF) information, recording the time elapsed between
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Fig. 1. Horizontal cross sections of the target primitives/features di erentiated in this study.

the transmission and reception of a pulse [11]. A re-
view of work using this approach can be found in Refs.
[12,13].
The purpose of this paper is to present a comprehensive

comparison of a diverse array of methods for di erentiating
and localizing targets based on returns from inexpensive
sonar sensors. We consider several variations of each
method and determine their optimal operating con/gura-
tions and parameters. The methods considered are the target
di erentiation algorithm (TDA), Dempster-Shafer (D-S)
evidential reasoning, simple majority voting (SMV) and
various other voting schemes with preference ordering and
reliability measures, statistical pattern recognition tech-
niques (ordinary and generalized k-nearest neighbor (k-NN)
classi/ers, kernel estimator (KE), parameterized density
estimator (PDE), linear discriminant analysis (LDA), and
fuzzy c-means clustering (FCC) algorithm), and arti/cial
neural networks (ANNs).
In this paper, we consolidate the results of our studies

of the above methods, spanning a period of 5 years. Re-
sults associated with some of the methods listed above
were published in Refs. [12–15], sometimes in the con-
text of a speci/c application. This paper presents these
results uniformly together with previously unpublished
methods and results. To the best of our knowledge, there
is no previously published work undertaking such a uni-
form comparison of any substantial set of the methods
considered here with any comparable degree of generality.
Given the attractive performance for cost of sonar-based
systems, we believe that the results of this study will
be of great usefulness for those designing and imple-
menting sonar systems as well as researchers in this
area.
The paper is organized as follows: Section 2 describes

the sensing con/guration used in this study and introduces
the target primitives. In Section 3, the TDA used in ear-
lier work [14] is reviewed. The use of two non-parametric
classi/cation methods, D-S evidential reasoning and ma-
jority voting, is described in Sections 4 and 5, respectively.
In Section 6, statistical pattern recognition techniques are
considered. In Section 7, we focus on ANNs. In Section
8, the performances of all these classi/cation schemes in
target classi/cation and localization are compared based on
experimental data. In the last section, concluding remarks
are made.

2. Sonar sensing

The basic target types or features di erentiated in this
study are plane, corner, acute corner, edge and cylinder
(Fig. 1). In particular, we have employed a planar target, a
corner of �c = 90◦, an acute corner of �c = 60◦, an edge of
�e = 90◦, and cylinders with radii rc = 2:5; 5:0 and 7:5 cm,
all made of wood. Detailed re2ection models of these are
provided in Ref. [14].
The most common sonar ranging system is based on TOF

which is the time elapsed between the transmission and the
reception of a pulse. In commonly used TOF systems, an
echo is produced when the transmitted pulse encounters an
object and a range measurement r=ct0=2 is obtained (Fig. 2)
by simple thresholding [16]. Here, t0 is the TOF and c is the
speed of sound in air (at room temperature, c=343:3 m=s).
The major limitation of sonar sensors comes from their

large beamwidth. Although these devices return accurate
range data, they cannot provide direct information on the
angular position of the object from which the re2ection was
obtained. Sensory information from a single sonar sensor
has poor angular resolution and is usually not suHcient to
di erentiate more than a small number of target primitives
[17]. Improved target classi/cation can be achieved by us-
ing multiple sensors and by employing both amplitude and
TOF information. However, a major problem with using the
amplitude information of sonar signals is that the amplitude
is very sensitive to environmental conditions. For this rea-
son, and also because the standard electronics used in prac-
tical work typically provide only TOF data, amplitude in-
formation is rarely used. Barshan and Kuc’s early work on
the use of amplitude information [17] has been extended to
a variety of target types in Ref. [14] using both amplitude
and TOF information. In the present paper, amplitude and
TOF information from a pair of identical ultrasonic trans-
ducers a and b with center-to-center separation d = 25 cm
is employed to improve the angular resolution [15].
Panasonic transducers [18] with aperture radius a =

0:65 cm, resonance frequency f0 =40 kHz, and beamwidth
108◦ are used in our experiments. The entire sensing unit
is mounted on a small 6 V computer-controlled stepper mo-
tor with step size 1:8◦. Data acquisition from the sonars is
through a 12-bit 1 MHz PC A/D card. Starting at the trans-
mit time, 10,000 samples of each echo signal are collected
to record the peak amplitude and the TOF.
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Fig. 2. Re2ection of ultrasonic echoes from a planar target.
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Fig. 3. Discrete training locations. T=Ra and T=Rb denote the two
transmitting/receiving transducers.

Amplitude and TOF patterns of the targets are collected
in this manner at 25 di erent locations (r; �) for each target,
from � =−20◦ to 20◦ in 10◦ increments, and from r = 35
to 55 cm in 5 cm increments (Fig. 3). The target located
at range r and azimuth � is scanned by the rotating sensing
unit for scan angles −52◦6 �6 52◦ with 1:8◦ increments
(determined by the step size of the motor). The angle � is
always measured with respect to �=0◦ as shown in Fig. 4.
At each step of the scan (for each value of �), four

sonar echo signals are acquired. The echo signals are in the
form of slightly skewed wave packets [13]. Aaa; Abb; Aab,
and Aba denote the peak values of the echo signals, and
taa; tbb; tab, and tba denote their TOF delays (extracted by
simple thresholding). The /rst subscript indicates the trans-
mitting transducer, the second denotes the receiver. At each
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Fig. 4. The scan angle � and the target azimuth �.

step of the scan, only these eight amplitude and TOF values
extracted from the four echo signals are recorded. For the
given scan range and motor step size, 58(=(2× 52◦)=1:8◦)
angular samples of each of the amplitude and TOF patterns
Aaa(�); Abb(�); Aab(�); Aba(�); taa(�); tbb(�); tab(�), and
tba(�) are acquired at each target location.
Since the cross terms Aab(�) and Aba(�) (or tab(�) and

tba(�)) should ideally be equal due to reciprocity, it is more
representative to employ their average. Thus, 58 samples
each of the following six functions are taken collectively as
acoustic signatures embodying shape and position informa-
tion of a given target:

Aaa(�); Abb(�);
Aab(�) + Aba(�)

2
; taa(�); tbb(�);

and
tab(�) + tba(�)

2
: (1)

Scans are collected with four-fold redundancy for
each target primitive at each location, resulting in
700 (=four-fold redundancy × 25 locations× seven target
types) sets of scans to be used for training. This set of 700
data is referred as the training set throughout this paper.
This training set is used to design decision rules in statistical
pattern recognition techniques and to train the ANNs.
In this study, three di erent test sets are acquired to eval-

uate and compare the di erent methods. For test set I, each
target is placed in turn in each of the 25 training positions in
Fig. 3. Again, scans are collected with four-fold redundancy
for each combination of target type and location, resulting in
700 sets of experimentally acquired scans. While collecting
test set II, the targets are situated arbitrarily in the contin-
uous estimation space and not necessarily con/ned to one
of the 25 training positions. The values of r; � correspond-
ing to these locations are randomly and uniformly generated
in the range r ∈ [32:5 cm; 57:5 cm] and �∈ [ − 25◦; 25◦].
In collecting test set III, we employ targets not scanned
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during training which are slightly di erent in size, shape,
or roughness than the targets used for training. These are
two smooth cylinders of radii 4 and 10 cm, a cylinder of ra-
dius 7:5 cm and a plane both covered with blister packaging
material, and a 60◦ smooth edge. The blister packaging
material has a honeycomb pattern of uniformly distributed
circular bubbles of diameter 1:0 cm and height 0:3 cm, with
a center-to-center separation of 1:2 cm.

3. Target di�erentiation algorithm (TDA)

The TDA has its origins in the plane/corner di erentiation
algorithm developed in Ref. [17], which is based on the idea
of exploiting amplitude di erentials in resolving target type.
In Ref. [14], the algorithm is extended to include other target
primitives using both amplitude and TOF di erentials, based
on their characteristics presented earlier in Ref. [12]. The
extended algorithm may be summarized in the form of rules:

if [taa(�)− tab(�)]¿kt�t and [tbb(�)− tba(�)]
¿kt�t then acute corner,

else if [Aaa(�)− Aab(�)]¿kA�A and
[Abb(�)− Aba(�)]¿kA�A then plane,

else if [max�{Aaa(�)} −max�{Abb(�)}]¡kA�A and
[max�{Aaa(�)} −max�{Aab(�)}]¡kA�A then

corner, else edge, cylinder or unknown.

In the above algorithm, kA (or kt) are the number of am-
plitude (or TOF) noise standard deviations �A (or �t), re-
spectively, and are employed as safety margins to achieve
robustness in the di erentiation process. Di erentiation is
achievable only in those cases where the di erence in am-
plitudes (and TOFs) exceeds kA�A (or kt�t). If this is not the
case, a decision cannot be made and the target type remains
unknown.
The above algorithm cannot distinguish between edges

and cylinders. Edges and cylinders can be di erentiated with
a similar con/guration of transducers using a method based
on radius of curvature estimation [19]. For the cylinder, the
radius of curvature has two limits of interest. As rc → 0 the
characteristics of the cylinder approach those of an edge.

On the other hand, as rc → ∞, the characteristics approach
those of a plane. By assuming the target is a cylinder /rst
and estimating its radius of curvature [19], it is possible to
distinguish edges and cylinders.
After determining the target type using the TDA summa-

rized above, the target range and azimuth can be estimated
from the geometry [14]. In addition to the radius rc of cylin-
ders, the wedge angle �c of acute corners can also be esti-
mated [14].

4. Dempster-Shafer (D-S) evidential reasoning

In D-S evidential reasoning, di erent opinions are rep-
resented by belief functions [20]. These are set functions
which assign numerical degrees of support on the basis of
evidence, but also allow for the expression of ignorance:
belief can be committed to a set or proposition without
commitment to its complement. In the D-S method, a priori
information is not required and the belief assignment is
made only when sensor readings provide supportive evi-
dence. Therefore, ignorance can be represented explicitly.
Con2ict between views is represented by a con2ict measure
which is used to normalize the sensor belief assignments.
Letting � represent a /nite set of elementary propositions,
a basic probability mass assignment m(:) maps each subset
A of � to a number between 0 and 1 such that m(∅) = 0
and

∑
A⊆� m(A) = 1. The belief (or total support) that

is assigned to a subset A of � is obtained by summing
the basic probability assignments over all subsets of A as
Bel(A) =

∑
B⊆A m(B).

A brief survey of D-S evidential reasoning in classi-
/cation problems is provided in Ref. [13]. In this study,
the di erent viewpoints of the sensing unit are assigned
beliefs using D-S evidential reasoning and they are com-
bined through Dempster’s fusion rule. The uncertainty
in the measurements is represented by a belief function
BF = {targeti;m(targeti)}c

i=1, which is a set consisting of
targets and their corresponding basic probability mass as-
signments m(:), and c is the number of di erent target types.
The basic probability mass assignment is the underlying
function for decision making using the D-S method. Here,
these are de/ned based on the TDA outlined in Section 3
and are thus dependent on amplitude and TOF di erentials
such that the larger the di erential, the larger the degree of
belief [see Eqs. (2)–(4)]. The basic probability mass assign-
ment values are scaled to fall in the interval [0; 1] as given
below:

m(p) = (1− K4)K1

[Aaa(�)− Aab(�)] + [Abb(�)− Aba(�)]
max�[Aaa(�)− Aab(�)] + max�[Abb(�)− Aba(�)]

; (2)

m(c) =




(1− K4)
K2[Aab(�)− Aaa(�)] + K3[Aba(�)− Abb(�)]

K2max�[Aab(�)− Aaa(�)] + K3max�[Aba(�)− Abb(�)]
if K2 
= 0 or K3 
= 0;

0 otherwise;
(3)

m(ac)

=K4
[taa(�)− tab(�)] + [tbb(�)− tba(�)]

max�[taa(�)− tab(�)] + max�[tbb(�)− tba(�)]
;

(4)

where m(p); m(c), and m(ac) correspond to plane, corner,
and acute corner assignments, respectively, and K1; K2; K3,
and K4 are the indicator functions of the conditions
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given below:

K1 =




1 if [Aaa(�)− Aab(�)]¿kA�A and

[Abb(�)− Aba(�)]¿kA�A;

0 otherwise;

K2 =

{
1 if [Aab(�)− Aaa(�)]¿kA�A;

0 otherwise;

K3 =

{
1 if [Aba(�)− Abb(�)]¿kA�A;

0 otherwise;

K4 =




1 if [taa(�)− tab(�)]¿kt�t and

[tbb(�)− tba(�)]¿kt�t ;

0 otherwise:

(5)

The remaining belief represents ignorance, or undis-
tributed probability mass and is given by m(u) = 1 −
[m(p) + m(c) + m(ac)]. This uncommitted belief is the
result of lack of evidence supporting any one target type
more than another.
Given two independent sources of information regarding

the target type with the following belief functions:

BF1 = {targeti;m1(targeti)}4i=1
={p; c; ac; u;m1(p); m1(c); m1(ac); m1(u)};

BF2 = {targetj;m2(targetj)}4j=1
={p; c; ac; u;m2(p); m2(c); m2(ac); m2(u)}; (6)

the information from the two independent sources are fused
(combined) as follows:

BFf = BF1 ⊕ BF2 = {targetk ;mf(targetk)}4k=1
= {p; c; ac; u;mf(p); mf(c); mf(ac); mf(u)} (7)

where

mf(p) =
m1(p)m2(p) + m1(p)m2(u) + m1(u)m2(p)

1− con2ict
;

mf(c) =
m1(c)m2(c) + m1(c)m2(u) + m1(u)m2(c)

1− con2ict
;

mf(ac) =
m1(ac)m2(ac) + m1(ac)m2(u) + m1(u)m2(ac)

1− con2ict
;

mf(u) =
m1(u)m2(u)
1− con2ict

: (8)

In these equations, disagreement between the two sources
of information is represented by the “con2ict” term that
represents the degree of mismatch. The con2ict measure is
expressed as

con2ict = m1(p)m2(c) + m1(c)m2(p) + m1(p)m2(ac)

+m1(ac)m2(p) + m1(c)m2(ac) + m1(ac)m2(c):
(9)

The denominators of Eq. (8) normalize the beliefs after dis-
counting this con2ict. The target type with the maximum
belief value in these equations is chosen to be the group de-
cision. Eq. (8) is a special case of the powerful evidence
combination rule called Dempster’s rule of combination or
fusion [20]:

mf(targetk)

,

∑∑
targetk=targeti∩targetj

m1(targeti)m2(targetj)

1−∑∑
targeti∩targetj=∅ m1(targeti)m2(targetj)

; (10)

where
∑∑

targeti∩targetj=∅ m1(targeti)m2(targetj) is the mea-

sure of con2ict.
The fusion process can be easily extended from two to n

sources of information as BFf = (((BF1 ⊕ BF2)⊕ BF3)⊕
· · · ⊕ BFn) which is both associative and commutative.
In implementing this method, /rst, the target type is found

by employing the TDA at each angular step of the scan, and
its range and azimuth are estimated. Then, the target type
decisions made at each of the 58 angular steps are fused
using D-S evidential reasoning to reach a single /nal target
type decision for a particular scan. Weighted averages of
the 58 r and � estimates are calculated to /nd the fused
range and the azimuth estimates of the target. The weights
used are the ratio of the belief value assigned to the r (or �)
estimate at each angular step (described later in Section 5,
see Eq. (11)) to the sum of the belief values assigned to the
r (or �) estimates over all 58 angular steps.

5. Con$ict resolution through voting

Voting can take place amongmultiple sensors and/or com-
plementary views of a single sensor which can give rise to
con2icts that must be resolved to reach consensus. Voting,
in its simplest form, has the advantages of being computa-
tionally inexpensive and, to a certain degree, fault tolerant.
The major drawback of voting is the consistency problem
of Arrow which states that there is no voting scheme for
selecting among more than two alternatives that is locally
consistent under all possible conditions [21]. In the present
paper, voting takes place among the opinions produced by
the sensing unit at di erent scan angles.
In simple majority voting (SMV), the votes are given

equal weight and the consensus is taken as the outcome
with the largest number of votes. Although SMV provides
fast and robust fusion in some problems, there exist some
drawbacks that limit its usage. For example, in cases when
all outcomes receive equal votes, a consensus cannot be
reached. Furthermore, SMV does not take into account the
distribution of votes among dissenters (those voting for the
losing alternatives) [13].
To overcome these drawbacks and to increase the reliabil-

ity and consistency of the decision, more sophisticated vot-
ing schemes can be employed. For this purpose, the sensing
unit assigns preference orders to the possible target types
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at each scan angle and a reliability measure is introduced.
The preference order at each scan angle is determined ac-
cording to the belief assignments given in Eqs. (2)–(4) with
the largest belief corresponding to the /rst preference order
(most preferred), and so on with decreasing beliefs.
The reliability measure represents how much we can trust

a particular piece of information. Our reliability measures
will be de/ned in terms of basic probability mass assign-
ments. The closer the target is to the sensing unit, the more
accurate is the range reading, and the closer the target is
to the line-of-sight of the sensing unit, the more accurate is
the azimuth estimate [22]. This is because signal amplitude
decreases with r and |�| so that at large ranges or angular
deviations (from the line-of-sight), signal-to-noise ratio is
smaller. For each scan angle �, a range r� and azimuth ��

estimate is obtained from the TOF measurements using the
geometry. Then, the basic probability mass assignments are
made as

m(r�) =
rmax − r�
rmax − rmin

; rmin6 r�6 rmax;

m(��) =
�0 − |��|

�0
; 06 |��|6 �0; (11)

where rmin and rmax de/ne the operating range of the sensing
unit and �0 is the half-beamwidth angle. Note that, m(r�)
takes its maximum value of one when r� = rmin and its min-
imum value of zero when r� = rmax. Similarly, m(��) is one
when �� = 0◦ and zero when �� =±�0.
We have considered several di erent reliability measures:

rel1� = m(r�) m(��); rel2� =min{m(r�); m(��)};

rel3� =
m(r�) + m(��)

2
; rel4� =max{m(r�); m(��)}; (12)

which satisfy rel1�6 rel2�6 rel3�6 rel4�. All of these mea-
sures take values in the interval [0; 1], with 0 being unreli-
able and 1 being most reliable.
A /fth alternative is to set the reliability measure propor-

tional to the di erence between belief values assigned to the
/rst two preferences, as an indicator of how large a mar-
gin the /rst choice is ahead of the second choice. This way,
the distribution of the belief assignments to di erent target
types is partially taken into account. This can be expressed
as rel5� =m(1st choice�)−m(2nd choice�) where the func-
tions m(:) are now those de/ned in Eqs. (2)–(4).
The /nal preference ordering for the targets is obtained

from the orders at each scan angle by taking the weighted
average of the preference orders assigned at each scan an-
gle, with the reliability measure serving as the weighting
function [13]. For comparison, we have also considered the
use of weighting the preference orders with unit reliability
measures.
In SMV, range and azimuth estimates are averaged over

the complete scan to obtain the /nal r and � estimates of the
target. The same is done for voting with preference order-
ing if the reliability measures are taken as unity. When the

reliability measures are taken according to one of the /ve
alternatives above instead, the ratio of the reliability assigned
to a particular angular step to the sum of the reliabilities
assigned to all 58 angular steps are used as weights.

6. Statistical pattern recognition techniques

We begin by constructing three alternative feature vector
representations from the scans of Eq. (1):

xA :
[
Aaa;Abb;

Aab + Aba

2
; taa; tbb;

tab + tba
2

]T
;

xB : [Aaa − Aab;Abb − Aba; taa − tab; tbb − tba]
T;

xC : [(Aaa − Aab)(Abb − Aba); (Aaa − Aab) + (Abb − Aba);

(taa − tab)(tbb − tba); (taa − tab) + (tbb − tba)]
T;

Here, Aaa denotes the row vector representing the samples
of Aaa(�) at the 58 scan angles. The /rst feature vector xA is
taken as the original form of the scans, except for averaging
the cross terms. The choice of the second feature vector xB

has been motivated by the TDA reviewed in Section 3. The
third feature vector xC is motivated by the di erential terms
which are used to assign belief values to the target types in
D-S evidential reasoning and majority voting [14] discussed
in Section 4. Note that the dimensionalities d of these vector
representations are 348(=6× 58); 232(=4× 58), and 232,
respectively.
We associate a class wi with each target (i = 1; : : : ; c).

An unknown target is assigned to class wi if its feature vec-
tor x = (x1; : : : ; xd)T falls in the region �i. A rule which
partitions the decision space into regions �i; i = 1; : : : ; c
is called a decision rule. Each one of these regions corre-
sponds to a di erent target type. Boundaries between these
regions are called decision surfaces. Let p(wi) be the a pri-
ori probability of a target belonging to class wi. To classify
a target with feature vector x, the a posteriori probabili-
ties p(wi|x) are compared and the target is classi/ed into
class wj if p(wj|x)¿p(wi|x) ∀i 
= j. This is known as
Bayes minimum error rule. However, since these a posteri-
ori probabilities are rarely known, they need to be estimated.
A more convenient formulation of this rule can be obtained
by using Bayes’ theorem: p(wi|x) = p(x|wi)p(wi)=p(x)
which results in p(x|wj)p(wj)¿p(x|wi)p(wi) ∀i 
= j ⇒
x∈�j where p(x|wi) are the class-conditional probability
density functions (CCPDFs) which are also unknown and
need to be estimated in their turn using the training set.
The training set consists of several sample feature vectors
xn; n= 1; : : : ; Ni which all belong to the same class wi, for
a total of N1 + N2 + · · · + Nc = N sample feature vectors.
The test set is then used to evaluate the performance of the
decision rule used. This decision rule can be generalized as
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qj(x)¿qi(x) ∀i 
= j ⇒ x∈�j where the function qi is
called a discriminant function.
The various statistical techniques for estimating the

CCPDFs from the training set are often categorized as
non-parametric and parametric. In non-parametric methods,
no assumptions on the parametric form of the CCPDFs
are made; however, this requires large training sets. This
is because any non-parametric PDF estimate based on a
/nite sample is biased [23]. There are four major types of
non-parametric PDF estimators: histogram, kernel estima-
tor, k-nearest neighbor, and series methods. In parametric
methods, speci/c models for the CCPDFs are assumed and
then the parameters of these models are estimated. These
parametric methods can be categorized as normal and
non-normal models. The most commonly used parametric
estimation technique is the maximum likelihood estimator.

6.1. Kernel estimator (KE)

KE is a family of PDF estimators /rst proposed by Fix
and Hodges in 1951 [24]. In the KE method, the CCPDF
estimates p̂(x|wi) are of the form

p̂(x|wi) =
1

Nihd
i

Ni∑
n=1

K
(

x − xn

hi

)
; (13)

where x is the d-dimensional feature vector at which the
estimate is being made and xn; n=1; : : : ; Ni are the training
set sample feature vectors associated with class wi. Here, hi

is called the spread or smoothing parameter or the bandwidth
of the KE, and K(z) is a kernel function which satis/es the
conditions K(z)¿ 0 and

∫
K(z) dz = 1.

In this method, the selection of the bandwidth hi is im-
portant. If hi is selected too small, p̂(x|wi) degenerates into
a collection of Ni sharp peaks, each located at a sample fea-
ture vector. On the other hand, if hi is selected too large, the
estimate is oversmoothed and an almost uniform CCPDF
results. Usually, hi is chosen as a function of Ni such that
limNi→∞ h(Ni) = 0. There are various approaches to select
hi if a constant hi is to be used [25,26].
In the implementation of this method, we employed a

d-dimensional Gaussian kernel function. Consider the Ni =
100 sample feature vectors corresponding to the ith class.
The bandwidth hi for each class is pre-computed based on
the training data as follows: The distance between each of
these vectors and its qth nearest neighbor in the same class
is found and their average is taken. This is repeated for
16 q6 10 for all classes. Then, the vectors in the training
set are used as test vectors to compute the average misclas-
si/cation rate for each value of q. The average distances
(for each class i) corresponding to the value of q minimiz-
ing the misclassi/cation rate (in our case, q=4), are chosen
as the values of hi. After hi’s are computed, a test feature
vector x is classi/ed into that class for which the CCPDF
in Eq. (13) is maximized. This requires the training data to
be stored throughout testing.

6.2. k-Nearest neighbor (k-NN) method

Consider the k nearest neighbors of a feature vector x
in a set of several feature vectors. Suppose ki of these k
vectors come from class wi. Then, a k-NN estimator for
class wi can be de/ned as p̂(wi|x) = ki=k, and p̂(x|wi) can
be obtained from p̂(x|wi)p̂(wi)= p̂(wi|x)p̂(x). This results
in a classi/cation rule such that x is classi/ed into class wj

if kj =maxi(ki). In other words, the k nearest neighbors of
the vector x in the training set are considered and the vector
x is classi/ed into the same class as the majority of its k
nearest neighbors. A major disadvantage of this method is
that a pre-de/ned rule for the selection of the value of k
does not exist.
The so-called generalized k-NN estimator is related to

the KE. Letting rk(x) be the Euclidean distance from x to
the kth nearest neighbor of x in the training set, it is de/ned
as [28]

p̂(x|wi) =
1

Nirdk (x)

Ni∑
n=1

K
(

x − xn

rk(x)

)
: (14)

Note that this is similar to Eq. (13) for the KE. The main
di erence between the KE and the generalized k-NN esti-
mator is that here, the bandwidth rk(x) is a function of x
instead of being constant for each class as in the KE.
In the implementation of the k-NN and the generalized

k-NN methods, k values varying between 1 and 10 have
been considered. We present results for k = 1 which is the
value giving the best results. Again, the training data must
be stored during testing.

6.3. Parameterized density estimation (PDE)

In this method, the CCPDFs are assumed to be
d-dimensional normal:

p(x|wi) =
1

(2&)(d=2)|�i|1=2 exp
[
−1
2
(x−�i)

T�−1
i (x−�i)

]
;

i = 1; : : : ; c; (15)

where the �i’s denote the class means, and the �i’s denote
the class-covariance matrices, both of which must be esti-
mated based on the training set. The most commonly used
estimation technique is the maximum likelihood estimator
[29] which is also used in this study.
In PDE, d-dimensional homoscedastic and heteroscedas-

tic normal models are used for the CCPDFs. In the ho-
moscedastic case, the covariance matrices are selected equal
for all classes, usually taken as a weighted average of the in-
dividual class-covariance matrices:

∑c
i=1(Ni=N )�̂i [30]. In

the heteroscedastic case, they are individually calculated for
each class.
In this study, both homoscedastic and heteroscedastic nor-

mal models have been implemented to estimate the means
and the covariances of the CCPDF for each class (i.e., target
type) using the maximum likelihood estimator, for each of
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the three feature vector representations. Then, the test fea-
ture vector is classi/ed into the class for which Eq. (15) is
maximum.

6.4. Linear discriminant analysis (LDA)

To describe this method, we /rst consider the case where
there are only two targets. Let the training set include N1

feature vectors which are obtained from the /rst target and
thus which should remain in the region associated with class
w1. Similar considerations apply for the N2 feature vectors
obtained from the second target. We wish to choose a weight
vector a = (a0; a1; : : : ; ad)T so that the plane de/ned by aTz
divides the d-dimensional space into two, such that the rate
of misclassi/cation is minimized. Here z = (1; xT)T is the
augmented feature vector in terms of which the linear dis-
criminant function is de/ned as

q(x) = =a0 +
d∑

l=1

alxl = aTz: (16)

We require

(i) q(xn)=aTzn ¿ 0, whenever xn is a sample feature vector
from class w1,

(ii) q(xn)=aTzn ¡ 0, whenever xn is a sample feature vector
from class w2.

To reduce the problem to a single equation, we de/ne a
new vector yn such that:

(i) yn , zn, whenever xn is a sample feature vector from
class w1, and

(ii) yn , −zn, whenever xn is a sample feature vector from
class w2.

Now, the above two conditions are reduced to the single
condition aTyn ¿ 0; ∀n; n = 1; : : : ; N where N = N1 + N2.
The decision surface is the hyperplane aTyn = 0. Unless
these two classes are linearly separable, a weight vector
a which satis/es the above condition cannot be found.
Therefore, we aim to satisfy aTyn ¿ 0 as much as pos-
sible. There are various criteria to /nd the linear surface
which best discriminates two classes. Two of the most
widely used ones are the perceptron criterion and Fisher’s
criterion [27].
A third approach is to seek a weight vector a that satis/es

aTyn = bn as closely as possible in the least-squares sense
where bn’s are positive constants whose choice is discussed
below. This set of N equations can be put in standard matrix
form Ya=b with Y=(y1; y2; : : : ; yN )T being an N × (d+1)
matrix and b = (b1; : : : ; bN )T. For a given b, the value of
a which minimizes (Ya − b)T(Ya − b) is given by a =
(YTY)−1YTb.
In generalizing the LDA from two to c classes, we

used c − 1 two-class decision rules, each one separating
�i; i = 1; : : : ; c − 1 from all �j; j = 1; : : : ; c where j 
= i.
First, the a vectors separating each class from all the

others are calculated using the least-squares approach, with
b chosen as [(N=N1)u1; (N=N2)u2]T, where u1 and u2 are row
vectors of N1 and N2 ones, respectively. The least-squares
approach with this choice of b results in exactly the same
solution obtained with Fisher’s criterion. Then, for each
test vector x, Eq. (16) is evaluated and the vector is
classi/ed into that class for which q(x) takes a positive
value.

6.5. Fuzzy c-means clustering (FCC) algorithm

Clustering tries to identify the relationships among pat-
terns in the training data set by organizing the patterns into a
number of clusters, where the patterns in each cluster show a
certain degree of closeness or similarity. In hard clustering,
cluster boundaries are assumed to be well de/ned so that
each feature vector in the data set belongs to one of the clus-
ters with a degree of membership equal to one. However,
this type of clustering may not be suitable when the cluster
boundaries are not well de/ned. In such cases, fuzzy clus-
tering is more useful where a feature vector x is assigned
to each cluster i with a degree of membership 'i(x)∈ [0; 1].
It is possible to use fuzzy clustering as the basis for hard
clustering, by assigning feature vector x to cluster j (in the
hard sense) if 'j(x)¿ 'i(x); ∀i = 1; : : : ; c where c¿ 2 is
the total number of clusters. However, it should be noted
that these sets may not be disjoint when more than one max-
imum exists.
The FCC algorithm has been developed by Dunn [31]

and extended by Bezdek [32]. It minimizes the following
objective function with respect to fuzzy memberships 'i(xj)
and cluster centers vi:

J) =
c∑

i=1

N∑
j=1

')
i (xj)‖ xj − vi‖2A where ‖x‖2A = xTAx;

(17)

whereA is a d×d positive de/nite matrix, d is the dimension
of the input patterns xj ; N is the total number of training
feature vectors, and )¿ 1 is the weighting exponent for
'i(xj) which controls the fuzziness of the resulting clusters.
In this study, we have taken A as a d×d identity matrix and
)= 1:3. The FCC algorithm can be summarized as [32]:

(1) Initialize the memberships 'i(xj)’s such that
∑c

i=1
'i(xj) = 1; j = 1; : : : ; N .

(2) Compute the cluster center vi for i = 1; : : : ; c using
vi =

∑N
j=1 ')

i (xj)xj=
∑N

j=1 ')
i (xj).

(3) Update the memberships 'i(xj) using 'i(xj) = (‖xj −
vi‖2A)− 1=()− 1)

∑c
k=1 (‖xj − vk‖2A)− 1=()− 1).

(4) Repeat the second and third steps until the value of J)
no longer decreases.

Then, a test feature vector x is classi/ed into the class for
which 'i(x) is maximum.
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7. Arti,cial neural networks (ANNs)

ANNs have been widely used in areas such as target
detection and classi/cation [33], speech processing [34],
system identi/cation [35], control theory [36], medical
applications [37], and character recognition [38]. In this
study, ANNs are employed to identify and resolve parame-
ter relations embedded in the characteristics of sonar echo
returns from all seven target types considered, for their
di erentiation and localization in a robust manner in real
time. ANNs consist of an input layer, one or more hidden
layers to extract progressively more meaningful features,
and a single output layer, each comprised of a number of
units called neurons. The model of each neuron includes a
smooth nonlinearity, here a sigmoid function of the form
’(v) = (1 + e−v)−1. Due to the presence of distributed
nonlinearity and a high degree of connectivity, theoretical
analysis of ANNs is diHcult. These networks are trained
to compute the boundaries of decision regions in the form
of connection weights and biases by using training algo-
rithms. Performance of ANNs is a ected by the choice of
parameters related to the network structure, training algo-
rithm, and input signals, as well as parameter initialization
[39]. In this study, two training algorithms are employed,
namely, back-propagation (BP) and generating-shrinking
(GS) algorithms.
With the BP algorithm, a set of training patterns is pre-

sented to the network and the error between the resulting
signal at the output and the desired signal is minimized
with a gradient-descent procedure. The two adjustment pa-
rameters of the algorithm, namely the learning rate and the
momentum constant [40] are chosen to be 0.01 and 0.9, res-
pectively, and training with the BP algorithm is stopped
either when the average error is reduced to 0.001 or if a
maximum of 10,000 epochs is reached, whichever occurs
earlier. The second case occurs very rarely. The number of
hidden-layer neurons is determined by enlarging [41].
The GS algorithm /rst builds and then shrinks or prunes a

feed-forward neural network, o ering fast convergence rates
and 100% correct classi/cation on the training set [42]. The
network used in Ref. [42] consists of two hidden layers with
equal numbers of neurons, initially set equal to the num-
ber of training patterns. Pre-determined initial connection
weights are assigned, with the consequence that the gen-
eralization behavior of the network is analytically known.
Then, the hidden layers are pruned while preserving 100%
correct classi/cation on the training set. Only one output
neuron takes the value one (the winning neuron) and the
remaining output neurons take the value zero. At the in-
put layer, a pre-/xed reference number nr ∈ (0;∞) is used
as an additional input to control the generalization capabil-
ity of the network. The algorithm achieves scale-invariant
generalization behavior as nr approaches zero, and behaves
like a nearest-neighborhood classi/er as it tends to in/nity.
We employ the relatively small value nr = 0:01 in order to
enhance scale invariance. A comparison with the BP algo-

rithm [42] indicates that the GS algorithm does not have the
convergence problems of the BP algorithm and has several
hundred times faster convergence rate and improved gener-
alization capability.

7.1. Pre-processing of the input signals

The results obtained depend on which form the observed
signals are presented to the ANNs. Therefore, we have con-
sidered several di erent pre-processing techniques.

7.1.1. Ordinary Fourier transform
The Fourier transform is widely used in signal process-

ing to study the spectral behavior of a signal. The discrete
Fourier transform (DFT) of a signal f(n) is de/ned as

F(k) =F{f(n)}, 1
N

N−1∑
n=0

f(n)e−i2&nk=N ; (18)

where N is the length of the discrete signal f(n).

7.1.2. Fractional Fourier transform
The ath-order fractional Fourier transform is a gen-

eralization of the ordinary Fourier transform such that
the /rst-order fractional Fourier transform is the ordinary
Fourier transform and the 0th-order fractional Fourier
transform corresponds to the function itself [43]. The trans-
form has been studied extensively since the early 1990s
with applications in wave propagation and optics [44–47],
time-frequency analysis, pattern recognition, and digital
signal [48,49] and image processing [50,51]. Most applica-
tions are based on replacing the ordinary Fourier transform
with the fractional transform. Since the latter has an addi-
tional degree of freedom (the order parameter a), it is often
possible to generalize and improve upon previous results.
The ath-order fractional Fourier transform fa(u) of f(u) is
de/ned for 0¡ |a|¡ 2 as [49]

fa(u),
∫ ∞

−∞
A, exp[i&(u

2 cot ,− 2uu′csc,

+u
′2 cot ,)]f(u′) du′;

where

A, =
exp[− i(& sgn(,)=4− ,=2)]

|sin,|1=2 and ,=
a&
2

:

(19)

The fa(u) approaches f(u) and f(−u) as a approaches 0
and ±2, respectively, and is de/ned as such at these val-
ues. The fractional Fourier transform reduces to the ordinary
Fourier transform when a = 1. The transform is linear and
index additive: the a1th-order transform of the a2th-order
transform is equal to the (a1 + a2) th-order transform. Dig-
ital implementation of the fractional Fourier transform is as
eHcient as that of the ordinary Fourier transform; it can also
be computed in the order of N log N time [43].
With a similar notation as in the case of DFT, the ath-order

discrete fractional Fourier transform (DFRT) of f, denoted
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Fig. 5. Block diagram of the DWT. The square boxes represent down-sampling.

fa, can be expressed as fa = Faf where Fa is the N × N
DFRT matrix which corresponds to the ath power of the
ordinary DFT matrix F and f is an N × 1 column vector
[52]. However, we note that there are certain subtleties and
ambiguities in de/ning the power function [52].

7.1.3. Hartley transform
Hartley transform [53] is a widely used technique in sig-

nal processing applications such as image compression [54]
and adaptive /ltering [55]. The discrete Hartley transform
(DHT) of f(n) is de/ned as

H (k) =H{f(n)}, 1√
N

N−1∑
n=0

f(n) cas
(
2&
N

nk
)

; (20)

where cas(x) , cos(x) + sin(x). If the DFT of a signal
f(n) is expressed as F(k) = FR(k)− iFI (k), then its DHT
is given by H (k) = FR(k) + FI (k). The DHT can also be
represented in matrix notation as h1 = Hf , where H is the
N × N DHT matrix, and h1 is the DHT of f.

7.1.4. Wavelet transform
We describe the discrete wavelet transform (DWT) [56]

by referring to Fig. 5, where the operations performed on
the input signal f(n) of length N are shown as a block
diagram. h(−n) and g(−n) are referred to as the scaling
9lter and the wavelet 9lter, respectively, where g(n) ,
(−1)nh(M − n− 1). Mathematically,

cj(k) =
∑
m

h(m− 2k)cj+1(m);

dj(k) =
∑
m

g(m− 2k)cj+1(m); k = 0; 1; : : : ; (2jN − 1)

and j =−1;−2; : : : ; (21)

where for j = −1 we associate c0(:) with f(:) and these
equations describe the left part of Fig. 5. When j=−2, they
describe the right part of the same /gure. More generally,
these equations allow us to obtain the coeHcients at scale j
from the coeHcients at scale j + 1. We have employed the
value M = 23 and the scaling /lter whose coeHcients h(n)

are given below:

h(n)= [− 0:002 −0:003 0:006 0:006 −0:013
0:012 −0:030 0:023 −0:078 −0:035 0:307

0:542 0:307 −0:035 −0:078 0:023 −0:030
0:012 −0:013 0:006 0:006 −0:003 −0:002]

for n = 0; : : : ; M − 1. This /lter is known as the Lamaire
wavelet [57]. After down-sampling, the total number of sam-
ples in the concatenation of cj and dj is equal to the number
of samples of cj+1. In principle, the concatenation of cj and
dj for any resolution level j=−1;−2; : : : can be used as an
input to the neural network. However, values of j further
than −2 were not found to be advantageous in our imple-
mentations as discussed later.

7.1.5. Self-organizing feature map
Self-organizing ANNs are generated by unsupervised

learning algorithms that have the ability to form an inter-
nal representation of the network, modeling the underlying
structure of the input data. These networks are commonly
used to solve the scale-variance problem encountered in
supervised learning. However, it is not recommended to
use them by themselves for pattern classi/cation or other
decision-making processes [41]. Best results are achieved
with these networks when they are used as feature ex-
tractors prior to a linear classi/er or a supervised learning
procedure. The most commonly used algorithm for gener-
ating self-organizing ANNs is Kohonen’s self-organizing
feature-mapping (KSOFM) algorithm [58]. In this algo-
rithm, weights are adjusted from the input layer towards
the output layer where the output neurons are intercon-
nected with local connections. These output neurons are
geometrically organized in one, two, three, or even higher
dimensions. This algorithm can be summarized as follows:
(i) initialize the weights randomly, (ii) present new input
from the training set, (iii) /nd the winning neuron at the
output layer, (iv) select the neighborhood of this output
neuron, (v) update weights from input towards selected
output neurons, (vi) continue with the second step until no
considerable changes in the weights occur (see Ref. [41]
for further details).
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7.2. Input signals

In this work, many di erent signal representations are
considered as alternative inputs to the ANNs. In addition
to the pre-processing methods discussed, di erent combina-
tions of the amplitude and TOF patterns are also considered.
Speci/cally, we employed the following 30 alternative in-
puts to the ANNs:

I1: samples of Aaa(�); Abb(�); [Aab(�) + Aba(�)]=2;
taa(�); tbb(�), and [tab(�) + tba(�)]=2,

I2: samples of Aaa(�) − Aab(�); Abb(�) − Aba(�);
taa(�)− tab(�), and tbb(�)− tba(�),

I3: samples of [Aaa(�)−Aab(�)][Abb(�)−Aba(�)]; [Aaa(�)−
Aab(�)] + [Abb(�)− Aba(�)]

[taa(�)− tab(�)][tbb(�)− tba(�)];

and [taa(�)− tab(�)] + [tbb(�)− tba(�)];

I4 − I12: DFT of I1; I2; I3, its low-frequency component
(LFC), and its magnitude

(F(Ii);LFC(F(Ii)); |LFC(F(Ii))|; i = 1; 2; 3);

I13 − I15: DFRT of I1; I2; I3 at di erent orders (Fa(Ii); i=
1; 2; 3),

I16 − I18: DHT of I1; I2; I3 (H(Ii); i = 1; 2; 3),
I19 − I27: DWT of I1; I2; I3 and its low-frequency compo-

nents at di erent resolutions,

(DWT(Ii);LFC(DWT(Ii))1;LFC(DWT(Ii))2;
i = 1; 2; 3);

I28 − I30: features extracted by using KSOFM (KSOFM(Ii);
i = 1; 2; 3).

The sampled sequences I1; I2; I3 correspond to the feature
vectors xA; xB, and xc de/ned and used in Section 6 for sta-
tistical pattern recognition techniques. Here, they have been
used both in their raw form and after taking their discrete
ordinary and fractional Fourier, Hartley, and wavelet trans-
forms, as well as after feature extraction by KSOFM. The
transforms are performed on the six parts of I1 and the four
parts of I2 and I3, separately.
DWTs of each signal at di erent resolution levels j have

been considered. Initially, DWT of each signal at resolution
level j = −1 is used as the input: DWT(Ii); i = 1; 2; 3.
Secondly, only the low-frequency component of the DWT,
the c−1’s, are employed: LFC(DWT(Ii))1. Finally, the
low-frequency component of DWT at resolution j=−2, the
c−2’s, are used: LFC(DWT(Ii))2. Use of the low-frequency
components helps eliminate high-frequency noise. How-
ever, more negative values of j, which correspond to fewer
samples of cj and dj , and thus lower resolutions, lead to de-
terioration in the performance of the network beyond j=−2.
The value j = −2 corresponds to the frequency-domain
information between 0 and &=4 of the original patterns. To
make a fair comparison, the low-frequency component of

the DFT, LFC(F(Ii)), corresponding to the same frequency
interval as LFC(DWT(Ii))2 is also considered. We also em-
ployed the magnitude of the low-frequency component of
the DFT, |LFC(F(Ii))|. The ath-order DFRTs of the three
input signal representations, for values of a varying from
0.05 to 0.95 with 0.05 increments have been considered. The
features extracted by using KSOFM are used both prior to
ANNs trained with the two training algorithms and prior to
linear classi/ers designed by using a least-squares approach.
Initially, a single integrated ANN is trained by using the

BP algorithm to both classify and localize the targets for each
of the above input signals. Next, modular network structures
for each type of input signal have been considered in which
three separate networks for target type, range, and azimuth,
each trained with the BP algorithm, are employed. Neural
networks using the same input signal representations are
also trained with the GS algorithm. This algorithm can only
be applied for target type classi/cation since here only one
output neuron takes the value one (the winning neuron)
and the others are zero. For this reason, range and azimuth
estimation cannot be made with this approach [12].

8. Results

All of the methods considered determine the target type
and estimate its range and azimuth except statistical pattern
recognition techniques and ANNs trained with the GS algo-
rithm.
For TDA, D-S, and voting, the resulting average percent-

ages over all target types for correct classi/cation, correct
range and azimuth estimation are given in Table 1 for test
sets I–III. A range or azimuth estimate is considered correct
if it is within an error tolerance of 2r of the actual range or 2�
of the actual azimuth. Use of preference orders and assign-
ment of reliability measures always brings some improve-
ment compared to the results of SMV. The /fth reliability
measure gives the highest percentage of correct di erentia-
tion, and is followed by the third, fourth, /rst, and second
measures. These /ve reliability measures always result in
better classi/cation performance than a uniform reliability
measure assignment. In addition, their performances are also
better than that of D-S evidential reasoning which is in turn
better than TDA. The results associated with test set II are
about 3–4% worse than with test set I. Those obtained with
test set III are about 0–2% lower. Note that these methods
do not involve training; therefore the training data are not
used. In general, the azimuth estimation results are slightly
better than the range estimation results.
For the statistical pattern recognition techniques, the re-

sulting average percentages of correct classi/cation over all
target types for the three test sets are given in Table 2. In
this table, the percentage of correct classi/cation presented
for k-NN and generalized k-NN are the best results over
di erent k values (16 k6 10). With few and insigni/cant
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Table 1
The percentages of correct classi/cation, range (r) and azimuth (�) estimation for TDA, D–S, SMV, and majority voting schemes employing
preference ordering without/with reliability measures for the three test sets (I–II–III)

Method % of correct classif. % of correct r estimation % of correct � estimation

Error tolerance 2r Error tolerance 2�

±0:125 cm ±1 cm ±5 cm ±10 cm ±0:25◦ ±2◦ ±10◦ ±20◦

TDA 61-57-61 16-16-16 36-35-35 72-60-62 80-77-74 19-19-19 41-41-40 59-60-56 95-95-86
D-S 89-85-87 17-20-16 36-39-35 72-61-62 80-77-74 32-31-26 61-56-54 98-98-99 98-98-99
SMV 82-79-80 16-16-16 36-36-35 72-60-62 80-77-74 19-19-19 41-42-40 61-62-56 98-98-86
rel� = 1 88-84-85 16-16-16 36-36-35 72-60-62 80-77-74 19-19-19 41-42-40 61-62-56 98-98-86
rel1� 90-86-88 29-28-23 48-47-43 82-83-72 89-85-81 32-31-26 61-56-54 98-98-99 98-98-99
rel2� 90-86-88 29-28-23 48-47-43 82-83-72 89-85-81 32-31-26 61-56-54 98-98-99 98-98-99
rel3� 92-88-91 17-20-16 36-40-35 72-61-62 80-77-74 20-23-19 44-48-40 67-78-56 97-97-86
rel4� 91-87-89 17-20-16 36-39-35 72-61-62 80-77-74 20-23-19 42-47-40 63-77-56 97-96-86
rel5� 94-91-92 16-16-16 36-35-35 72-60-62 80-77-74 19-19-19 41-41-40 59-60-56 96-96-86

Table 2
The percentage of correct classi/cation with the three alternative
feature vectors xA; xB; xC for di erent statistical target recognition
for the three test sets (I–II–III)

Method xA xB xC

KE 99-93-71 99-89-68 94-78-65
Ordinary k-NN 97-83-70 98-74-67 91-67-63
Generalized k-NN 99-95-71 99-90-69 99-82-67
PDE (homoscedastic NM) 76-74-57 71-63-61 62-54-56
PDE (heteroscedastic NM) 81-79-66 79-74-59 68-64-62
LDA 71-56-50 58-39-41 57-42-41
FCC 98-94-91 93-92-92 93-92-92

exceptions, xA is seen to be the feature vector of choice,
followed by xB and xC in that order. Thus narrowing our
attention to xA, we observe that the best results are obtained
with KE, generalized k-NN, and FCC (give or take one
percentage point) for test sets I and II. However, for test set
III, FCC is clearly superior.
In most cases, the percentages of correct classi/cation

obtained with the heteroscedastic normal model are slightly
higher than those obtained with the homoscedastic normal
model; however, these are both inferior to the methods
mentioned above (expected since the superior methods are
non-parametric in which no assumptions on the underlying
PDFs are made, whereas in PDE the CCPDFs are assumed
to be Gaussian, imposing an unnecessary restriction). Worst
classi/cation performance is obtained with LDA, indicating
that the di erent functional forms of the amplitude and TOF
patterns of the targets are not suitable for linear separation.
The optimal results for test sets I, II, and III are 99%, 95%,
and 92% respectively, showing that the degradation in per-
formance for the latter test sets is not large.
As already mentioned, ANNs trained with the BP algo-

rithm estimate the target type, range, and azimuth, whereas

those trained with the GS algorithm determine only the target
type. For non-modular and modular networks trained with
the BP algorithm, the resulting average percentages over all
target types for correct type classi/cation, correct range and
azimuth estimation are given in Table 3. In this three-part ta-
ble, the numbers before the parentheses are for non-modular
networks, whereas the numbers in the parentheses are for
modular networks. For the DFRT, results are given for the
corresponding optimal value of a [59]. For test set I, the
highest average percentage of correct classi/cation of 100%
is obtained with the input signal Fa(I1) for non-modular
networks, and 99% with LFC(DWT(I1))2 for modular net-
works. For non-modular networks, the highest average per-
centages of correct range estimation lie in the range 79–
97% as the error tolerance 2r varies between 0:125–10 cm.
The optimal pre-processing method is one of I3;Fa(I1), or
F(I1). The highest average percentages of correct azimuth
estimation lie in the range 93–100% as the error tolerance 2�
varies between 0:25◦ and 20◦. The optimal pre-processing
method is usually Fa(I1) or LFC(DWT(I1))2. For modular
networks, the highest average percentage of correct range
estimation varies between 80% and 96% as 2r varies be-
tween 0.125–10 cm. This is obtained with either I2;F(I1), or
LFC(DWT(I1))2. The highest average percentage of correct
azimuth estimation varies between 95% and 100% as the er-
ror tolerance level 2� varies between 0:25◦ and 20◦. The opti-
mal pre-processing method is one of I2;F(I1);LFC(F(I1)),
or LFC(DWT(I1))2.
In general, straightforward use of DWT pre-processing

does not o er any improvements with respect to no
pre-processing. However, the low-frequency part of the
DWT does o er better performance, with the resolution
level (j =−1 or −2) to be used depending on whether we
use I1; I2, or I3. Employing the low-frequency part of the
Fourier transform gives better classi/cation and estimation
performance than employing the whole Fourier transform
for the input signals I2 and I3, while giving comparable
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Table 3
Average percentages of correct classi/cation, range (r) and azimuth (�) estimation for ANNs trained with the BP algorithm. The three
panels correspond to test sets I, II, and III, respectively

Input to ANN % of correct classif. % of correct r estimation % of correct � estimation

Error tolerance 2r Error tolerance 2�

±0:125 cm ±1 cm ±5 cm ±10 cm ±0:25◦ ±2◦ ±10◦ ±20◦

Test set I
I1 88(88) 30(33) 41(46) 63(70) 86(87) 65(65) 76(72) 87(84) 97(97)
I2 95(95) 74(73) 77(88) 87(93) 93(96) 89(95) 92(96) 95(97) 97(99)
I3 86(88) 79(73) 82(75) 89(83) 94(91) 83(87) 89(91) 95(95) 97(98)
F(I1) 97(98) 64(72) 69(73) 86(87) 96(95) 86(94) 93(96) 96(98) 100(100)
LFC(F(I1)) 96(97) 56(70) 64(73) 86(88) 95(97) 84(92) 90(96) 96(96) 100(99)
|LFC(F(I1))| 88(86) 28(45) 35(52) 68(77) 88(93) 65(55) 70(59) 86(79) 95(90)
F(I2) 93(89) 59(60) 64(65) 79(78) 89(90) 76(73) 81(86) 88(91) 93(96)
LFC(F(I2)) 99(95) 63(68) 72(74) 85(86) 94(92) 91(89) 93(91) 96(96) 99(98)
|LFC(F(I2))| 86(95) 35(54) 42(60) 73(80) 96(94) 39(56) 50(65) 71(86) 86(95)
F(I3) 86(90) 54(62) 61(65) 77(77) 89(89) 70(77) 76(82) 85(88) 94(94)
LFC(F(I3)) 91(85) 60(60) 68(65) 82(78) 92(90) 77(78) 81(83) 88(89) 96(96)
|LFC(F(I3))| 74(82) 34(41) 42(49) 65(72) 85(90) 30(53) 39(60) 62(78) 83(90)
Fa(I1) 100(96) 75(62) 79(66) 89(86) 97(96) 93(76) 96(79) 97(92) 100(99)
Fa(I2) 98(98) 67(68) 71(76) 83(87) 92(95) 80(86) 84(89) 90(95) 96(98)
Fa(I3) 90(93) 61(59) 68(62) 83(80) 92(90) 76(75) 82(79) 88(88) 95(94)
H(I1) 99(97) 59(54) 68(60) 85(81) 94(94) 84(84) 89(87) 95(95) 98(99)
H(I2) 98(97) 67(62) 72(68) 85(80) 93(90) 80(84) 85(86) 91(93) 96(99)
H(I3) 87(81) 59(46) 66(51) 80(69) 90(89) 73(79) 80(84) 89(90) 95(95)
DWT(I1) 82(74) 15(21) 30(27) 59(59) 80(82) 46(51) 58(63) 77(80) 94(94)
LFC(DWT(I1))1 85(98) 18(21) 28(33) 58(59) 82(79) 54(59) 65(62) 80(79) 95(94)
LFC(DWT(I1))2 98(99) 71(80) 76(82) 87(91) 95(96) 90(92) 93(93) 97(98) 100(100)
DWT(I2) 92(96) 63(64) 69(69) 84(82) 93(92) 85(87) 88(90) 93(94) 96(96)
LFC(DWT(I2))1 95(97) 65(66) 70(71) 84(84) 94(91) 87(88) 90(90) 94(94) 97(96)
LFC(DWT(I2))2 89(84) 28(32) 34(44) 58(68) 84(88) 58(53) 68(61) 86(80) 95(92)
DWT(I3) 86(89) 58(58) 62(62) 76(76) 93(89) 85(76) 88(80) 93(88) 96(94)
LFC(DWT(I3))1 82(91) 56(61) 60(66) 75(78) 89(87) 73(79) 77(83) 86(89) 93(94)
LFC(DWT(I3))2 83(79) 29(33) 37(44) 63(69) 83(88) 53(41) 65(52) 78(75) 87(89)
KSOFM(I1) 75(74) 17(14) 25(23) 49(46) 80(72) 64(61) 67(64) 81(79) 90(89)
KSOFM(I2) 78(76) 22(19) 28(28) 59(57) 88(81) 69(66) 73(71) 86(85) 92(93)
KSOFM(I3) 66(63) 24(21) 30(31) 57(55) 84(81) 51(49) 54(51) 78(75) 89(87)

Test set II
I1 88(88) 17(18) 32(30) 55(56) 78(83) 37(38) 47(47) 75(74) 91(94)
I2 90(93) 59(60) 63(69) 78(83) 88(88) 70(71) 75(76) 92(97) 94(98)
I3 58(59) 63(60) 63(62) 76(76) 83(85) 66(69) 74(73) 93(93) 94(97)
F(I1) 96(98) 53(57) 54(57) 81(75) 91(88) 69(72) 77(77) 89(98) 98(98)
LFC(F(I1)) 96(97) 52(59) 58(62) 82(83) 89(89) 69(69) 75(74) 83(83) 98(98)
|LFC(F(I1))| 86(82) 20(37) 28(45) 64(72) 86(88) 57(53) 66(59) 78(74) 88(88)
F(I2) 89(92) 52(51) 53(52) 67(68) 80(80) 60(59) 65(68) 81(92) 83(95)
LFC(F(I2)) 98(95) 54(56) 57(58) 74(70) 83(80) 69(69) 72(73) 95(90) 97(92)
|LFC(F(I2))| 83(90) 21(42) 31(50) 64(74) 86(92) 39(51) 49(60) 71(75) 81(87)
F(I3) 84(87) 48(51) 52(53) 65(68) 77(80) 57(60) 63(65) 82(84) 89(86)
LFC(F(I3)) 90(85) 56(53) 56(54) 74(73) 85(85) 61(62) 65(67) 87(86) 91(91)
|LFC(F(I3))| 74(81) 25(36) 34(43) 57(60) 80(86) 30(48) 39(56) 62(78) 81(87)
Fa(I1) 100(96) 59(53) 60(55) 79(79) 89(88) 70(63) 75(68) 97(97) 100(99)
Fa(I2) 92(92) 55(56) 55(59) 67(71) 78(83) 62(65) 67(68) 85(91) 90(92)
Fa(I3) 83(85) 53(52) 53(54) 72(71) 81(79) 61(60) 70(65) 85(80) 89(88)
H(I1) 92(96) 52(51) 55(54) 76(77) 87(89) 68(67) 74(73) 93(95) 96(99)
H(I2) 93(95) 55(52) 58(52) 71(68) 83(82) 62(66) 68(71) 86(94) 90(96)
H(I3) 77(79) 50(44) 51(45) 72(66) 83(83) 60(61) 65(68) 81(86) 87(87)
DWT(I1) 82(74) 12(14) 24(20) 50(53) 76(79) 26(29) 37(38) 64(64) 87(89)



1226 B. Barshan, B. Ayrulu / Pattern Recognition 36 (2003) 1213–1231

Table 3 (continued)

LFC(DWT(I1))1 85(98) 11(13) 22(22) 50(53) 75(75) 33(31) 41(43) 70(71) 87(91)
LFC(DWT(I1))2 98(99) 60(64) 60(64) 76(79) 91(89) 71(72) 77(77) 96(94) 96(95)
DWT(I2) 92(93) 53(54) 53(57) 72(71) 85(81) 65(66) 67(69) 87(90) 92(92)
LFC(DWT(I2))1 91(94) 53(56) 53(56) 70(71) 80(80) 68(66) 72(70) 91(88) 91(90)
LFC(DWT(I2))2 86(80) 16(20) 28(29) 51(60) 80(79) 33(28) 40(34) 74(72) 86(88)
DWT(I3) 82(85) 49(51) 53(52) 68(67) 78(81) 57(59) 63(65) 85(85) 87(88)
LFC(DWT(I3))1 80(86) 52(54) 52(54) 68(65) 80(77) 60(62) 67(68) 85(86) 88(90)
LFC(DWT(I3))2 80(78) 21(20) 30(32) 60(62) 81(83) 28(23) 38(31) 65(66) 84(84)
KSOFM(I1) 75(73) 12(10) 19(18) 45(41) 77(69) 38(34) 40(37) 75(69) 88(86)
KSOFM(I2) 78(76) 19(16) 23(21) 53(52) 82(78) 39(38) 45(42) 77(76) 88(87)
KSOFM(I3) 65(61) 21(19) 26(25) 51(51) 78(73) 29(27) 34(33) 69(67) 81(80)

Test set III
I1 85(73) 18(21) 28(32) 49(55) 74(76) 35(40) 45(45) 61(56) 80(72)
I2 78(80) 59(60) 59(65) 72(77) 83(84) 68(70) 73(75) 75(76) 76(80)
I3 57(54) 60(59) 60(59) 69(69) 80(80) 64(68) 72(75) 73(78) 74(79)
F(I1) 77(74) 56(58) 57(58) 73(76) 87(83) 68(69) 78(77) 81(77) 81(77)
LFC(F(I1)) 77(78) 52(59) 56(59) 73(73) 82(85) 69(68) 75(74) 83(83) 85(85)
|LFC(F(I1))| 68(68) 19(31) 25(36) 57(62) 81(82) 55(50) 60(56) 73(66) 78(74)
F(I2) 79(76) 50(53) 52(54) 59(67) 76(80) 54(61) 62(70) 71(77) 76(82)
LFC(F(I2)) 84(81) 54(56) 57(58) 73(70) 83(79) 69(68) 72(73) 85(80) 87(86)
|LFC(F(I2))| 63(70) 21(35) 30(41) 60(67) 84(88) 34(42) 40(52) 68(65) 80(83)
F(I3) 74(76) 47(52) 48(52) 63(62) 76(75) 62(63) 69(72) 78(76) 81(79)
LFC(F(I3)) 77(74) 52(53) 55(54) 68(66) 79(76) 61(62) 65(67) 71(73) 85(87)
|LFC(F(I3))| 65(70) 23(30) 31(38) 57(60) 79(82) 29(40) 36(48) 53(72) 72(79)
Fa(I1) 83(89) 61(55) 63(55) 77(72) 90(82) 67(67) 71(70) 71(80) 71(83)
Fa(I2) 81(79) 55(56) 56(57) 68(70) 79(79) 64(65) 70(72) 71(73) 73(77)
Fa(I3) 77(79) 52(53) 53(53) 65(74) 76(72) 62(62) 69(67) 73(75) 77(80)
H(I1) 89(87) 53(51) 54(52) 71(70) 79(80) 69(72) 76(76) 80(83) 80(83)
H(I2) 80(81) 56(52) 58(53) 72(66) 85(79) 65(66) 70(69) 74(74) 75(81)
H(I3) 75(72) 51(45) 53(45) 66(60) 78(78) 62(64) 69(70) 73(75) 73(76)
DWT(I1) 78(75) 12(15) 23(19) 50(51) 75(80) 27(32) 35(45) 53(62) 79(80)
LFC(DWT(I1))1 69(84) 12(14) 18(27) 47(50) 78(70) 32(33) 41(40) 59(60) 80(77)
LFC(DWT(I1))2 85(83) 56(63) 58(63) 68(74) 82(85) 67(71) 69(75) 76(80) 76(80)
DWT(I2) 82(80) 53(54) 54(55) 71(68) 85(83) 65(69) 69(73) 77(75) 79(73)
LFC(DWT(I2))1 80(84) 53(55) 56(56) 69(68) 79(79) 67(68) 71(72) 78(73) 78(73)
LFC(DWT(I2))2 76(74) 16(19) 22(28) 48(51) 75(74) 32(33) 39(39) 59(57) 73(73)
DWT(I3) 73(75) 49(50) 49(50) 59(63) 75(75) 67(61) 72(67) 76(76) 79(78)
LFC(DWT(I3))1 74(80) 50(52) 50(52) 60(63) 73(75) 62(63) 68(69) 73(72) 76(74)
LFC(DWT(I3))2 73(72) 17(20) 26(30) 51(52) 73(75) 30(23) 40(32) 56(52) 72(68)
KSOFM(I1) 73(72) 9(7) 13(12) 35(33) 60(56) 32(31) 34(32) 51(50) 65(65)
KSOFM(I2) 75(74) 17(15) 21(21) 56(55) 85(81) 44(43) 47(46) 67(66) 76(76)
KSOFM(I3) 66(64) 16(14) 19(20) 47(46) 73(71) 32(31) 36(35) 60(59) 83(82)

results for I1. (The ordinary Fourier transform can be con-
sidered as a special case of the DFRT.)
For test set II (Table 3), the maximum correct target

classi/cation percentages of 100% (non-modular) and 99%
(modular) are obtained when the input signals Fa(I1) and
LFC(DWT(I1))2 are used, respectively. These values are the
same as those achieved with test set I. However, the percent-
ages for correct range and azimuth estimates are generally
3–16% and 0–30% lower than test set I, respectively. Not-
ing that the networks are trained only at 25 locations and at
grid spacings of 5 cm and 10◦, it can be concluded from the
percentage of correct range and azimuth estimates obtained

at error tolerances of |2r |=0:125 and 1 cm and |2�|=0:25◦

and 2◦, that the networks demonstrate the ability to interpo-
late between the training grid locations. Thus, the neural net-
work maintains a certain spatial continuity between its input
and output and does not haphazardly map positions which
are not drawn from the 25 locations of Fig. 3. The correct
target type percentages are just as good (99–100%) and the
accuracy of the range/azimuth estimates would be accept-
able for most applications. If better estimates are required,
this can be achieved by reducing the training grid spacing
in Fig. 3. Finally, we add that the results for the modular
networks are slightly better than those for the non-modular
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Table 4
Average percentages of correct classi/cation, range (r) and azimuth (�) estimation for KSOFM used prior to a linear classi/er for the three
test sets (I–II–III)

Input to ANN % of correct classif. % of correct r estimation % of correct � estimation

Error tolerance 2r Error tolerance 2�

±0:125 cm ±1 cm ±5 cm ±10 cm ±0:25◦ ±2◦ ±10◦ ±20◦

KSOFM(I1) 81-81-78 33-21-20 37-27-23 61-55-50 85-79-74 75-65-46 76-68-46 88-88-68 94-91-77
KSOFM(I2) 85-85-77 41-26-28 44-30-30 71-59-58 90-84-80 80-65-47 82-68-48 93-88-63 97-88-76
KSOFM(I3) 73-73-67 42-28-28 45-34-30 69-60-59 86-78-81 64-58-44 67-63-46 85-81-69 94-84-84

networks. Furthermore, use of modular networks has the ad-
ditional advantage that one can independently optimize the
pre-processing method and the parameters.
For test set III (Table 3), a maximum correct target classi-

/cation percentage of 89% for both non-modular and mod-
ular network structures is obtained when the input signals
H(I1) (non-modular network structure) and Fa(I1) (mod-
ular structure) are used, respectively. In most cases, Fa(I1)
gives the best range and azimuth estimates. Overall, we can
conclude that the networks are fairly robust to variations in
target shape, size, and roughness.
As an across-the-board conclusion, we may state that the

fractional Fourier transform of I1 with optimal order and
low-frequency part of the wavelet transform of I1 generally
represent the best pre-processing options and o er substan-
tial improvements with respect to no pre-processing.
The results obtained with KSOFM used prior to linear

classi/ers are given in Table 4. This combination results
in better classi/cation performance than when KSOFM is
employed prior to ANNs (last three rows of Table 3). The
classi/cation and azimuth estimation performances are com-
parable to those obtained with the corresponding unpro-
cessed signals (/rst three rows of Table 3). However, range
estimation results are inferior compared to the results ob-
tained with unprocessed signals. In any event, this approach
is overshadowed by the best pre-processing methods in
Table 3.
For networks trained with the GS algorithm, the

resulting average percentages of correct type classi-
/cation over all target types are given in Table 5.
(Recall that this approach cannot produce localization
results.) The maximum average percentage of correct
classi/cation is 97–98% for both test sets I and II,
and can be obtained with either of the input signals
F(I1); LFC(F(I1)); |LFC(F(I1))|; Fa(I1); H(I1); LFC
(DWT(I1))1, or LFC(DWT(I1))2. It is 91–92% for test set
III which can be obtained with either of the input signals
F(I1); Fa(I1), orH(I1). We see that the fractional Fourier
and low-frequency wavelet transforms again give the best
results, though several pre-processing alternatives also give
comparable results in this case. Use of KSFOM results
in exceptionally poor target di erentiation. While the GS

Table 5
The percentages of correct classi/cation for ANNs trained with the
GS algorithm for the three test sets (I–II–III)

Input to ANN % of correct di .

I1 95-95-89
I2 90-90-78
I3 76-76-68
F(I1) 97-97-92
LFC(F(I1)) 98-98-86
|LFC(F(I1))| 97-97-84
F(I2) 95-95-82
LFC(F(I2)) 96-96-81
|LFC(F(I2))| 94-94-75
F(I3) 83-83-69
LFC(F(I3)) 88-88-75
|LFC(F(I3))| 83-83-71
Fa(I1) 97-97-91
Fa(I2) 96-96-83
Fa(I3) 84-83-71
H(I1) 97-97-91
H(I2) 95-95-81
H(I3) 83-83-71
DWT(I1) 95-95-89
LFC(DWT(I1))1 97-97-89
LFC(DWT(I1))2 97-97-88
DWT(I2) 91-91-80
LFC(DWT(I2))1 90-90-79
LFC(DWT(I2))2 90-90-79
DWT(I3) 75-75-67
LFC(DWT(I3))1 77-77-68
LFC(DWT(I3))2 80-80-71
KSOFM(I1) 5-8-5
KSOFM(I2) 13-11-9
KSOFM(I3) 8-5-6

algorithm does not o er an advantage over the BP algorithm
for test set I, it does o er better results for test set II; the
classi/cation results obtained with test set II are almost al-
ways as good as those with test set I with the GS algorithm,
which means that it is accomplishing a very good task of
spatial interpolation.
Table 6 summarizes the results for all of the meth-

ods considered, allowing their overall comparison. In this
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Table 6
Overview of the methods compared (test set I). The numbers before/in the parentheses are for non-modular/modular ANNs trained with the
BP algorithm, and the numbers in brackets are for ANNs trained with the GS algorithm

Method No. of Di eren. Correct pos. est. (%)
targets accuracy
di . (%)

Range Azimuth Training Learning Parametric
(0:125 cm=5 cm) (0:25◦=10◦) data

TDA 3 61 Yes 16/72 Yes 19/59 Not used No No

D-S evidential reasoning 3 89 Yes 17/72 Yes 32/98 Not used No No

Voting 3 Yes Yes Not used No No
SMV 82 16/72 19/61
With pref. ordering and rel. measures
rel� = 1 88 16/72 19/61
rel1� = m(r�) m(��) 90 29/82 32/98
rel2� = min{m(r�) m(��)} 90 29/82 32/98

rel3� =
m(r�) + m(��)

2
92 17/72 20/67

rel4� = max{m(r�) m(��)} 91 17/72 20/63
re15� = m(1st choice�)− m(2nd choice�) 94 16/72 19/59

Statistical pattern recognition 7 No No
KE 99 Used, stored No No
Ordinary k-NN 98 Used, stored No No
Generalised k-NN 99 Used, stored No No
PDE (homoscedastic NM) 76 Used, not stored No Yes
PDE (heteroscedastic NM) 81 Used, not stored No Yes
LDA 71 Used, not stored No No
FCC 98 Used, not stored Yes No

Neural networks 7 Yes (yes) [no] Yes (yes) [no] Used, not stored Yes No
Raw signal 95 (95) [95] 79/89 (73/93) 89/95 (95/97)
DFT 99 (98) [98] 64/86 (72/88) 91/96 (94/98)
DFRT 100 (98) [97] 75/89 (68/87) 93/97 (86/95)
DHT 99 (97) [97] 67/85 (62/81) 84/95 (84/95)
DWT 98 (99) [97] 71/87 (80/91) 90/97 (92/98)

KSOFM 78 (76) [13] 24/59 (21/57) 69/86 (66/85)
KSOFM with linear classi/er 7 85 Yes 42/71 Yes 80/93 Used, not stored Yes No

summary table, the correct range and azimuth estimation
percentages are given for error tolerances 2r = 0:125 and
5 cm and 2� = 0:25◦ and 10◦, and the presented results
correspond to the optimal variation and/or parameter values
which give the best di erentiation accuracy for each entry.
For instance, the entry labeled “DWT” more speci/cally
corresponds to the LFC(DWT(I1))2 result. TDA, D-S ev-
idential reasoning, and the various voting strategies can
di erentiate only three target types while the other meth-
ods can di erentiate all of the seven targets considered in
this paper. This indicates that these latter methods, which
involve training, are making more e ective use of the avail-
able data. Statistical pattern recognition techniques and
ANNs trained with the GS algorithm do not provide range
and azimuth estimates.
A 100% correct di erentiation is achieved with the non-

modular ANN trained with the BP algorithm employing

DFRT pre-processing. Better range and/or azimuth
accuracy can be obtained with some of the other
pre-processing methods at the cost of slightly poorer dif-
ferentiation accuracy. In general, which method is best
depends on the relative importance we attach to minimizing
errors in di erentiation, range, and azimuth. Nevertheless,
a compromise which balances both di erentiation and
localization is obtained with DWT pre-processing using
modular networks trained with the BP algorithm and o ers
99% di erentiation accuracy, 80% or 91% range estimation
accuracy and 92% or 98% azimuth estimation accuracy, for
2r = 0:125 and 5 cm and 2� = 0:25◦ and 10◦, respectively.

9. Conclusion

In this study, a comprehensive comparison of a large
number of methods for target classi/cation and localization
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with sonar has been presented. Many variations of the meth-
ods have been considered and their optimal con/gurations
and parameters determined. Di erent pre-processing meth-
ods, structures, and training algorithms for ANNs have been
implemented, among which the method leading to the best
results emerged.
The performance of all the methods considered have been

compared for three di erent test sets. The /rst test set is
based on targets situated at the training locations. The sec-
ond is based on targets situated at arbitrary locations; it has
been observed that ANNs are able to achieve considerable
spatial interpolation. The third is based on targets which
are not used for training and are somewhat di erent in size,
shape, or roughness than those used for training; it has been
observed that the methods are fairly robust in identifying
these modi/ed targets.
The results are summarized in Table 6 which provides

a comparison of the various methods optimized within
themselves. In terms of the number of targets that can
be di erentiated, correct di erentiation percentage, and
correct range and azimuth estimation, the use of modular
ANNs trained with the BP algorithm, usually with DFRT
or DWT pre-processing, gives the best results. With the
best optimized methods, it is possible to obtain near perfect
di erentiation, around 85% correct range estimation and
around 95% correct azimuth estimation, which would be
satisfactory in a wide range of applications. While the GS
algorithm does not o er an advantage over the BP algo-
rithm for test set I, it does o er better results for test set II;
the classi/cation results obtained with test set II are almost
always as good as that with test set I, which means that the
GS algorithm is accomplishing a very good task of spatial
interpolation.
Use of preference orders and assignment of reliability

measures always brings some improvement compared to
the results of SMV. The /fth reliability measure gives the
highest percentage of correct di erentiation, and is followed
by the third, fourth, /rst, and second measures. These /ve
reliability measures always result in better classi/cation
performance than a uniform reliability measure assignment.
In addition, their performances are also better than that
of D-S evidential reasoning which is in turn better than
the TDA. For statistical pattern recognition techniques, the
target classi/cation performances of most non-parametric
approaches are better than that of PDE; the best results are
obtained with generalized k-NN, generally followed by KE
and FCC or k-NN.
Given the attractive performance for cost of sonar-based

systems, we believe that the results of this study will be
of great usefulness for engineers designing or implement-
ing sonar systems and researchers investigating algorithms
and performance evaluation of such systems. While we have
concentrated on sonar sensing, the techniques evaluated and
compared in this paper may be useful for other sensing
modalities and environments where information from a mul-
tiplicity of partial viewpoints must be combined.
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