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Abstract

Concerning solvable polynomial algebras in the sense of Kandri-Rody and Weispfe
[J. Symbolic Comput. 9 (1990) 1–26], it is shown how to recognize and construct quadric so
polynomial algebras in an algorithmic way. IfA = k[a1, . . . , an] is a quadric solvable polynomia
algebra, it is proved that gl.dimA � n andK0(A)∼= Z. If A is a tame quadric solvable polynomi
algebra, it is shown thatA is completely constructable and Auslander regular.
 2003 Elsevier Inc. All rights reserved.
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This work is the continuation of [Li] that deals with quadric solvable polynom
algebras. More precisely, the aim of this paper is to study the regularity of general q
solvable polynomial algebras (at least at the level of having finite global dimensio
K0-groupZ). In Section 1, we first note from several known results that quadric solv
polynomial algebras are algorithmically recognizable and constructable by means
very noncommutative Gröbner bases in the sense of Mora [Mor]. In Section 2, we
that everytamequadric solvable polynomial algebraA (see Section 1 Definition 1.2
is completely constructable (in the sense of Theorem 2.1) and Auslander regula
K0(A)∼= Z. This is achieved by taking a closer look at the associated graded algebraG(A)

of A with respect to the standard filtrationFA. After introducing the�gr-filtration on
modules in Section 3, we prove in Section 4 that every quadric solvable polynomial a
is of finite global dimension. Returning to the standard filtration again in Section 5
proved thatK0(A) ∼= Z holds for every quadric solvable polynomial algebraA. At this
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stage, we may say that every quadric solvable polynomial algebra is regular in the cl
sense. However, the author strongly believes that the following conjecture is true, t
he himself failed to prove it in general.

Conjecture. Every quadric solvable polynomial algebraA is Auslander regular.

Throughout this paper we letk denote a commutative field. All algebras conside
are associativek-algebras with 1, and modules are unitaryleft modules. As every solvabl
polynomial algebra is a left and right Noetherian domain over a field, the invariant
property holds for such algebras, and consequently, there is no problem to talk abou
dimension andK0-group of such algebras.

1. Quadric solvable polynomial algebras

In this section, after briefly recalling from [K-RW,LW,LWZ] some basic notions a
facts concerning noncommutative Gröbner bases and solvable polynomial algebr
with slight modification), we show how to recognize and construct quadric solv
polynomial algebras in an algorithmic way.

Let Z
n
�0 be the set ofn-tuplesα = (α1, . . . , αn) of non-negative integers. Forα =

(α1, . . . , αn) ∈ Z
n
�0, we write

|α| = α1+ · · · + αn.

By amonomial orderingon Z
n
�0 we mean any relation� onZ

n
�0 satisfying

(1) � is a well-ordering onZn�0, and
(2) if α 
 β andγ ∈ Z

n
�0, thenα + γ 
 β + γ .

Any lexicographic ordering onZn�0, denoted�lex, is a monomial ordering. Anothe
monomial ordering used very often in computational algebra is the graded lexicog
ordering onZ

n
�0, denoted�grlex, which is defined as follows: forα = (α1, . . . , αn),

β = (β1, . . . , βn),α >grlexβ if

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi, or |α| = |β| andα >lexβ,

where �lex is some lexicographic ordering onZn�0. More generally, we say that
monomial ordering� on Z

n
�0 is a graded monomial ordering, denoted�gr, in case it

is defined as: forα = (α1, . . . , αn), β = (β1, . . . , βn), α 
gr β if

|α| =
n∑
αi > |β| =

n∑
βi, or |α| = |β| andα 
 β.
i=1 i=1
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Let A = k[a1, . . . , an] be a finitely generatedk-algebra with generating set{a1, . . . , an}.
Given any permutation of the generators, say{aj1, aj2, . . . , ajn}, we call an element o
the formaα1

j1
· · ·aαnjn a standard monomialin A with respect to the given permutation

generators, where(α1, . . . , αn) ∈ Z
n
�0, and write

SM(A)= {
aα = aα1

j1
· · ·aαnjn | α = (α1, . . . , αn) ∈ Z

n
�0

}
for the set of all such standard monomials. It is clear that there is an onto mapϕ :Zn�0 →
SM(A) with ϕ(α)= aα, in particular,

(0, . . . ,0,︸ ︷︷ ︸
i−1

1,0, . . . ,0)= ei �→ aji , 1 � i � n.

If furthermore the mapϕ is one-to-one and onto, then any ordering� on Z
n
�0 naturally

induces an ordering onSM(A), also denoted�, as follows.

aα 
 aβ if and only if α 
 β.

Definition 1.1 [K-RW,LW]. Let A = k[a1, . . . , an] be a finitely generatedk-algebra
and SM(A) the set of standard monomials inA with respect to a given permutatio
{ajn, ajn−1, . . . , aj1} of generators ofA. Let� be a monomial ordering onZn�0.A is called
a solvable polynomial algebrawith the monomial ordering� if the following conditions
are satisfied.

(S1) SM(A) forms ak-basis forA (hence there is a one-to-one and onto mapϕ :Zn�0 →
SM(A) with ϕ(α)= aα), and

(S2) for anyaα , aβ ∈ SM(A), aαaβ = λα,βaα+β +∑
λγ a

γ with λα,β, λγ ∈ k, λα,β �= 0,
andα+ β 
 γ (or equivalently,aα+β 
 aγ ) for everyaγ appearing in

∑
λγ a

γ with
λγ �= 0.

It is shown in [K-RW] that every nonzero one-sided idealL of a solvable polynomia
algebraA has a finite Gröbner basis with respect to the given monomial ordering
henceA is a (left and right) Noetherian domain. If furthermore the ground field
computable, then a Gröbner basis containing a given generating set ofLmay be computed
in terms of theS-polynomials by using a noncommutative version of Buchberg
Algorithm.

(•) Unless it is otherwise stated, from now on we assume for a solvable polynomial a
A = k[a1, . . . , an] that SM(A)= {aα1

1 a
α2
2 · · ·aαnn | (α1 . . . , αn) ∈ Z

n
�0} (this is always

possible by renumbering the generators).

Warning. The convention(•) does not necessarily imply that, with respect to the gi
monomial ordering�gr on SM(A), there is the orderingan 
gr an−1
gr · · · 
gr a1.



H. Li / Journal of Algebra 267 (2003) 608–634 611

al

of

first

free

.

Bearing the above convention(•) and the warning in mind, letA = k[a1, . . . , an] be
a solvable polynomialk-algebra with respect to some graded monomial ordering�gr on
Z
n
�0, or equivalently, on thek-basisSM(A) of A. By the definition of a graded monomi

ordering and Definition 1.1(S2), it follows that the generators ofA satisfyonly quadric
relations, that is,

ajai = λjiaiaj +
∑
k��

λk�ji aka� +
∑

λhah + cji , 1 � i < j � n, (∗)

whereλji , λk�ji , λh, cji ∈ k, and λji �= 0. This leads to the following specific class
solvable polynomial algebras.

Definition 1.2. We call the solvable polynomial algebraA with �gr a quadric solvable
polynomial algebra.If k, � < j in the formula(∗) wheneverλk�ji �= 0, then we callA a
tamequadric solvable polynomial algebra.

To characterize quadric solvable polynomial algebras in an algorithmic way, we
note an easy fact.

Observation. LetA= k[a1, . . . , an] be a quadric solvable polynomialk-algebra with�gr.
Then since

ajai = λjiaiaj +
∑
k��

λk�ji aka� +
∑

λhah + cji , 1 � i < j � n,

and sinceSM(A) = {aα1
1 · · ·aαnn | (α1, . . . , αn) ∈ Z

n
�0} forms ak-basis forA, we have

A ∼= k〈X〉/I , where k〈X〉 = k〈X1, . . . ,Xn〉 is the free associativek-algebra onX =
{X1, . . . ,Xn} andI is the ideal ofk〈X〉 generated by

Rji =XjXi − λjiXiXj −
∑
k��

λk�jiXkX� −
∑

λhXh − cji , 1� i < j � n,

or in other words,{Rji | 1� i < j � n} is a set of defining relations forA.

LetW be the multiplicative semigroup of words (including empty word as 1) in the
k-algebrak〈X〉 = k(X1, . . . ,Xn〉. If w ∈W , we writed(w) for the length of the wordw,
whered(1)= 0. Recall from [Mor] that amonomial orderingon k〈X〉 is a well-ordering
� onW which iscompatiblewith the product:

for eachu,v, t1, t2 ∈W, t1≺ t2 implies ut1v ≺ ut2v.

For example, agraded lexicographic orderonW , denoted�grlex, is defined as follows
Choose an ordering

O>: Xjn >Xjn−1 > · · ·>Xj1.
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Foru,v ∈W , u >grlex v if and only if

eitherd(v) < d(u) or d(u)= d(v) andv is lexicographically less thanu,

where we say thatv is lexicographically less thanu if

either there isr ∈W such thatu= vr
or there arew, r1, r2 ∈W, andXjp < Xjq such thatv =wXjpr1, u=wXjq r2.

Note that the monomial ordering�grlex defined above yieldsXjn >grlex Xjn−1 >grlex

· · ·>grlexXj1 which coincides with the given orderingO>.

(••) Unless it is otherwise stated, henceforth we assume that a monomial ordering� on
the free algebrak〈X〉 = k〈X1, . . . ,Xn〉 induces the orderingO�: Xn 
Xn−1 
 · · · 

X1 on generators (this is always possible by renumbering the generators, as illu
by later examples (iv)–(vi)).

Given a monomial ordering� on k〈X〉, each elementF ∈ k〈X〉 has a unique ordere
representation as a linear combination of elements ofW :

F =
s∑
i=1

ci ti , 0 �= ci ∈ k, ti ∈W, t1
 t2
 · · · 
 ts .

So to each nonzero elementF ∈ 〈X〉 we can associateLM(f )= t1, theleading monomia
of f . Let G = {Gj }j∈Λ be a nonempty subset ofk〈X〉 andI = 〈G〉 the two-sided idea
of k〈X〉 generated byG. G is called aGröbner basisin k〈X〉 with respect to a given
monomial ordering� if every elementF ∈ I has a Gröbner representation byG in the
sense of Mora [Mor]:F = ∑

λjwjGjvj , whereλj ∈ k andwj , vj are words ofk〈X〉,
such thatLM(F )� LM(wjGjvj ) wheneverλj �= 0.

Proposition 1.3 [LWZ, Theorem 1.2.2].With notation and the convention(••) as above,
let � be a monomial ordering on the free algebrak〈X〉 = k(X1, . . . ,Xn〉. Consider
the k-algebra A = k〈X〉/I , where I is the ideal ofk〈X〉 generated by the definin
relations

Rji =XjXi − λjiXiXj − {Xj,Xi}, 1� i < j � n,

whereλji ∈ k, {Xj,Xi} = 0 or {Xj,Xi} ∈ k〈X〉—k-span{XjXi,XiXj }. Suppose that

LM(Rji)=XjXi with respect to�, 1 � i < j � n.

The following statements are equivalent.
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(i) Write xi for the image ofXi in A, 1 � i � n. The set of standard monomials inA,
denoted

SM(A)= {
x
α1
1 x

α2
2 · · ·xαnn | (α1, . . . , αn) ∈ Z

n
�0

}
,

forms ak-basis forA.
(ii) {Rji | 1 � i < j � n} forms a Gröbner basis ink〈X〉 with respect to�, as defined

above,
(iii) For 1 � i < j < k � n, everyRkjXi −XkRji has a weak Gröbner representation

{Rji | 1� i < j � n} in the sense of[Mor] :

RkjXi −XkRji =
∑
p>q

cpqlpqRpqrpq with the property that

LM(Rkj )Xi 
 lpqLM(Rpq)rpq,

wherecpq ∈ k andlpq , rpq are words ofk〈X〉.

Corollary 1.4. Consider thek-algebraA= k〈X〉/I , whereI is the ideal of the free algebr
k〈X〉 = k〈X1, . . . ,Xn〉 generated by thequadricdefining relations

Rji =XjXi − λjiXiXj −
∑

λk�jiXkX� −
∑

λhXh − cji , l � i < j � n,

whereλji , λk�ji , λh, cji ∈ k. Suppose that

(1) λji �= 0, 1 � i < j � n, and
(2) one of the following conditions is satisfied wheneverλk�ji �= 0:

(a) k = � andk, � < j .
(b) k �= � andk, �� j , wherek = j implies� < i and�= j impliesk < i.

ThenA is a quadric solvable polynomial algebra with respect toxn >grlex xn−1 >grlex

· · ·>grlex x1, where eachxi is the image ofXi in A, if and only if {Rji | 1 � i < j � n}
forms a Gröbner basis ink〈X〉 with respect toXn >grlexXn−1>grlex · · ·>grlexX1.

Proof. Suppose that{Rji | 1 � i < j � n} forms a Gröbner basis ink〈X〉 with
respect toXn >grlex Xn−1 >grlex · · · >grlex X1. Since by the assumption (2) we ha
LM(Rji) = XjXi , 1 � i < j � n, it follows from Proposition 1.3 thatSM(A) =
{xα1

1 x
α2
2 · · ·xαnn | (α1, . . . , αn) ∈ Z

n
�0} forms ak-basis forA. Now one checks directly tha

the assumptions (1)–(2) and the defining relations together makeA into a quadric solvable
polynomial algebra with respect toxn >grlex xn−1 >grlex · · · >grlex. The converse is clea
by Proposition 1.3. ✷

To realize Proposition 1.3, one may, of course, use the very noncommutative di
algorithm and a version of Buchberger algorithm given by Mora [Mor]. Howeve
avoid large and tedious noncommutative division procedure, it follows from [LWZ]
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Berger’sq-Jacobi condition is quite helpful in the case where�grlex is used (indeed�grlex

is the monomial ordering on a free algebra used most often in practice). To see th
k〈X〉 = k〈X1, . . . ,Xn〉 andA= k〈X〉/I be as in Proposition 1.3, whereI is generated by
the set of defining relations{Rji | 1 � i < j � n}. For 1� i < j < k � n, theJacobi sum
J(Xk,Xj ,Xi) (in the sense of [Ber]) is defined as

J(Xk,Xj ,Xi)= {Xk,Xj }Xi − λkiλjiXi{Xk,Xj }
− λji{Xk,Xi}Xj + λkjXj {Xk,Xi}
+ λkj λki{Xj,Xi}Xk −Xk{Xj,Xi}.

Then, as in the proof of [LWZ, Proposition 1.3.2], we can derive that, for 1� i < j <

k � n,

RkjXi −XkRji = λjiRkiXj − λkjXjRki − λkj λkiRjiXk + λkiλjiXiRkj
− J(Xk,Xj ,Xi).

It follows from Proposition 1.3(iii) that the following proposition holds.

Proposition 1.5. LetA be as in Proposition1.3and let�grlex be the graded lexicographi
ordering onk〈X〉 such that

Xn >grlexXn−1>grlex · · ·>grlexX1,

LM(Rji)=XjXi with respect to�grlex, 1 � i < j � n.

The following statements are equivalent.

(i) {Rji | 1 � i < j � n} forms a Gröbner basis ink〈X〉 with respect to�grlex.
(ii) For 1 � i < j < k � n,

J(Xk,Xj ,Xi) ∈ k-span{Rpq | 1 � q < p � n}

+ k-span



XhRji,RjiXh,RijXk, 1 � h < k,
XhRki,RkiXh,RkiXk, 1 � h < k,
XhRkj ,RkjXm, 1 � h < k, 1 �m< i.




Example. In the examples given below, notation is maintained as before. Moreove
abusing language, some examples will be called “deformations” of certain well-k
algebras.

(i) Let X2X1− qX1X2− aX2
1 − bX1− cX2− d = R21∈ k〈X1,X2〉, whereq, a, b, c,

d ∈ k. Then it is easy to know by [Mor] that{R21} is a Gröbner basis ink〈X1,X2〉 with
respect toX2 >grlexX1. Thus, ifq �= 0, then the algebraA = k〈X1,X1〉/〈R21〉 is a tame
quadric solvable polynomial algebra with respect to�grlex (indeed this is a skew poly
nomial algebra). One sees that we have all 2-dimensional quadric solvable polyn
algebras with respect toX2>grlexX1 here.
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(ii) Deformations ofU(sl2). LetU(sl2) be the enveloping algebra of the 3-dimensio
Lie algebrag = k[x, y, z] defined by the relations:[x, y] = z, [z, x] = 2x, [z, y] = −2y.
This example provides quadric solvable polynomial algebras which are deformatio
U(sl2).

Let k〈X1,X2,X3〉 be the freek-algebra on{X1,X2,X3} andA = k〈X1,X2,X3〉/I
whereI is the two-sided ideal generated by the defining relations

R21=X2X1− αX1X2− γX2− F21,

R31=X3X1− 1

α
X1X3+ γ

α
X3− F31,

R32=X3X2− βX2X3− F(X1)− F32,

where

α �= 0, β, γ ∈ k, F (X1) ∈ k-span
{
X2

1,X1,1
}
,

F21,F31,F32∈ k〈X1,X2,X3〉.
If α = β = 1, γ = 2, F(X1) = X1, andF21 = F31 = F32 = 0, thenA = U(sl2). More-
over, in the case whereF21 = F31 = F32 = 0, the family of algebras constructed abo
includes many well-known deformations ofU(sl2), e.g., Woronowicz’s deformation o
U(sl2) [Wor], Witten’s deformation ofU(sl2) [Wit], Le Bruyn’s conformalsl2 envelop-
ing algebra [Le], Smith’s deformation ofU(sl2) where the dominant polynomialf (t) has
degree� 2 [Sm], Benkart–Roby’s down-up algebra in whichβ �= 0 (cf. [KMP]).

Set onk〈X1,X2,X3〉 the monomial orderingX3>grlexX2>grlexX1. Then the only Ja
cobi sum determined by the defining relations ofA with respect to the fixed ordering o
generators is

J(X3,X2,X1)= {X3,X2}X1− λ31λ21X1{X3,X2}
− λ21{X3,X1}X2+ λ32X2{X3,X1}
+ λ32λ31{X2,X1}X3−X3{X2,X1}

= (
f (X1)+ F32

)
X1− 1

α
· αX1

(
f (X1)+ F32

)
− α

(
−γ
α
X3+ F31

)
X2+ βX2

(
−γ
α
X3+ F31

)

+ β · 1

α
(γX2+ F21)X3−X3(γX2+ F21)

= F32X1−X1F32− αF31X2+ βX2F31+ β

α
F21X3−X3F21.

Write

F = F32X1−X1F32− αF31X2+ βX2F31+ β
F21X3−X3F21.

α
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By Proposition 1.5, ifLM(Rji)=XjXi w.r.t. �grlex, 1 � i < j � 3, and

F ∈ k-span



R21,R31,R32,

X1R21,R21X1,X2R21,R21X2,R21X3,

X1R31,R31X1,X2R31,R31X2,R31X3,

X1R32,X2R32


 ,

then{R21,R31,R32} forms a Gröbner basis with respect toX3>grlexX2>grlexX1. Below
we consider two cases:

CaseI. Input in the defining relations ofA the data

(D1)




α = β �= 0, γ ,µ,q, ε, ξ, λ, η32∈ k,
F (X1) ∈ k-span{X2

1,X1,1},
G(X2) ∈ k-span{X2

2,X2,1},
H(X3) ∈ k-span{X3,1},
F21= µX2

1 + qX1+H(X3),

F31= ε(X1X2+X2X1)− ξX2
1 + λX1+G(X2),

F32= (µ(X1X3+X3X1)− εαX2
2)+ ξα(X1X2+X2X1)

− λαX2+ qX3+ η32.

Clearly, in this case we haveLM(Rji) = XjXi , 1 � i < j � 3, and the conditions o
Corollary 1.4 are satisfied. Moreover, a direct verification shows that

F32X1−X1F32= µ
(
X3X

2
1 −X2

1X3
)+ εα(

X1X
2
2 −X2

2X1
)

+ ξα(
X2X

2
1 −X2

1X2
)+ λα(X1X2−X2X1)

+ q(X3X1−X1X3),

−αF31X2+ αX2F31= εα
(
X2

2X1−X1X
2
2

)+ ξα(
X2

1X2−X2X
2
1

)
+ λα(X2X1−X1X2),

F21X3−X3F21= µ
(
X2

1X3−X3X
2
1

)+ q(X1X3−X3X1),

and consequently,J (X3,X2,X1)=F = 0. By Corollary 1.4,A is a quadric solvable poly
nomial algebra.

CaseII. Input in the defining relations ofA the data (D2) which is obtained by settin
µ= 0 in the above (D1). As with the data (D1), one checks that in this case we also
J (X3,X2,X1)= 0. But nowA is a tame quadric solvable polynomial algebra.

Remark. By modulo the idealI in the above cases, one may indeed obtain a se
{F21,F31,F32} in which each member is a linear combination of standard monomials
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(iii) Non-polynomial central extension of deformations ofU(sl2). These are the 4
dimensional algebras defined by the relations from the free algebrak〈X1,X2,X3,X4〉

R21=X2X1− αX1X2− γX2− F21−K21,

R31=X3X1− 1

α
X1X3+ γ

α
X3− F31−K31,

R32=X3X2− αX2X3− F(X1)− F32−K32,

R41=X4X1−X1X4,

R42=X4X2−X2X4,

R43=X4X3−X3X4,

whereK21,K31,K32∈ k-span{X4,1} and{α,γ,F (X1),F21,F31,F32} is taken either from
(D1) or from (D2) in example (ii). Since the only possible nonzero Jacobi sums determ
by the above relations with respect toX4>grlexX3>grlexX2>grlexX1 are given by

J(X3,X2,X1)=K32X1−X1K32− αK31X2+ αX2K31+K21X3−X3K21,

J(X4,X3,X2)= F(X1)X4−X4F(X1)+F32X4−X4F32,

J(X4,X3,X1)= γ

α
(X4X3−X3X4)+ F31X4−X4F31,

J(X4,X2,X1)= γ (X2X4−X4X2)+ F21X4−X4F21,

it can be further checked that they have weak Gröbner representations by{R41,R42,R43}.
Thus, Corollary 1.4 and Proposition 1.5 hold. Hence, the algebras defined by the re
given above are quadric solvable polynomial algebras.

(iv) Deformations ofAn(k). Let An(k) be thenth Weyl algebra overk. This example
provides quadric solvable polynomial algebras which are deformations ofAn(k).

Let k〈Y ∪ X〉 be the freek-algebra onY ∪ X = {Yn, . . . , Y1,Xn, . . . ,X1}, and set on
k〈Y ∪X〉 the monomial ordering

Yn >grlexXn >grlexYn−1>grlexXn−1>grlex · · ·>grlexY1>grlexX1.

Consider thek-algebraA= k〈X ∪ Y 〉/I , whereI is the ideal ofk〈X,Y 〉 generated by the
defining relations

Hji =XjXi −XiXj , 1 � i < j � n,
H̃ji =XjYi − YiXj , 1 � i < j � n,
Gji = YjYi − YiYj , 1 � i < j � n,
G̃ji = YjXi −XiYj , 1 � i < j � n,
R = Y X − q X Y − F , 1 � j � n,
jj j j j j j jj
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whereqj ∈ k,Fjj ∈ k〈Y ∪ X〉. If in the defining relationsqj �= 0 andFjj = 1, thenA
is the additive analogue ofAn(k) introduced and studied in quantum physics [Kur,JB
if qj = q �= 0 andFjj = 1, thenA is the well-known algebra ofq-differential operators
with polynomial coefficients. A direct verification shows that the only possible non
Jacobi sums determined by the defining relations and the ordering given on gen
are

J(Yj ,Xj ,Xi)= FjjXi −XiFjj , 1� i < j � n,

J(Yj ,Xj ,Yi)= FjjYi − YiFjj , 1� i < j � n,

J(Yk,Yj ,Xj )= FjjYk − YkFjj , 1� j < k � n,

J(Xk,Yj ,Xj )= FjjXk −XkFjj , 1� j < k � n.

For 1� j � n, at least if

Fjj ∈ k-span
{
X2
j ,Xj ,Yj ,1

}
,

then all conditions of Corollary 1.4 and Proposition 1.5 are satisfied, and one chec
all Jacobi sums have weak Gröbner representations. It follows thatA is a tame quadric
solvable polynomial algebra with�grlex in the case where allqj �= 0.

(v) Deformations of Heisenberg enveloping algebra.Let k〈X ∪Z ∪ Y 〉 be the freek al-
gebra onX∪Z∪Y = {Xn, . . . ,X1,Zn, . . . ,Z1, Yn, . . . , Y1},A= k〈X∪Z∪Y 〉/I , whereI
is the ideal generated by the defining relations

Rxji =XjXi −XiXj , 1 � i < j � n,

R
y

ji = YjYi − YiYj , 1 � i < j � n,

Rzji =ZjZi −ZiZj , 1 � i < j � n,

R
zy

ji =ZjYi − λ
δji
i YiZj , 1 � i, j � n,

Rxzji =XjZi −µ
δji
i ZiXj , 1 � i, j � n,

R
xy
ji =XjYi − YiXj , i �= j,
R
xy
ji =XjYj − qjYjXj − Fjj , 1 � i � n,

whereλi,µi, qj ∈ k, δji is the Kronecker delta,Fjj ∈ k〈X ∪ Z ∪ Y 〉. If we takeλi =
µi = gj = 1, Zj = Z andFjj = Z, 1� j � n, then the enveloping algebra of(2n+ 1)-
dimensional Heisenberg Lie algebra is recovered. In the case whereλi = µi = q �= 0,
qj = q−1, andFjj = zj , we recover theq-Heisenberg algebra (cf. [Ber,Ros]).

Set the monomial ordering

Xn >grlex · · ·>grlexX1>grlexZn >grlex · · ·>grlexZ1>grlexYn >grlex · · ·>grlexY1.
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Then a direct verification shows that the only possible nonzero Jacobi sums determi
the defining relations and the ordering given on generators are

J(Xk,Xj ,Yj )= FjjXk −XkFjj , 1 � j < k � n,

J(Xk,Xj ,Yk)=−FkkXj +XjFkk, 1 � j < k � n,

J(Xk,Zj ,Yk)=−FkkZj +ZjFkk, 1 � k, j � n,

J(Xk,Yk,Yj )= FkkYj − YjFkk, 1 � k < j � n,

J(Xj ,Yk,Yj )=−FjjYk + YkFjj , 1 � j < k � n,

It can be further checked that, for 1� j � n, at least if

Fjj ∈ k- span
{
Z2
j ,Zj ,Y

2
j , Yj ,Xj ,1

}
,

then all conditions of Corollary 1.4 and Proposition 1.5 are satisfied, and all Jacobi
have weak Gröbner representations by the defining relations. It follows thatA is a tame
quadric solvable polynomial algebra with�grlex in the case where allqj �= 0.

(vi) Berger’sq-enveloping algebras. Recall from [Ber] that aq-algebraA= k[x1, . . . ,

xn] over acommutative ringk is defined by the quadric relations

Rji =XjXi − qjiXiXj − {Xj,Xi}, 1 � i < j � n, whereqji ∈ k,
and {Xj,Xi} =

∑
αk�ji XkX� +

∑
αhXh + cji, αk�ji , αh, cji ∈ k,

satisfying if αk�ji �= 0, then i < k � � < j, andk − i = j − �.

Define twok-subspaces of the free algebrak〈X1, . . . ,Xn〉

E1= k-Span{Rji | n� j > i � 1},
E2= k-Span{XiRji,RjiXi,XjRji,RjiXj | n� j > i � 1}.

For 1� i < j < k � n, if every Jacobi sumJ(Xk,Xj ,X1) is contained inE1+ E2, thenA
is called aq-envelopingalgebra with respect to the natural total orderingxn > xn−1 >

· · ·> x1. A q-enveloping algebra is said to beinvertible if in the defining relations all co
efficientsqji are invertible, 1� i < j � n. In [Ber] theq-PBW theorem was obtained fo
q-enveloping algebras, that is, the set of standard monomials{xα1

1 · · ·xαnn | (α1, . . . , αn) ∈
Z
n
�0} forms ak-basis for aq-enveloping algebraA. Clearly, if we set the monomial orde

ingXn >grlexXn−1>grlex · · ·>grlexX1, then the defining relations of aq-algebraA satisfy

LM(Rji)=XjXi, 1� i < j � n, and

k, � < j in
∑

αk�XkX� wheneverαk� �= 0.
ji j i
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Hence, by Proposition 1.3 and Corollary 1.4, the defining relations of aq-enveloping alge-
bra form a Gröbner basis ink〈X1, . . . ,Xn〉; if furthermoreA is an invertibleq-enveloping
algebra thenA is a tame quadric solvable polynomial algebra.

We observe that the conditionsi < k � � < j andk − i = j − � the definition of aq-
algebra are not necessarily satisfied by a quadric solvable polynomial algebra, or mo
erally, a quadric algebra characterized by Corollary 1.4 is not necessarily aq-enveloping
algebra in the sense of [Ber].

Remark. In the end of first part of [LWZ], it was pointed out that aq-enveloping algebra
over a fieldk is generally not a solvable polynomial algebra with respect to�grlex. This is,
of course, not true for invertibleq-envelopingalgebras, as argued in the above example
The author takes this place to correct that incorrect remark.

We finish this section with more quadratic solvable polynomial algebras associa
given quadric solvable polynomial algebras.

Let A= k[a1, . . . , an] be a finitely generated algebra. Consider thestandard filtration
FA onA:

k = F0A⊂ F1A⊂ F2A⊂ · · · ⊂ FpA⊂ · · ·

where for eachp ∈ Z�0, Fp = k-span{aα1
i1
a
α2
i2
· · ·aαnin | α1 + · · · + αn � p}. With respect

to FA, the associated graded algebra ofA is defined asG(A) = ⊕
p∈Z�0

G(A)p with

G(A)p = FpA/Fp−1A, and the (graded) Rees algebra ofA is defined as̃A=⊕
p∈Z�0

Ãp

with Ãp = FpA. If a ∈ FpA− Fp−1A, then we say thata hasdegreep and writeσ(a),
respectivelyã, for the image ofa in G(A)p , respectively the homogeneous elemen
degreep in Ãp = FpA represented bya. Moreover, we letX stand for the homogeneou
element of degree 1 iñA= F1A represented by 1. ThenA∼= Ã/(1−X)Ã,G(A)= Ã/XÃ.
The results presented in the next proposition are modifications of [LW, Theorem
and 3.5] and [LWZ, Theorems 2.3.1 and 2.3.3].

Proposition 1.6. Let A = k[a1, . . . , an] be a quadric solvable polynomial algebra wi
�gr, and letFA,G(A), andÃ be as defined above. The following holds.

(i) G(A)= k[σ(a1), . . . , σ (an)] with thek-basis

SM
(
G(A)

)= {
σ(a1)

α1σ(a2)
α2 · · ·σ(an)αn | (a1, . . . , an) ∈ Z

n
�0

}
is a quadratic solvable polynomial algebra.̃A = k[ã1, ã2, . . . , ãn,X] with the k-basis
SM(A) = {ãα1

1 ã
α2
2 · · · ãαnn | (α1, . . . , αn) ∈ Z

n
�0} is a quadratic solvable polynomia

algebra. In particular, ifA is tame then so isG(A).
(ii) If A is defined by the defining relations

Rji =XjXi − λjiXiXj −
∑

λk�XkX� −
∑

λhXh − cji , 1� i < j � n,
ji
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with respect to the graded lex orderingXn >grlex · · ·>grlexX1 such thatLM(Rji)=XjXi ,
1 � i < j � n, thenG(A) has the quadratic defining relations

σ(Rji)=XjXi − λjiXiXj −
∑

λk�jiXkX�, 1 � i < j � n,

which form a Gröbner basis in the free algebrak〈X1, . . . ,Xn〉 with respect toXn >grlex

· · ·>grlexX1; andÃ has the quadratic defining relations

TXi −XiT , 1� i � n,
R̃ji =XjXi − λjiXiXj −

∑
λk�jiXkX� −

∑
λhXhT − cjiT 2, 1 � i < j � n,

which form a Gröbner basis in the free algebrak〈X1, . . . ,Xn,T 〉 with respect toXn >grlex

· · ·>grlexX1>grlexT .

Remark. One may see that some of the quadric solvable polynomial algebras const
in this section are tame and some of them are iterated skew polynomial algebras s
with the ground field. From the presentation that we give it appears that other exa
above are not tame, and they are not iterated skew polynomial extensions overk. However
our methods do not rule out the possibility that some other presentation might sho
these algebras are tame or iterated skew polynomial algebras overk.

2. Tame case: A is completely constructable and Auslander regular with K0(A)∼= Z

In this section we derive that every tame quadric solvable polynomial alg
(Definition 1.2) is completely constructable (in the sense of Theorem 2.1 below
Auslander regular withK0-groupZ. Notation is maintained as in Section 1.

Theorem 2.1. Let k〈X〉 = k〈X1, . . . ,Xn〉 be the freek-algebra onX = {X1, . . . ,Xn}. Set
onk〈X〉 the graded lexicographic monomial orderingXn >grlexXn−1>grlex · · ·>grlexX1,
and letI be the ideal ofk〈X〉 generated by theRji , where

Rji =XjXi − λjiXiXj −
∑
k��<j

λk�jiXkX� −
∑

λhXh − cji , 1� i < j � n.

Suppose that{Rji | 1 � i < j � n} forms a Gröbner basis ink〈X〉 with respect to>grlex.
ThenB = k〈X〉/I is a tame quadric solvable polynomial algebra with respect to
graded lexicographic monomial orderingxn >grlex xn−1>grlex · · ·>grlex x1, where eachxi
is the image ofXi in B.

Conversely, letA= k[a1, . . . , an] be a tame quadric solvable polynomial algebra w
some graded monomial ordering�gr. ThenA is isomorphic to ak-algebra of typeB with
>grlex, as described above.

Thus, we may say that tame quadric solvable polynomial algebras are comp
constructable.
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Proof. ThatB = k〈X〉/I is a tame quadric solvable polynomial algebra with respect to
graded lexicographic monomial orderingxn >grlex xn−1 >grlex · · ·>grlex x1 follows from
the given defining relationsRji , Proposition 1.3 and Corollary 1.4 immediately.

The converse follows from the definition of a tame quadric solvable polynomial alg
the observation made after Definition 1.2, Proposition 1.3 and Corollary 1.4.✷

Let B be ak-algebra. Recall thatB is said to beAuslander regularif B is left and
right Noetherian with finite global dimension, and for every finitely generatedB-module
M, everyi � 0, and every submoduleN ⊂ ExtiB(M,B), the inequalityjB(N) � i holds,
wherejB(N) is the smallest integerk such that ExtkB(N,B) �= 0. Also recall that ifB has
K0-groupZ then every finitely generated (left)B-module has a finite free resolution.

Theorem 2.2. Let A = k[a1, . . . , an] be a tame quadric solvable polynomial algeb
with some graded monomial ordering�gr and thek-basis SM(A) = {aα1

1 a
α2
2 · · ·aαnn |

(a1, . . . , an) ∈ Z
n
�0}. LetG(A) andÃ be the associated graded algebra and Rees alge

ofA with respect to the standard filtrationFA onA as defined in Section1. ThenA,G(A),
andÃ are Auslander regular domains withK0-groupZ.

Proof. By the definition of a tame quadric solvable polynomial algebra and Pro
tion 1.6, the generators ofG(A)= k[σ(a1), . . . , σ (an)] satisfy the quadratic relations

σ(aj )σ (ai)= λjiσ (ai)σ (aj )+
∑
k,�<j

λk�ji σ (ak)σ (a�), 1 � i < j � n,

andG(A) has thek-basis

SM
(
G(A)

)= {
σ(a1)

α1σ(a2)
α2 · · ·σ(an)αn | (α1, . . . , αn) ∈ Z

n
�0

}
.

Consequently, the above defining relations determine an iterated skew polynomial a
structure starting with the polynomial algebrak[σ(x1)]. Therefore,G(A) is an Auslander
regular domain. It follows from [Li1,LV01,LV02] thatA and Ã are Auslander regula
domains, and it follows from theK0-part of Quillen’s theorem [Qui, Theorem 7] that

Z
∼=−→K0(k)

=↗=−→=↘

K0(F0A)∼=K0(A)

K0
(
G(A)0

)∼=K0
(
G(A)

)
,

K0(Ã0)∼=K0(Ã0)

as desired. ✷

3. The �gr-filtration on modules

As remarked in the end of Section 1, it seems very hard to know whether every q
solvable polynomial algebra could be tame or not. To study the regularity andK0-group
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of an arbitrary quadric solvable polynomial algebraA = k[a1, . . . , an] with respect to
a graded monomial ordering�gr, in this section we introduce the�gr-filtration on A-
modules and discuss the�gr-filtered homomorphisms and the associatedZ

n
�0-graded

homomorphisms.
First recall from [Li] the definition and some basic properties of the�gr-filtration FA

onA. Let SM(A)= {aα1
1 a

α2
2 · · ·aαnn | (α1, . . . , αn) ∈ Z

n
�0

}
the standardk-basis ofA. For

eachα ∈ Z
n
�0, construct thek-subspace

FαA= k-span
{
aβ ∈ SM(A) | α �gr β

}
.

Clearly, ifα 
gr γ , thenFγ A⊂FαA. Thus, since�gr is a graded monomial ordering, w
have aZn�0-filtration of k-subspaces onA satisfying

(1) 1∈F0A= k,
(2) everyFαA is afinitedimensionalk-space, andA=⋃

α∈Z
n
�0

FαA,

(3) FαA ·FβA⊂Fα+βA.

To emphasize the role of�gr in our discussion, this filtrationFA is called the�gr-
filtration. Note thatα �gr 0 = (0, . . . ,0) for all α ∈ Z

n
�0, and the feature of a grade

monomial ordering yields that, for eachα ∈ Z
n
�0, there exists

α∗ =max
{
γ ∈ Z

n
�0 | α 
gr γ

}
.

Then we have a well-definedZn�0-graded algebra

GF (A)=
⊕
α∈Z

n
�0

GF (A)α with GF (A)α =FαA/Fα∗A,

where the addition is given by the componentwise addition and the multiplication is
by

GF (A)α ×GF (A)β −→GF (A)α+β

(f̄ , ḡ) �−→ fg

where, iff ∈ FαA, thenf̄ stands for the image off in GF (A)α = FαA/Fα∗A. GF (A)
is called theassociated graded algebraof A with respect toFA.

For an elementf ∈ FαA− Fα∗A, we say thatf hasdegreeα and writeσ(f ) for the
image off in GF (A)α . Recalling the conventional correspondence made in Section

ai↔ (0, . . . ,0︸ ︷︷ ︸,1,0, . . . ,0)= ei ∈ Z
n
�0, 1� i � n,
i−1



624 H. Li / Journal of Algebra 267 (2003) 608–634

of
we see that 0�= σ(ai) ∈GF (A)ei , and it is not hard to see that, forα = (α1, . . . , αn) ∈ Z
n
�0

andaα ∈ SM(A),

σ(a1)
α1 · · ·σ(an)αn = σ

(
a
α1
1 · · ·aαnn

)= σ (
aα

)
.

Hence, forα = (α1, . . . , αn) ∈ Z
n
�0,

GF (A)α = k-span
{
σ(a1)

α1 · · ·σ(an)αn
}
(i.e., a 1-dimensional space).

If the quadric relations satisfied by the generators ofA are

ajai = λjiaiaj +
∑
k��

λk�ji aka� +
∑

λhah + cji , 1 � i < j � n, (∗)

whereλji , λk�ji , λh, cji ∈ k, andλji �= 0, then we obtain the following basic properties

GF (A).

Proposition 3.1. With notation as above, the following holds.
(i) GF (A) is a Z

n
�0-gradedk-algebra generated byσ(a1), . . . , σ (an), i.e.,GF (A) =

k[σ(a1), . . . , σ (an)], and the generators ofGF (A) satisfy

σ(aj )σ (ai)= λjiσ (ai)σ (aj ), λji �= 0, 1 � i < j � n.

(ii) The set of homogeneous elements(monomials)

σ
(
SM(A)

)= {
σ(a1)

α1 · · ·σ(an)αn | (α1, . . . , αn) ∈ Z
n
�0

}
forms ak-basis forGFA.

(iii) GF (A) is an iterated skew polynomial algebra starting with the ground fieldk.
Consequently,GF (A) is an Auslander regular domain of global dimensionn and
K0(G

F (A))∼= Z.

Proof. (i) and (ii) follow from [Li, Proposition 2.1]. ThatGF (A) is an iterated skew
polynomial algebra starting with the ground fieldk follows from parts (i)–(ii), and the
rest of (iii) have been well-known facts about an iterated skew polynomial algebra.✷

Now, we turn to modules.

Definition 3.2. Let M be a (left)A-module.M is said to be a�gr-filteredA-moduleif
there is a familyFM = {FαM}α∈Z

n
�0

consisting ofk-subspacesFαM of M such that

(a)
⋃
α∈Z

n
�0

FαM =M,

(b) FβM ⊂FαM if α >gr β , and
(c) FαAFβM ⊂Fα+βM for all α,β ∈ Z

n .
�0
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FM is called a�gr-filtration onM.
Since for eachα ∈ Z

n
�0 there isα∗ = max{γ ∈ Z

n
�0 | α 
gr γ }, to be convenient, fo

the least element 0= (0, . . . ,0) ∈ Z
n
�0, we setF0∗M = {0} in everyFM.

If M is a�gr-filteredA-module with�gr-filtration FM, then theassociated graded
GF (A)-modules ofM is defined as theZn�0-graded additive group

GF (M)=
⊕
α∈Z

n
�0

GF (M)α with GF (M)α = FαM/Fα∗M

on which the module action ofGF (A) is given by

GF (A)α ×GF (M)β −→GF (M)α+β
(f̄ ,m) �−→ fm

where, if f ∈ FαA, respectively ifm ∈ FβM, then f̄ stands for the image off ∈
GF (A)α = FαA/Fα∗A, respectivelym stands for the image ofm in GF (M)β =
FβM/Fβ∗M. A �gr-filtration FM has the property that if 0�= m ∈ M, then there is
α ∈ Z

n
�0 such thatm ∈ FαM − Fα∗M. In this case we callα the degreeof m and write

σ(m) for its corresponding homogeneous element inGF (M)α .
Before dealing with the associatedZn�0-gradedGF (A)-moduleGF (M) of a �gr-

filtered A-moduleM with �gr-filtration FM, we first note that, forα,β ∈ Z
n
�0 with

α 
gr β , the equationα = β+ x does not necessarily have a solution inZ
n
�0. In particular,

even if forα 
gr β andα∗ 
gr β , by the definition ofα∗, the equations

α = β + x and α∗ = β + y

may not have solutions inZn�0 simultaneously. This makes the�gr-filtrations behave quite
different fromZ-filtrations. To remedy this defect, let us put

[0, α] = {
γ ∈ Z

n
�0 | α �gr γ

}
.

Then clearly,α∗ =max{[0, α] − {α}}.

Lemma 3.3. Letα,η ∈ Z
n
�0 be such thatα = η+γ for someγ ∈ Z

n
�0. For anyβ ∈ [0, α∗],

if β = η+ δ for someδ ∈ Z
n
�0, thenγ ∗ �gr δ; if β = α∗, thenδ = γ ∗.

Proof. Note that�gr is a monomial ordering. The first conclusion is then clear by
definition of a∗-element. Supposeα∗ = η + δ. Then,γ 
gr γ

∗ implies α = η + γ �gr

η+ γ ∗. This, in turn, impliesη+ δ = α∗ �gr η+ γ ∗, and henceδ �gr γ
∗. Combining the

first conclusion, we conclude thatδ = γ ∗. ✷
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Proposition 3.4. LetM be anA-module.
(i) If M has a�gr-filtration FM such thatGF (M)=∑

i∈J GF (A)σ(ξi) with ξi ∈M
and degσ(ξi) = α(i) ∈ Z

n
�0, thenM = ∑

i∈J Aξi . In particular, if GF (M) is finitely
generated then so isM.

(ii) If M is finitely generated, thenM has a�gr-filtration FM such thatGF (M) is
finitely generated overGF (A).

Proof. (i) SinceGF (M)=∑
i∈J GF (A)σ(ξi) with ξi ∈M and degσ(ξi)= α(i) ∈ Z

n
�0,

we have

GF (M)α =
∑
i∈J

β(i)+α(i)=α

GF (A)β(i)σ (ξi), α ∈ Z
n
�0.

Thus, for anym ∈FαM,m=∑
aβ(i)ξi +m′, whereaβ(i) ∈Fβ(i)A with β(i)+ α(i)= α,

m′ ∈Fα∗M. Similarly we havem′ =∑
a′γ (i)ξ+m′′, whereα′γ (i) ∈Fγ (i)Awith γ +α(i)=

α∗, m′′ ∈Fα∗∗M. Sinceα �gr α
∗ �gr α

∗∗ and�gr is a graded monomial ordering, after
finite number of repetition of the above procedure, we arrive at

m ∈
∑
i∈J

( ∑
γ∈[0,α]

γ (i)+α(i)=γ

Fγ (i)A
)
ξi

and it follows that

FαM =
∑
i∈J

( ∑
γ∈[0,α]

γ (i)+α(i)=γ

Fγ (i)A
)
ξi

becauseξi ∈Fα(i)M, i ∈ J . HenceM =∑
i∈J Aξi .

(ii) SupposeM = ∑s
i=1Aξi and {ξ1, . . . , ξs} is a minimal set of generators forM.

Chooseα(1), . . . , α(s) ∈ Z
n
�0 arbitrarily and set

∑
γ∈[0,α]

γ (i)+α(i)=γ

Fγ (i)A= {0}

if γ = α(i)+ x has no solution for anyγ ∈ [0, α]. Then, it is easy to see that the fam
FM consisting of

FαM =
s∑
i=1

( ∑
γ∈[0,α]

Fγ (i)A
)
ξi , α ∈ Z

n
�0,
γ (i)+α(i)=γ
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is a�gr-filtration onM, whereξi ∈ Fα(i)M − Fα(i)∗M, i.e., degξi = α(i), i = 1, . . . , s.
And by Lemma 3.3, it can be verified directly thatGF (M)=⊕s

i=1G
F (A)σ(ξi) with

GF (M)α =
∑

1�i�s
γ (i)+α(i)=α

GF (A)γ (i)σ (ξi), α ∈ Z
n
�0. ✷

LetM andN be�gr-filteredA-modules with�gr-filtrationsFM andFN , respectively.
An A-module homomorphismϕ :M→ N is said to be a�gr-filtered homomorphism, i
ϕ(FαM)⊂FαN for all α ∈ Z

n
�0. A �gr-filtered homomorphismϕ is said to bestrict if

ϕ(FαM)= ϕ(M)∩FαN, α ∈ Z
n
�0.

If M is a�gr-filteredA-module with�gr-filtrationFM, and ifN ⊂M is anA-submodule
of M, thenN has the�gr-filtrationFN consisting of

FαN = FαM ∩N, α ∈ Z
n
�0,

and the quotientA-moduleM/N has the�gr-filtrationF(M/N) consisting of

Fα(M/N)= (FαM +N)/N, α ∈ Z
n
�0.

The�gr-filtrationsFN andF(M/N) defined above are called theinduced�gr-filtration
on N andM/N , respectively. With respect to the induced filtration onN andM/N ,
the inclusion mapN → M and the natural mapM → M/N are strict�gr-filtered
homomorphisms.

If ϕ :M→N is�gr-filteredA-homomorphism, thenϕ induces naturally aZn�0 graded

GF (A)-module homomorphism:

GF (ϕ): GF (M)=
⊕
α∈Z

n
�0

GF (M)α −→
⊕
α∈Z

n
�0

GF (N)α =GF (N)

∑
m �−→

∑
ϕ(m).

Proposition 3.5. Let

K
ϕ−→M

ψ−→N (∗)

be a sequence of�gr-filtered A-modules and�gr-filtered homomorphisms such th
ψ ◦ ϕ = 0. Then

GF (K)
GF (ϕ)−−−→GF (M)

GF (ψ)−−−→GF (N) GF (∗)
is an exact sequence ofZ

n
�0-gradedGF (K)-modules andZn�0-graded homomorphisms

and only if(∗) is exact andϕ,ψ are strict.
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Proof. First suppose that(∗) is exact andϕ, ψ are strict. IfGF (ψ)(m) = 0 with m ∈
FαM − Fα∗M, then 0= ψ(m) ∈ GF (N)α , i.e., ψ(m) ∈ Fα∗N ∩ ψ(M) = ψ(Fα∗M).
Thus,ψ(m)=ψ(m′) for somem′ ∈Fα∗M, and hencem−m′ ∈ Kerψ ∩FαM = ϕ(K)∩
FαM = ϕ(FαK). Let m = m′ = ϕ(k) for somek ∈ FαK. Thenm = m−m′ = ϕ(k) =
GF (ϕ)(k). This shows that KerGF (ψ) = GF (ϕ)(GF (K)), i.e., the graded sequence
exact.

Conversely, suppose that the graded sequenceGF (∗) is exact. To show the strictne
of ψ , let f ∈ FαN ∩ ψ(M) andf /∈ Fα∗N . Thenf = ψ(m) for somem ∈ FβM where
β �gr α. If β = α, thenf = ψ(m) ∈ ψ(FαM). If β �gr α, then sincef ∈ FαN , we have
GF (ψ)(m) = ψ(m) = 0 in GF (N). By the exactness,m = GF (ϕ)(k̄) = ϕ(k) for some
k ∈FβK. Putm′ =m−ϕ(k). Thenm′ ∈Fβ∗M, andψ(m′)= ψ(m−ϕ(k))=ψ(m)= f .
Note that the chain

β 
gr β
∗ 
gr β

∗∗ 
gr · · · 
gr α

has finite length inZn�0. It follows that, after a finite number of repetition of the abo
procedure, we havef = ψ(mα) ∈ ψ(FαM). This shows thatFαN ∩ ψ(M) ⊂ ψ(FαM),
i.e.,ψ is strict.A similar argument do reach the strictness ofϕ and the exactness of(∗). ✷
Corollary 3.6. Let ϕ :M → N be a �gr-filtered A-homomorphism. ThenGF (ϕ) is
injective, respectively surjective, if and only if(ϕ) is injective, respectively surjective, an
ϕ is strict.

4. General case: gl.dimA ��� n

LetA= k[a1, . . . , an] be an arbitrary quadric solvable polynomial algebra with�gr as
defined in Section 1, and letFA be the�gr-filtration onA as defined in Section 3. Wit
the preparation made in Section 3, we proceed to show gl.dimA� n in the present section

First recall a well-known result concerning graded projective modules over a (
group-graded ring (e.g., [NVO]). LetG be an additive (semi)group andS = ⊕

g∈GSg a
G-graded ring. Agraded freeA-module is a freeS-moduleT =⊕

i∈J Sei on the basis
{ei}i∈J , which is alsoG-graded such that eachei is homogeneous, i.e., if deg(ei) = gi ,
thenT =⊕

g∈G Tg with Tg =⊕
hi+gi=g Shi ei . For any gradedS-moduleM =⊕

g∈GMg ,
there is a graded freeS-moduleT =⊕

g∈GTg and a graded surjectiveS-homomorphism
ϕ :T → M. If T is a graded freeS-module andP is a gradedS-module such tha
T = P ⊕Q for some gradedS-moduleQ with the property thatTg = Pg +Qg for all
g ∈G, thenP is called agraded projectiveS-module.

Proposition 4.1. Let G be a (semi)group,S a G-graded ring andP a graded(left) S-
module. The following statements are equivalent.

(i) P is a graded projectiveS-module.
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(ii) Given any exact sequence of gradedS-modules and gradedS-homomorphism

M
ψ−→N→ 0, if P

α−→N is a gradedS-homomorphism, then there exists a uniq

graded homomorphismP
ϕ−→M making the following diagram commute:

P

α
ϕ

M
ψ

N 0

(iii) P is projective as an(ungraded) S-module.

Return to modules over the quadric solvable polynomial algebraA. LetL=⊕
i∈J Aei

be a freeA-module on the basis{ei}i∈J . In view of Lemma 3.3 and the proof o
Proposition 3.4, ifα(i) ∈ Z

n
�0 are arbitrarily chosen fori ∈ J , we may define a�gr-

filtration FL onL:

FαL=
⊕
i∈J

( ∑
γ∈[0,α]

γ (i)+α(i)=γ

Fγ (i)A
)
ei, α ∈ Z

n
�0,

where[0, α] = {γ ∈ Z
n
�0 | α �gr γ } as defined before Lemma 3.3, and

∑
γ∈[0,α]

γ (i)+α(i)=γ

Fγ (i)A= {0}

if γ = α(i)+ x has no solution inZn�0 for anyγ ∈ [0, α].

Observation. In the construction ofFL made above, the following properties may
verified directly by using the monomial ordering�gr.

(i) For eachα ∈ Z
n
�0 and eachi ∈ J ,

either
∑

γ∈[0,α]
γ (i)+α(i)=γ

Fγ (i)A= {0} or
∑

γ∈[0,α]
γ (i)+α(i)=γ

Fγ (i)A=Fγ̃ (i)A

whereγ̃ (i)=max{γ (i) ∈ Z
n
�0 | γ (i)+ α(i)= γ for someγ ∈ [0, α]},

(ii) For eachi ∈ J , ei ∈Fα(i)L−Fα(i)∗ , i.e., eachei is of degreeα(i).

Definition 4.2. WriteFL= {FαL;α(i), i ∈ J }α∈Z
n
�0

for the�gr-filtration onL as defined
above.L is called a�gr-filtered freeA-module with the�gr-filtrationFL.

Proposition 4.3. With notation as above, the following holds.
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(i) If L is a �gr-filtered freeA-module with the�gr-filtration FL, thenGF (L) is a
Z
n
�0-graded freeGF (A)-module.

(ii) If L′ is a Z
n
�0-graded freeGF (A)-module, thenL′ ∼= GF (L) for some�gr-filtered

freeA-moduleL.
(iii) If L is a �gr-filtered freeA-module with the�gr-filtration FL, N is a �gr-filtered

A-module with�gr-filtration FN andϕ :GF (L)→GF (N) is a graded surjection
thenϕ =GF (ψ) for some strict�gr-filtered surjectionψ :L→N .

Proof. Let FL = {FαL;α(i), i ∈ J }α∈Z
n
�0

be the�gr-filtration on the freeA-module

L=⊕
i∈J Aei . By Lemma 3.3, it can be verified directly that, forα ∈ Z

n
�0,

GF (L)α =
⊕
i∈J

β(i)+α(i)=α

GF (A)β(i)σ (ei),

where eachσ(ei) is a homogeneous element of degreeα(i) and{σ(ei)}i∈J forms a free
GF (A)-basis forGF (L). This proves (i), and then (ii) follows immediately.

(iii) Let L = ⊕
i∈J Aei with the �gr-filtration FL = {FαL;α(i), i ∈ J }α∈Z

n
�0

. For
eachi, choosexi ∈Fα(i)N such thatϕ(σ(ei))= x̄i , wherex̄i , is the homogeneous eleme
in represented byxi . Nowψ :L→N may be constructed by putting

ψ
(∑

aiei

)
=

∑
aixi, where

∑
aiei ∈L.

Clearly, ψ is a �gr-filtered homomorphism andGF (ψ) = ϕ since they agree o
generators. By Corollary 3.6,ψ is a strict�gr-filtered surjection. ✷
Proposition 4.4. Let P be�gr-filteredA-module with�gr-filtration FP . The following
holds.

(i) If GF (P ) is a projectiveGF (A)-module, thenP is a projectiveA-module.
(ii) If GF (P ) is Z

n
�0-graded freeGF (A)-module, thenP is a freeA-module.

Proof. (i) By Proposition 4.3, letϕ : (L)GF (L) → GF (P ) be a graded surjection
whereL is a �gr-filtered freeA-module and henceGF (L) is a graded freeGF (A)-
module. Again by Proposition 4.3,ϕ = GF (ψ) for some strict�gr-filtered surjection
ψ :L→ P . Let K = Kerψ andFK the �gr-filtration onK induced byFL :FαK =
K ∩FαL, α ∈ Z

n
�0. There is the short exact sequence

0→K
�−→L

ψ−→ P → 0

and it follows from Proposition 3.5 and Corollary 3.6 that the sequence

0→GF (K)
GF (�)−−−−→GF (L)

GF (ψ)−−−−→GF (P )→ 0
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is exact. By Proposition 4.1, this sequence splits by gradedGF (A)-homomorphisms
Consequently,GF (L) = GF (P ) ⊕ GF (K) with GF (L)α = GF (P )α ⊕ GF (K)α ,
α ∈ Z

n
�0, and there is a graded surjectionγ :GF (L)→ GF (K) such thatγ ◦ GF (�) =

1GF (K). By Proposition 4.3(iii),γ = GF (β) for some strict�gr-filtered surjection

β :L→K. Note thatGF (β)◦GF(�)=GF (β ◦�)= 1GF (k). It follows from Corollary 3.6
thatβ ◦� is an automorphism ofK, and henceL∼=K⊕P . This shows thatP is projective.

(ii) SupposeGF (P ) = ⊕
i∈J GF (A)σ(ξi), where eachξi ∈ P has degreeα(i) and

{σ(ξi)}i∈J is aZ
n
�0-graded free basis forGF (P ) overGF (A). Then, by Proposition 3.4

P =∑
i∈J Aξi with

FαP =
⊕
i∈J

( ∑
γ∈[0,α]

γ (i)+α(i)=γ

Fγ (i)A
)
ξi, α ∈ Z

n
�0.

We claim that{ξi}i∈J is a free basis forP overA. To see this, construct the�gr-filtered free
A-moduleL=⊕

i∈J Aei with the�gr-filtrationFL= {FαL;α(i), i ∈ J }α∈Z
n
�0

as before,
such that eachei has the same degreeα(i) asξi does. Then we have an exact sequenc
�gr-filteredA-modules and strict�gr-filteredA-homomorphisms

0−→K −→L
ϕ−→ P −→ 0

whereK has the�gr-filtration induced byFL, and it follows from Proposition 3.5 tha
this sequence yields an exact sequence

0−→GF (K)−→GF (L)
GF (ϕ)−−−→GF (P )−→ 0

However,GF(ϕ) is an isomorphism. HenceGF (K)= {0} and thenK = {0}. This proves
thatϕ is an isomorphism, or in other words,P is free. ✷
Proposition 4.5. LetM be a�gr-filteredA-module with�gr-filtration FM, and let

0→K ′ → L′n→·· ·→L′0 →GF (M)→ 0 (∗)

be an exact sequence ofZ
n
�0-gradedGF (A)-modules and graded homomorphisms, wh

theL′i are graded freeGF (A)-modules. The following holds.
(i) There exists a corresponding exact sequence of�gr-filteredA-modules and stric

�gr-filtered homomorphisms

0→K→ Ln→ ·· ·→ L0→M→ 0 (∗∗)
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in which theLi are �gr-filtered freeA-modules. Moreover, we have the isomorphism
chain complexes

0 K ′

∼=

L′n
∼=

· · · L′0
∼=

GF (M)

=

0

0 GF (K) GF (Ln) · · · GF (L0) GF (M) 0

(ii) If K ′ is a projectiveGF (A)-module, thenK is a projectiveA-module; IfK ′ is a
Z
n
�0-graded freeGF (A)-module, thenK is a freeA-module.

(iii) If the modules in(∗) are finitely generated overGF (A) then the modules in(∗∗)
are finitely generated overA.

Proof. (i) By Proposition 4.3, the homomorphismL′0 → GF (M) in (∗) has the form
GF (β) for some strict�gr-filtered surjectionβ :L0 →M, whereL′0 ∼= GF (L0) andL0
is a �gr-filtered freeA-module. LetK0 = Kerβ with the �gr-filtration FK0 induced
by FL0. Then we have the exact diagram of gradedGF (A)-modules and grade
homomorphisms

· · · L′2 L′1 L′0
∼=

GF (M)

=

0

0 GF (K0) GF (L0) GF (M) 0

Note that the square involved in the above diagram commutes. Hence the homomo
L′1 → L′0 factors throughGF (K0), i.e., there is the graded exact sequenceL′1 →
GF (K0)→ 0. Starting withGF (K0), the foregoing construction can be repeated
finishing the proof of (i). (ii) and (iii) follow immediately from Proposition 4.4 a
Proposition 4.5, respectively.✷

We are ready to mention the finiteness of global dimension forA.

Theorem 4.6. Let A = k[a1, . . . , an] be a quadric solvable polynomial algebra with t
�gr-filtration FA. Write p.dim for projective dimension and writegl.dim for global
dimension. The following holds.

(i) If M is a �gr-filtered A-module with �gr-filtration FM, then p.dimM �
p.dimGF (M)� n.

(ii) gl .dimA� gl.dimGF (A)= n.

Proof. Note that everyA-moduleM has a�gr-filtration FM. (i) and (ii) follow from
Propositions 4.5 and 3.1.✷
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5. General case: K0(A) = Z

We put the result as stated by the above title in this separate and final section j
emphasizing that we are returning to use the standard filtration again.

LetA= k[a1, . . . , an] be an arbitrary quadric solvable polynomial algebra with�gr as
defined in Section 1. Going back to thestandard filtrationFA onA (see Section 1):

{0} ⊂ k = F0A⊂ F1A⊂ · · · ⊂ FpA⊂ · · ·
whereFpA = k-span{aα1

i1
a
α2
i2
· · ·aαnin | α1 + · · · + αn � p}, p ∈ Z�0 then we have the

associatedZ�0-graded algebraG(A)=⊕
p∈Z�0

FpA/Fp−1A and theZ�0-graded Rees

algebraÃ=⊕
p∈Z�0

FpA for A, respectively.

Theorem 5.1. LetA,G(A), andÃ be as above. Then

Z∼=K0(A)=K0
(
G(A)

)=K0(Ã ).

Proof. By Proposition 1.6(i),G(A) = k[σ(a1), . . . , σ (an)] andÃ = k[ã1, . . . , ãn,X] are
quadric solvable polynomial algebras with respect to some�gr, respectively. It follows
from Theorem 4.6 that gl.dimG(A)� n and gl.dimÃ � n+ 1. Now, it follows from the
K0-part of Quillen’s theorem [Qui, Theorem 7] that

Z
∼=−→K0(k)

=↗=−→=↘

K0(F0A)∼=K0(A)

K0
(
G(A)0

)∼=K0
(
G(A)

)
.

K0(Ã0)∼=K0(Ã0) ✷
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