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Abstract

We report the steady-state and the excited state properties of 1, 3, 1’, 3'-tetraethyl-5, 6, 5, 6'-tetrachlorobenzimi-
dazolocarbocyanine iodide (TTBC) in various solvents. The magnitude of the Stokes shift and the average transition
energy proves that the structure of the fluorescent state should be very similar to that of the ground-state structure. The
fluorescence lifetimes and quantum yields indicate that non-radiative processes are collectively much more effective than
the radiative processes. It is therefore suggested that the non-radiative processes, which are driven by the medium
around the TTBC molecule control the excited state dynamics. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The photophysics and photochemistry of cya-
nine dyes have been studied extensively [1-10]. It
has been demonstrated that photoisomerisation
and internal conversion, in general, participate in
the deactivation of the excited state, and the
restriction of these processes enhances fluorescence
efficiency of cyanine dyes.

Cyanine dyes have found utility as spectral
sensitizers for silver halide microcrystals in photo-
imaging industry [11], as mode-locking dyes and
saturable absorbers for ultrafast lasers [12].
Cyanine dyes are promising materials for a wide
variety of applications from photodynamic ther-
apy to non-linear optics [13-21].

*Tel: +90-312-290-2153; fax: +90-312-266-4579.
E-mail address: sozcelik@fen.bilkent.edu.tr (S. Ozgelik).

Superradiance (mirrorless laser-like emission)
from aggregated benzimidazolocarbocyanines [22—
24] and selective binding to mitochondria [15-17]
stimulate the investigation of the photophysical
properties of 1,3,1',3'-tetraethyl-5,6,5',6'-tetra-
chlorobenzimidazolocarbocyanine iodide (TTBC,
see inset in Fig. 1 for the structure). Basic photo-
physical properties are important as a reference for
understanding the aggregation behavior. Although,
there exist extensive literature for photophysics and
photochemistry of cyanine dyes, a detailed investi-
gation of the excited state properties of TTBC in
various solvents was not carried out.

The phase-modulation fluorescence spectro-
scopy is especially convenient to measure excited-
state properties because the light source, a cw
xenon light, of a phase-modulation fluorescence
spectrophotometer has a greater flexibility to
provide a tunable selective excitation wavelength.

0022-2313/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
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Fig. 1. Absorption and fluorescence spectra of TTBC in

methanol at room temperature. Chemical structure of TTBC
is inserted. [TTBC]= 10 uM for absorption.

The acquisition time is relatively fast, and low
excitation power eliminates multiphoton effects.
The multi-frequency measurements ensure to ana-
lyze the multi-exponential and the non-exponential
decays arising from complex phenomenon [25,26].
Fluorescence lifetimes measured by three different
methods, i.e. time correlated single photon count-
ing, phase-modulation and streak camera, gave the
same results for the aggregated systems [26].

The purpose of the present study is to character-
ize the steady-state and excited-state properties of
TTBC molecules in various solvents, and to under-
stand how solvent affects the optical dynamics.

The experimental results of the steady-state and
the time-resolved fluorescence/phosphorescence
spectroscopies of TTBC in various solvents are
presented in this paper. In addition, the related
photophysical parameters are also reported.

2. Experimental

TTBC was purchased from Accurate Chemical
and Scientific Co. (Westbury, New York). The

chemical purity of TTBC was checked by a
Shimadzu HPLC and found to be 99.90% pure.
The spectroscopic grade solvents and LUDOX
colloidal silica sol used in this study were
purchased from Aldrich Chemical Co. (Milwau-
kee, WI). All chemicals were used without further
purification.

The absorption spectra were recorded using a
Perkin-Elmer Lambda-19 UV-vis-NIR spectro-
photometer. The steady-state fluorescence excita-
tion and emission, and synchronised luminescence
spectra were acquired using a SPEX Fluorolog-12
fluorometer. The synchronized luminescence is
obtained by scanning excitation and emission
monochromators simultaneously [27]. The SPEX
phosphorimeter module for phosphorescence and
triplet decay time measurements was utilized with
acquisition parameters: flash duration of 3 us, 150
flashes for each spectral point and 20 flashes/s. For
triplet decay measurements, the data were col-
lected up to 50 ps.

The fluorescence quantum yields were deter-
mined relative to rhodamine 6G in ethanol (® =
0.95) as the reference. We compared the spectrally
corrected and integrated emission intensity of
the sample to that of the reference. The dilute
reference and the samples were prepared at 5.0 uM
concentrations. Right angle geometry and a
sample cell with 0.15cm path length in the
direction of both excitation and emission were
used for the measurements. The corrections
required for wavelength response of the emission
monochromator-photomultiplier combination
were made with correction factors supplied by
the vendor.

The fluorescence lifetime measurements were
acquired by SPEX Fluorolog-t2 fluorometer; this
instrument uses the multi-frequency phase-
modulation technique [25] in the range from 0.5 to
330 MHz. For fluorescence lifetime measurements,
a cw xenon light source is directed to a Pockels cell
for the modulation. Approximately 8% of modu-
lated excitation light from the Pockels cell is
directed to the reference detector and the remain-
der to the sample. A reference standard, a light
scatterer such as LUDOX colloidal silica sol, is
required to measure the fluorescence lifetimes. The
fluorescence lifetime determination was made
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through an analysis, which utilises the relative
phase shift, and relative demodulation of the
sample compared to that of the reference standard
[25]. The analysis and nonlinear least-squares
fitting (Marquardt-Levenson minimization algo-
rithm) were performed with Globals Unlimited
(Urbana, IL) analysis software.

3. Results and discussion

Fig. 1 shows the absorption spectrum of TTBC
that consists of a band at ca. 514nm with a
shoulder at ca. 480 nm; assigned, respectively, to
the 0-0 (bandwidth ca. 79lcm™!) and 1-0
(bandwidth ca. 1600cm™") vibronic transitions.
The extinction coefficient is calculated to be
20x10°M 'em ™!, which is in agreement with
the literature [28]. The large value of the extinction
coefficient indicates an extensive conjugation of -
electrons suggesting a planar structure. However,
the X-ray structure analysis of the TTBC single
crystals indicates that the molecule is approxi-
mately planar despite extensive conjugation of 7-
electrons, and that the polymethine chain is
twisted about 4° to minimize steric strain [29]. In
the single crystal form, the cationic TTBC
molecules pack plane to plane and end to end in
sheets. It was also provided that the edge of the

molecular plane is 2.08 nm, and that the projected
area is 0.738 nm>2. Moreover, it was demonstrated
that the ethyl substituents attached to nitrogen
atoms in imidazoly rings protrude to the molecular
plane.

Fig. 1 also shows the fluorescence spectrum of
TTBC in methanol, excited at ca. 450 nm. The
fluorescence has maximum at ca. 528 nm, and a
shoulder at ca. 560nm. It was found that the
fluorescence maximum did not shift as a function
of the excitation wavelength. The synchronised
luminescence spectrum exhibits a single peak. This
single peak indicates that there is only one
fluorescent excited-state. This fluorescent state, as
suggested by the overlap of the synchronised
luminescence peak and the fluorescence excitation
spectrum, should be the first excited singlet state.

The steady-state spectra of TTBC in various
solvents are also acquired. The measured photo-
physical parameters are summarized in Table 1.
Some solvent effects (solvatochromism) on the
photophysics are observed. Fig. 2 shows a plot of
absorption and fluorescence transition energies as
a function of the orientational polarizability of the
solvent, Af ={[(e¢—1/2e+1)— (n*—1/2n> +1)],
where ¢ is the dielectric constant and »° is the
refractive index of the solvent [25]. It is shown that
the transition energies are blue-shifted with
increasing orientational polarizability.

Table 1

The photophysical parameters of TTBC at room temperature

Parameters MeOH EtOH PrOH BuOH HexOH Ethylene Glycerol®  Acetonitrile DMSO
glycol

Jabs (nm)° 514 516 518 520 521 518 521 515 522

Ao (nm)° 528 530 532 534 535 532 535 529 536

AVsiokes (cm™") 515 512 508 504 502 508 502 513 500

Ao 0.016 0.023 0.033 0.042 0.058 0.075 0.360 0.024 0.055

Tiwo (PS) 4745 69+5 97+10 127110 168+ 10 220+15 996+ 15 65+5 153+10

7 0.73 1.20 0.98 1.29 1.55 1.12 0.81 1.44 1.19

ke x10° (s7')  0.34£0.08 0.3340.05 0.34+0.05 0.33+0.04 0.34+0.02 0.3440.03 0.36+0.02 0.37+0.06 0.36+0.04

ke X 10° (s71) 209447  141+1.7  9.96+1.63 7.54+0.95 5.614+0.35 4.20+0.35 0.64+0.01 1504243 6.17+0.62

ke /Ks 62 43 30 23 17 12 2 41 17

?For gylcerol, a double exponential decay: the shortest lifetime 211 ps with 4% of the emission and 996 ns with 96% of the emission.

®The maximum of absorption spectrum.
©The maximum of fluorescence spectrum.

9 Absorbance values were less than 0.06. Uncertainity in measurements is equal to+0.002 for all samples and reference.
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Fig. 2. Absorption and the fluorescence transition energies as a
function of orientational polarizability. The lines are used to
guide the eye.

The average transition energy is defined [30] as
follows:

(‘_)abs + ‘_)emis)

5 = AGY + 0p() — 06(@). (1)

where AGY is the change in Gibbs energy by
electronic excitation in vacuum, and should be
constant. wg(e) and wg(e) are work functions for a
molecule (in its ground and excited states,
respectively) to be transfered from vacuum into a
solvent with a dielectric constant ¢. The average
transition energy is around 19,000cm~' and
remains almost unchanged as shown in Fig. 3.
The negligible variation, 250cm ™' corresponding
to a 3% change from the average, implies that the
charge distribution in the ground- and fluorescent-
state would be approximately equal to each other
regarding the orientational polarizability of sol-
vents. Therefore, it is proposed that the electronic
structure of the fluorescent state with respect to the
ground state should be similar.

The additional experimental evidence for this
proposal arises from the magnitude of Stokes shift
in various solvents. The sensitivity of Stokes shift
to orientational polarizability reflects the change in
dipole moment occurring upon excitation and
subsequent orientation of the solvent molecules.
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Fig. 3. Average transition energy (the left axis) and Stokes
shifts (the right axis) as a function of orientational polariz-
ability that is defined in the text. The lines are used to guide the
eye.

Fig. 3 shows the variation of Stokes shift with
orientational polarizability of the solvents. The
magnitude of Stokes shift is about 510cm™"' and
does not vary with the orientational polarizability.
A typical magnitude of Stokes shift in some
cyanines due to a change in dipole moments varies
in the range of 2500-5000cm ™' [30-34]. The
Lippert equation [25,30] expresses the Stokes shift
in terms of the intramolecular reorganization
energy, An; the orientational polarizability, Af;
the difference in dipole moments of the ground-
and excited-states, (g —pUg); and the characteristic
dimension, a, of the molecule under investigation.

. _ N (g — bg)
AV = Vaps — Vemis = 2% %

(@)

Eq. (2) predicts that the Stokes shift should
linearly increase with the orientational polariz-
ability. This, however, does not agree with the
experimental results we present. To satisfy the
experimental results, the second term in Eq. (2)
should be zero or negligible with increasing
orientational polarizability. This infers that the
magnitude of the dipole moments in the ground
and fluorescent state should be very similar.
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Therefore, the first term expressing the intramole-
cular reorganization energy should be responsible
for the observed Stokes shift. We estimate that the
intramolecular reorganization energy for TTBC at
room temperature is about 250 cm~'. The medium
around TTBC molecule could easily induce the
non-radiative transitions because of the very low
activation energy for the intramolecular reorgani-
zation. Therefore, very fast non-radiative transi-
tions are expected. In fact, this is what we observe
as discussed in the following part.

The phase delays (¢) and demodulation factors
(m) are measured to determine the apparent phase
and modulation lifetimes, 7, and 1, respectively
[25],

Tp = o 'tan ¢, (3)

» | 1/2
Tm = m2 _ 1 > (4)

where w is the modulation frequency. Fig. 4 shows
the representative plots of the phase-modulation
measurements in methanol and glycerol. The
fluorescence lifetimes of the TTBC in methanol
and glycerol at room temperature are calculated to
be 47 (y*> =0.73) and 996 ps (4> = 0.81), respec-
tively. Fig. 4 is a clear representation of a wide
range (from 47 ps to 1.0ns) and accurate lifetime
measurements with the multi-frequency phase-
modulation method. The fluorescence lifetimes in
other solvents are summarized in Table 1. The
fluorescence lifetime clearly manifests solvent
dependency. The nature of this dependency will
be discussed in combination with the quantum
yield measurements.

The fluorescence quantum yields were obtained
as explained in the experimental part and the
results are summarized in Table 1. The fluores-
cence quantum yields are also sensitive to the
solvent properties. The quantum yield is decreased
in a more polar environment such as methanol and
increased in a highly viscous solvent such as
glycerol that prevents easy rotations and vibra-
tions of TTBC. On the other hand, the less viscous
and highly polar solvents provide TTBC a freedom
to rotate and vibrate which can be the possible
sources of the non-radiative transitions. These
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Fig. 4. Representative phase-modulation plots. Excitation
wavelength was 480 nm for methanol and glycerol. Emission
wavelengths were set to 528 and 535nm, respectively for
methanol and glycerol. A reference was a dilute colloidal silica
solution. The lines represent the best fits to the data.

observations are in concert with the other cyanine
dyes [1-10].

The fluorescence lifetime and the quantum yield
are related to the radiative (k;) and non-radiative
(kyr) rate constants by the photophysical equations

k=2t 5)
T
knr = L= ¢f~ (6)
T

Upon substituting the measured fluorescence
lifetimes and quantum yields, it is calculated
that &, = (0.34+0.08) x 10°s~" and kn, = (20.9+
4.7) x 10°s™! for TTBC in methanol. This calcula-
tion indicates that the non-radiative transition
rate is sixty-two times faster than the radiative
rate. The solvent independent radiative lifetime is
calculated to be 2.95ns.

The phosphorescence spectrum and the triplet
lifetime of TTBC in ethanol were recorded at 77 K
by using a SPEX phosphorimeter module. No
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phosphorescence signal was detected at room
temperature. At 77K, the phosphorescence spec-
trum has a maximum at ca. 552nm with an
excitation at 514nm. The triplet lifetime was
measured to be 4.0us with a single exponential
decay. The fast triplet decay time and the
extremely weak phosphorescence signal suggest
that the non-radiative transitions in triplet mani-
fold should be the preferred processes. However,
further studies are needed to obtain triplet state
properties, which is not the scope of this paper.
Fig. 5 represents how the radiative and non-
radiative rate constants vary with solvent’s visc-
osity and orientational polarizability. The radia-
tive rate constant is independent of the medium
which, indicates that the electronic structure of the
fluorescent state is insensitive to the environmental
perturbation induced by the solvents. This deduc-
tion supports the proposal presented here, which
was reached by the steady-state spectroscopy. The
non-radiative rate constant can be represented as a

Orientational polarizability
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Fig. 5. Radiative and non-radiative rate constants as a function
of orientational polarizability and viscosity of the solvents. The
data are for primary alcohols. The lines are used to guide the
eye.

sum of the rates associated with internal conver-
sion, photoisomerization, intersystem crossing and
specific solvent effects. There is a consensus in the
literature [1-10,35-41] on the nature of non-
radiative transitions: internal conversion and
photoisomerisation are the major deactivation
pathways of the excited singlet state of cyanines.
This consensus is based on observations such as
extremely low intersystem crossing quantum yields
[35-37] and as very short fluorescence lifetimes of
cyanine dyes in low viscosity solvents [37—41]. The
results presented in this paper provide further
evidence in support of this consensus.

A closer inspection of Fig. 5 confirms that the
non-radiative rate constant increases linearly with
orientational polarizability while it decreases ex-
ponentially with increasing viscosity. The pro-
nounced dominance of viscosity suggests that the
photoisomerization and internal conversions are
the dominant non-radiative events in the excited
states of TTBC. It is well known that a change in
the twisting angle around a carbon—carbon bond
of the polymethine chain for cyanines causes
photoisomerisation [1-10].

The ground and excited state potential energy
surfaces as a function of the twisting angle around
a carbon—carbon bond of the polymethine chain
were computed for symmetric carbocyanines
[42,43]. Rodriguez et al. also calculated the electric
dipole moment with respect to the center of
electrical charges. These calculations showed that
the dipole moment slightly varies with the twisting
angle; and around 90° a sudden change appears in
the magnitude of the dipole moments of the
ground and excited states. This computation
agrees with the well-known observation: a sudden
increase with a sharp peak in the potential energy
around 90° of the twisting angles [1,6,10]. Ultrafast
photoisomerization of symmetric cyanines has
been modeled by Sanchez—Galvez et al [44]. The
streptocyanines (NH,—(CH),~NH;", n=3,4,5)
were used as model compounds for the calcula-
tions. A model for trimethine cyanine includes two
vibrational modes: the initial totally symmetric
skeletal stretching in the Franck—Condon region
and the non-totally symmetric torsional motion.
These modes lead to a twisted configuration in
which the ground and the excited state potential
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surfaces cross at a conical intersection. It is also
demonstrated that the ultrafast deactivations in
the femtosecond regime is activated by a barrier-
less potential energy surface activates. The charge
localization along the reaction coordinate is
emphasised as triggering the ultrafast relaxation
of the trimethine model compound. On the other
hand, the model for the longer methine cyanines
(penta- and hepta-methine) predicts that the
stretching and torsional models are not coupled
along the excited state reaction coordinate. The
existence of a planar minimum along the reaction
path and an activation barrier for isomerization
are the predictions of the model. The existence of
the planar minimum before the transition state for
the longer methine cyanines is very important
because it facilitates relaxations to the normal
ground state by radiative and non-radiative
processes. In our study, we select a spectral
detection window by setting the slit widths of
monochromators to 4.0 mm yielding to 16 nm of
bandwidth to measure the normal form lifetime.
This spectral window substantially lowers the
contribution of the photoisomer fluorescence, if
any. It is reported that the photoisomer emission
usually shifts to longer wavelengths [6,10]. The
observations of single exponential decays indicate
that there is just one fluorescent state, that is the
normal form. If there had been more than one
fluorescent species, then all of them should follow
the same kinetic behaviour. One exception in these
series of experiments is the case of TTBC in
glycerol: a double exponential decay with 211
(4%) and 996ps (96%) indicating that the
contribution of photoisomer to the observed
dynamics is substantially small.

We might note the apparent differences in the
results for TTBC fluorescence lifetime and quan-
tum yield measurements performed by O’Brien
et al. [37] and this study. In the former, TTBC
chloride in methanol was used and a fluorescence
lifetime of 550 ps and fluorescence quantum yield
of 0.1 were obtained. While in this study TTBC
iodide in methanol is used and the fluorescence
lifetime of 47ps and the fluorescence quantum
yield of 0.016 were measured. However, the
radiative lifetime is almost the same for both
TTBC iodide and TTBC chloride. The difference

between the current work and that of O’Brien et al.
could be attributed to the counterion. We acquired
high-performance liquid chromatography (HPLC)
of the TTBC iodide to eliminate the impurity
quenching and found that the sample was 99.90%
pure. Tatikolov et al. reported that the interaction
between a benzimidazolocarbocyanine cation and
iodide counterion forms an ion-pair in low polar
medium and leads to enhancement of the internal
conversion rate [45]. However, the ion-pair for-
mation in methanol is not expected. The size and
effective charge density of iodide comparing to the
chloride may affect the charge distribution and the
orientation of solvent molecules. This would
change the local field that is the effective orienta-
tional polarizability of the medium resulting in
enhanced non-radiative rates. Heavy atom effects
may be also considered for the discrepancy.
Additional studies are necessary to clarify this
discrepancy.

4. Conclusions

We report the steady state and excited state
properties of TTBC in various solvents. The
magnitudes of the Stokes shift and the aver-
age transition energy suggest that the structure of
TTBC in the fluorescent-state should be very
similar to that of the ground-state structure.
However, TTBC in the excited-state may adopt a
different conformation of a photoisomer, which is
not observed for the solvents except glycerol,
within the selected spectral detection window.

It is demonstrated that the quantum yields and
the fluorescence lifetimes increase with solvent
viscosity and decrease with solvent polarity. This
indicates that the non-radiative processes are
collectively much more effective than the radiative
processes. We therefore conclude that the medium
around the TTBC molecules controls the photo-
physical properties. The internal conversions and
photoisomerisation are considered as the main
deactivation channels for the excited state. The
counterion seems also to be effective on the
excited-state dynamics of TTBC.

It is desirable and of considerable importance to
calculate/measure change in charge distribution
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and the dipole moments in the ground and ex-
cited states of carbocyanines to provide further
confirmation.
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