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Abstract

We use dynamical local-®eld corrections to study the plasmon dispersion and damping in double-layer electron systems. The

wave vector and frequency-dependent local-®elds describing the exchange-correlation effects are obtained within the quantum

version of self-consistent ®eld approach. The calculated plasmon dispersions are modi®ed by the dynamic local-®elds at

intermediate wave vectors (i.e. q , kF�: The plasmons are damped outside the single-particle excitation region. q 2000
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Models of electron gas in various low-dimensional

structures are of major current interest; because of the

advances in fabrication techniques electron systems

con®ned in two-dimensional (2D) or quasi-one-dimensional

(Q1D) geometries are readily achieved. In particular,

Coulomb coupled electron systems in the form of double-

layer structures provide a useful model to study the many-

body effects in double quantum-wells when the barrier

separating the wells is large enough to prevent tunneling.

There is a wealth of interesting phenomena (see for instance,

Ref. [1]) stemming from the interlayer Coulomb inter-

actions, such as the appearance of new quantum Hall states

when a strong perpendicular magnetic ®eld is applied, the

occurrence of Wigner crystallization at experimentally

accessible electron densities, and frictional drag effect

in¯uencing the transport properties.

In this work we calculate the plasmon dispersion and

damping in double-layer electron systems using a theoreti-

cal approach that includes dynamical correlations between

interacting electrons. Our motivation comes from a number

of recent experiments on double quantum-well structures

[2±7]. In the Raman scattering experiments the dispersion

and damping of the plasmon modes are directly observed.

The Coulomb drag measurements [7] assess the role of

plasmons indirectly through the temperature dependence

of interlayer resistivity. In the analysis of these experimental

results it is stated that the dynamic correlation effects must

be included to explain the observed discrepancies between

the existing theories. Our calculations should be useful as an

attempt to understand the damping properties of the

plasmon modes in these systems.

The importance of dynamic correlation effects in describ-

ing the many-body effects in an interacting system of

electrons has been recognized in a number of other recent

publications as well [8±10]. The theoretical efforts to

incorporate the dynamic correlations have utilized diagram-

matic perturbation theory at various levels of sophistication.

The observed Raman scattering intensity spectrum of semi-

conducting structures has contributions from the collective

excitations (plasmons), and from the single- and multi-pair

excitations. We employ the self-consistent ®eld method of

Singwi et al. [11,12] to calculate the dynamic correlation

effects. Our non-perturbative approach treats the dynamics

of the Pauli hole around each electron; thus, the multi-pair

excitations are ignored. As we show in our results the

plasmon modes are signi®cantly affected by the dynamic

correlations at intermediate wave vectors.

In the following, we ®rst describe the double-layer

electron gas model and brie¯y explain our theoretical

approach to calculate the plasmon dispersion and damping.
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We next present our results including the dynamic correla-

tion effects in comparison to the static theories. We discuss

our results in the light of experimental observations and

conclude with a brief summary.

We consider two parallel layers of 2D electron gas inter-

acting via the long-range Coulomb potential, in the presence

of a rigid positive background for charge neutrality.

Neglecting the ®nite widths of quantum wells, the contribu-

tion of the higher subbands, and tunneling effects between

the layers, the Coulomb interactions (in Fourier space)

between electrons within the same layer and between

different layers are given by V11�q� � 2pe2
=e0q and

V12�q� � �2pe2
=e0q�e2qd

; respectively, where e 0 is the back-

ground dielectric constant. We further assume that the

density of electrons on both the layers is the same, in

which case the system is characterized by the dimensionless

density parameter rs � 1=
�������
pnap

B

p
; where ap

B � "2e0=e
2mp is

the effective Bohr radius de®ned in terms of e 0 and electron

effective mass mp. In the numerical calculations below we

shall concentrate on the GaAs systems for which experi-

ments are performed.

The dielectric properties of the electron system are typi-

cally determined by the random-phase approximation

(RPA), which is valid at high densities (i.e. rs p 1�: As

the density of the electrons in individual layers is decreased

the many-body effects become non-negligible. A convenient

way of taking the exchange-correlation effects beyond the

RPA into account has been provided by the self-consistent

scheme of Singwi et al. [11,12] (the so-called STLS

approximation). Ground-state properties, various correla-

tion functions, and spectrum of the collective excitations

of a double-layer electron gas have been studied [13,14]

within the static STLS. Here we use the quantum version

of the STLS approach (qSTLS), generalizing the previously

reported [15±19] formalism and applications to a two-

component system. In the dynamical theory the intra- and

interlayer local-®eld factors �G11�q;v� and G12�q;v�;
respectively) describe the Pauli and Coulomb holes around

each electron within the system. The qSTLS theory con-

siders the hierarchy of coupled equations satis®ed by the

Wigner distribution functions and truncates them with the

assumption that the two-particle Wigner distribution

function is written as a product of one-particle distribution

functions and the pair correlation function. The details of the

derivation of self-consistent equations within the qSTLS

scheme have been given in several places [15±19]. We

note that the speci®c assumptions underlying the qSTLS

approach amount to taking the frequency-dependent corre-

lation effects at the level of Pauli hole dynamics only.

We performed self-consistent calculations of the ground-

state correlation functions and the wave vector and

frequency-dependent local-®eld factors in a double-layer

electron system for a range of values of the parameters rs

and d. In what follows, we make use of the dynamic local-

®eld factors to calculate the dispersion and damping

properties of the collective excitations. Previous calcula-

tions [13,14] mostly employed static local-®eld factors to

account for the many-body correlations; thus we will be in a

position to compare and assess the importance of dynamic

correlations within the same theoretical framework. The

calculated dynamic local-®eld factors generally have oscil-

latory dependence on v in both the real and imaginary parts.

The static local-®eld factors in contrast are purely real.

Thus, we expect modi®cations in the damping properties

of plasmons as well as their dispersions.

The dispersion of the collective excitations are obtained

by solving for the zeros of the dielectric function

D�q;v� � �1 2 f11�q;v�x0�q;v��2 2 �f12�q;v�x0�q;v��2;
�1�

where the effective intra- and interlayer interactions are

given by f11 � V11�q��1 2 G11�q;v�� and f12 � V12�q� �
�1 2 G12�q;v��; respectively. Note that f 11 and f 12 are

frequency dependent within the present approximation in

contrast to the RPA and static STLS. x0�q;v� is the

density±density response function of a non-interacting 2D

electron gas. The solution of D�q;v� � 0 yields two plas-

mon modes. In the long-wavelength limit and within the

RPA these plasmons behave as

vop�q� .
���������
qvFkTF

p
; vap�q� . qvF

1 1 dkTF��������������
1 1 2vFkTF

p ; �2�

where kTF � 2=ap
B is the Thomas±Fermi wave vector and vF

is the Fermi velocity. The higher-energy mode with , ��
q
p

behavior is termed the optical plasmon, whereas the lower-

energy mode with ,q behavior is called the acoustic

plasmon.

In Fig. 1 we display the plasmon dispersions in a double-

layer electron system at rs � 2 and d � 200 �A: As would be

expected, the results of the qSTLS calculation are rather

different from those of the RPA. The exchange-correlation
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Fig. 1. The plasmon dispersions for a double-layer system of elec-

trons at rs � 2 and d � 200 �A: The acoustic (lower curves) and

optical (upper curves) plasmons are depicted for the RPA (dotted

lines), static STLS (dashed lines), and qSTLS (solid lines). The

shaded area indicates the single-particle excitation region.



effects push the plasmons down to lower energies. The

qSTLS plasmon dispersions also differ from the static

STLS. Similar conclusions have also been reached in

single-layer electron systems [18,19]. The most notable

result here is that dynamic local-®elds signi®cantly modify

the plasmon dispersions at intermediate wave vectors. For

instance, within the static STLS the acoustic plasmon mode

is very close to the edge of the single-particle excitation

region and it ceases to exist for q * 0:25kF at rs � 2 (cf.

Fig. 1). On the other hand, the dynamical correlations render

the existence of acoustic plasmons in a larger range of q

values. In the recent experiment of Bhatti et al. [4,5] and

Kainth et al. [6] plasmon dispersions were determined out to

q , 0:15kF; but if access to higher wave vector values were

possible, our predictions could be tested.

To discuss the exchange-correlation effects further, we

show in Fig. 2 the dispersion of optical and acoustic

plasmons at d � 400 �A and at two different densities char-

acterized by rs � 2 and rs � 5: It appears that the optical

plasmons are affected very signi®cantly, whereas the

acoustic plasmons are largely unaffected by the dynamic

correlations. It is interesting to note that the dynamical treat-

ment of the correlation effects within the qSTLS theory

causes the plasmon dispersion to lie between those in

RPA and static STLS.

The damping of the collective modes are calculated from

the expression

gop;ap�q� �
Im D�q;vop;ap�q��

�2Re D�q;v�=2v�vop;ap�q�
; �3�

where v op,ap(q) are the previously determined roots of

Re D�q;v� � 0: It is interesting to note that in the RPA

and static STLS where Vij�q� and Vij�q��1 2 Gij�q�� are

used, respectively, Im D�q;v� is determined solely by

Im x0�q;v�; thus the modes are Landau damped only within

the single-particle excitation region. In the dynamic STLS,

the frequency-dependent local-®eld factors Gij�q;v� are

instrumental in modifying Im D�q;v�; and we obtain ®nite

damping even at zero temperature. Fig. 3 shows the damp-

ing of optical (lower curves) and acoustic (upper curves)

plasmons for a double-layer system at rs � 2 and two differ-

ent layer-separation distances d � 200 �A (solid lines) and

d � 400 �A (dashed lines). We observe that the acoustic

plasmon damping is larger than the optical plasmon, the

modes are damped outside the single-particle excitation

region, and as the layer separation increases g�q� for both

the modes approach each other. All these features are in

qualitative agreement with the experimental ®ndings.

In Fig. 4 we explore the dependence of g�q� for optical

and acoustic plasmons at different densities. At ®xed layer
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Fig. 2. The plasmon dispersions within the dynamic STLS for a

double-layer electron system �d � 200 �A� at rs � 2 (dashed lines)

and rs � 5 (solid lines). The upper and lower curves are for optical

and acoustic plasmons, respectively, and the shaded area indicates

the single-particle excitation region.

Fig. 3. The damping of acoustic (upper curves) and optical (lower

curves) plasmons in a double-layer electron system at rs � 2: The

solid and dashed lines indicate layer-separation distances d �
200 �A and d � 400 �A; respectively.

Fig. 4. The damping of optical (lower curves) and acoustic (upper

curves) plasmons for a double-layer electron system with d �
400 �A: The dotted, dashed, and solid lines indicate rs � 1; rs � 2;

and rs � 3; respectively.



separation �d � 400 �A�; as we decrease the density of elec-

trons in each layer, the damping of the modes increases in

magnitude and in the range of q values. The recent experi-

ments of Bhatti et al. [4,5] and Kainth et al. [6] on double

quantum-well systems were performed at ®nite temperature

and a systematic study of the damping of acoustic plasmons

was presented. We cannot compare our results with these

experiments since our calculations were carried out at T �
0: The temperature dependence of the dynamic local-®eld

factors are largely unexplored in the literature. However, if

we assume that Gij�q;v�s depend weakly on T, our results of

Figs. 3 and 4 will be qualitatively broadened by the tempera-

ture effects coming from the T-dependence of x�q;v�:
Although further detailed work needs to be done in this

direction, it is clear that an approach taking the dynamic

correlations into account might be useful in understanding

the experimental results.

In summary, we have calculated the plasmon dispersion

and damping in double-layer electron systems within the

quantum (dynamic) version of the STLS approximation

scheme. We have found that the dispersion of plasmon

excitations are noticeably affected by the dynamical corre-

lations at intermediate wave vectors. The dynamical corre-

lations also in¯uence the damping properties of acoustic and

optical plasmons for wave vectors outside the single-particle

excitation region. Our calculations should provide a good

starting point to understand the experimental results. It

would be interesting to extend our calculations to include

the effects of ®nite temperature to confront recent experi-

mental results. The methodology and analysis given here

can be applied also to double-layer electron±hole systems

for which more interesting results are expected because of

the different single-particle excitation regions for each

species.
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