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Using the formulation of the immersion of a two-dimensional surface into the
three-dimensional Euclidean space proposed recently, a mapping from each sym-
metry of integrable equations to surfaces inR3 can be established. We show that
among these surfaces the sphere plays a unique role. Indeed, under the rigid SU~2!
rotations all integrable equations are mapped to a sphere. Furthermore we prove
that all compact surfaces generated by the infinitely many generalized symmetries
of the sine-Gordon equation are homeomorphic to a sphere. We also find some new
Weingarten surfaces arising from the deformations of the modified Kurteweg–de
Vries and of the nonlinear Schro¨dinger equations. Surfaces can also be associated
with the motion of curves. We study curve motions on a sphere and we identify a
new integrable equation characterizing such a motion for a particular choice of the
curve velocity. © 2000 American Institute of Physics.@S0022-2488~00!02104-6#

I. INTRODUCTION

Let F:V→R3 be an immersion of a domainVPR2 into R3. Let (u,v)PV. The surface
F(u,v) is uniquely defined to within rigid motions by the first and second fundamental forms
N(u,v) be the normal vector field defined at each point of the surfaceF(u,v). Then the triple
$Fu ,Fv ,N% defines a basis ofR3 on S parametrized byF(u,v). The motion of this basis onS is
characterized by the Gauss–Weingarten~GW! equations. The compatibility of these equations
the well-known Gauss–Mainardi–Codazzi~GMC! equations. The GMC equations are coupl
nonlinear partial differential equations for the coefficientsgi j (u,v) anddi j (u,v) of the first and
second fundamental forms. For certain particular surfaces these equations reduce to a sing
a system of integrable equations. The correspondence between the GMC equations and t
grable equations has been studied extensively, see, e.g., Refs. 1–28.

Recently a more systematic approach to surfaces, GMC equations, and integrable eq
has been established by defining surfaces on Lie algebras and on their Lie Groups.1,2 In particular
this approach provides an explicit relation between symmetries of integrable equations an
faces inR3. Let the SU~2! valued functionF(u,v,l) satisfy the Lax pair associated with som
nonlinear integrable equation for the scalar functionu ~see Refs. 29–32!. Define the su~2! valued
function F(u,v,l) by

F~u,v,l!5F21S a~l!
]F

]l
1M ~u,v,l!F1F8~f! D , ~1!

a!Electronic mail: ceyhan@fen.bilkent.edu.tr
b!Permanent address: Department of Mathematics, Imperial College, London, SW72BZ, UK; electronic

a.fokas@ic.ac.uk
c!Electronic mail: gurses@fen.bilkent.edu.tr
22510022-2488/2000/41(4)/2251/20/$17.00 © 2000 American Institute of Physics
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wherea~l! is an arbitrary function of the complex constantl, M (u,v,l) is an arbitrary su~2!
valued function of (u,v),f(u,v) is a symmetry of the nonlinear equation satisfied byu(u,v), and
F8 denotes the Freche´t derivative of F with respect tou. Then F(u,v,l) is the immersion
function of a surface (x1 ,x2 ,x3), in R3,

xi5 f i~u,v,l!, i 51,2,3, F~u,v,l!5 iS i 51
i 53f i~u,v,l!s i , ~2!

wheres i , i 51,2,3, are the Pauli sigma matrices.
The investigation of some of the consequences of Eq.~1! is the main subject of this paper.
In Sec. II we give a short review of some of the results of Refs. 1 and 2 and also show

a5f50 andM is a constant su~2! matrix, then the surface with immersion functionF is a sphere.
In Sec. III we investigate the case thatu satisfies the sine-Gordon equation

]2u

]u]v
5sinu. ~3!

In particular we show the following.~a! If a5M50 and F describes an oriented, compa
connected surface, then this surface is homeomorphic to a sphere. This result gives a
example to the studies of the global properties of the associated surfaces.16–19,33–37~b! If f50 and
M5( ip/2)s1 , wherep is a constant, thenF describes a surface of constant negative curvatu

In Sec. IV we investigate the case whereu satisfies either the elliptic sinh-Gordon or

]2u

]u2 1
]2u

]v2 1
1

4
~H0

2e2u2e22u!50, ~4!

or the Liouville equation. In particular we show that special cases of Eq.~1! can be used to
generate linear Weingarten surfaces.

In Secs. V and VI we use Eq.~1! and Lax pairs associated with the nonlinear Schro¨dinger and
with the modified Korteweg–de Vries~KdV! equations to characterize certain nonlinear Weing
ten surfaces including

2m2H2~m2K2n!5~3m2K14l222n!2, ~5!

K2
2

9
H21

4l2

9m2 50, ~6!

whereK andH denote the Gaussian and mean curvatures, respectively, andm, l, n are constants.
Surfaces can also be constructed from the motion of curves, see Appendices A and B.

VII we study curve motions on a sphere. By choosing a particular velocity vector, we obtai
new integrable equation

u t2uu cosu]u
21 S sinu

~cosu!2 u tD1
1

2
~uu cosu!31cosu@cosu~uu cosu!u#u50. ~7!

Equation~7! reduces to the modified KdV equation in the limit that the curvature of the cu
approaches a constant.

In Sec. VIII we give explicit formulas which associate a curve evolution to a given surf

II. SURFACES OF INTEGRABLE EQUATIONS

In this section we follow the notations of Refs. 1 and 2.
Theorem 2.1: ~Ref. 1! Let U(u,v;l),V(u,v;l),A(u,v;l),B(u,v;l) be su~2! valued differ-

entiable functions ofu, v for (u,v)PV,R2 andlPC. Assume that these functions satisfy

Uv2Vu1@U,V#50, ~8!
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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and

Av2Bu1@A,V#1@U,B#50. ~9!

Define an SU~2! valued functionF(u,v;l) and an su~2! valued functionF(u,v;l) by

Fu5UF, Fv5VF, ~10!

and

Fu5F21AF, Fv5F21BF. ~11!

Then for eachl, F(u,v;l) defines a two-dimensional surface inR3,

xj5F j~u,v;l!, j 51,2,3, F5 i (
k51

3

Fksk , ~12!

wheresk are the usual Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~13!

The first and second fundamental forms ofS are

~dsI!
25^A,A&du212^A,B&du dv1^B,B&dv2, ~14!

~dsII !
25^Au1@A,U#,C&du212^Av1@A,V#,C&du dv1^Bv1@B,V#,C&dv2, ~15!

where

^A,B&52 1
2 trace~AB!, uAu5A^A,A&, ~16!

and

C5
@A,B#

u@A,B#u
. ~17!

A frame on this surfaceS, is

F21AF, F21BF, F21CF. ~18!

The Gauss and mean curvatures ofS are given by

K5det~G!, H5trace~G!, G5S d11 d12

d12 d22
D S g11 g12

g12 g22
D 21

. ~19!

The following theorem gives an explicit construction of functionsA, B and of the immersion
function F from the symmetries of Eqs.~8! and ~10!:

Theorem 2.2: ~Ref. 2! Suppose thatU(u,v) andV(u,v) can be parametrized in terms ofl
and of the scalar functionu(u,v) in such a way that Eq.~8! is equivalent to a single PDE fo
u(u,v) independentof l. This equation, which by definition is calledintegrable PDE, possesses
the Lax pair defined by Eq.~10!. Define the su~2! valued functionsA(u,v,l) andB(u,v,l) by

A5a
]U

]l
1

]M

]u
1@M ,U#1U8f, ~20!
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



ith

-

2254 J. Math. Phys., Vol. 41, No. 4, April 2000 Ceyhan, Fokas, and Gürses
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B5a
]V

]l
1

]M

]v
1@M ,V#1V8f, ~21!

wherea(l) is an arbitrary scalar function ofl, M (u,v;l) is an su~2! valued arbitrary function of
u, v, l, the scalarf is a symmetry of the partial differential equation~PDE! satisfied by the
function u(u,v), and the prime denotes Fre´chet differentiation. Then there exists a surface w
immersionF(u,v;l) defined in terms ofA, B and F by Eqs.~20! and ~21!. Furthermore,F to
within an additive constant, is given by

F5F21S a
]F

]l
1MF1F8f D . ~22!

Example:Let

M5 f 1U1 f 2V1M0 , ~23!

whereM0 is an su~2! valued constant matrix anda(l), f 1(l), f 2(l) are scalar functions of the
arguments indicated. Then Eqs.~20!–~21! and ~22! become

A5a~l!
]U

]l
1

] f 1

]u
U1 f 1

]U

]u
1

] f 2

]u
V1 f 2

]U

]v
1 f 3@M0 ,U#1U8f, ~24!

B5a~l!
]V

]l
1

] f 1

]v
U1 f 1

]V

]u
1

] f 2

]v
V1 f 2

]V

]v
1 f 3@M0 ,V#1V8f, ~25!

F5F21S a
]F

]l
1 f 1]uF1 f 2]vF1M0F1F8f D . ~26!

We now study the surfaces generated by constant matrixM0 which corresponds to constant SU~2!
rotations ofF.

Theorem 2.3:Let A5@M0 ,U# andB5@M0 ,V#, whereM0 is an su~2! constant matrix. Then
K51/uM0u2 andH522e/uM0u, wheree561 anduM0u5A^M0 ,M0&. Hence all such deformed
surfaces are spheres with radiiuM0u.

Proof: It is easy to prove that

@A,B#5aM0 , ~27!

wherea is the scalar defined bya5mW •(uW 3vW ). HeremW , uW , andvW are the corresponding three
vectors of the matricesM05( i /2)( j 51

3 mjs j , U5( i /2)( j 51
3 ujs j , V52( i /2)( j 51

3 v js j . Letting
e5a/uau, we find

C5
e

uM0u
M0 ,

hence

^Au ,C&5^Av ,C&5^Bv ,C&50. ~28!

Using these equations it follows that

di j 52
e

uM0u
gi j . ~29!

Hencedg215(2e/uM0u)I , whereI is the identity matrix. Hence
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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K5det~dg21!5
1

uM0u2
, ~30!

H5tr~dg21!52
2e

uM0u
. ~31!

QED

This theorem implies that the rigid SU~2! rotations define a map from all integrable equations
the surface of the sphere with a parametrizationF such that the coefficients of the first fundame
tal form takes the form

gi j 5
1
4 @m2uW i•uW j2~mW •uW i !~mW •uW j !#, ~32!

wherem25mW •mW , anduW i5(uW ,vW ). The immersion function is given byF5F21M0F.

III. DEFORMATION OF SINE-GORDON SURFACES

Consider the motion of the curve with curvaturer5uu and constant torsiont5l. It is shown
in example B.1 that if the velocity of this curve is given by~0,2~1/l!sin u,~1/l!cosu!, the motion
of this curve is characterized by the sine-Gordon equation

]2u

]u]v
5sinu, ~33!

whereu(u,v) is a real scalar function and time is denoted byv. DefineU(u,v,l), andV(u,v,l)
by

U5
i

2
~2uus11ls3!, V5

i

2l
~sinus22cosus3!. ~34!

Let w be a symmetry of Eq.~33!, i.e., letw be a solution of

]2w

]u]v
5w cosu. ~35!

Solutions of ~35! contain the geometrical and generalized symmetries of the sine-Go
equation.38,39 Then for eachw, theorem 2.2~with a50, M50! implies the surface constructe
from

A52
i

2

]w

]u
s1 , B5

i

2l
w~cosus21sinus3!, ~36!

where the immersion function is given byF5F21F8(w). Equation~33! is an integrable equation
and hence it admits infinitely many symmetries usually referred to as generalized symm
Indeed, there exist infinitely many explicit solutions of Eq.~35! in terms ofu and its derivatives.
The first few are

uu ,uv ,uuuu1
uu

3

2
,uvvv1

uv
3

2
,... . ~37!

We now study the surfaces corresponding to these generalized symmetries.
Lemma 3.1:Let S be the surface generated by a generalized symmetry of the sine-Go

equation. That is, letSbe the surface generated byU, V, A, B defined by Eqs.~34!–~36!. The first
and second fundamental forms, the Gaussian, and the mean curvatures of this surface are
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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dsI
25

1

4 S wu
2 du21

1

l2 w2 dv2D , dsII
25

1

2 S lwu sinu du21
1

l
wuv dv2D , ~38!

K5
4l2uv sinu

wwu
, H5

2l~wuuv1w sinu!

wwu
. ~39!

An immediate corollary of the above lemma is:
Corollary 3.2: Let S be the particular surface defined in Lemma 3.1 corresponding tw

5uv . This surface is the sphere with

dsI
25

1

4 S sin2 u du21
uv

2

l2 dv2D , dsII
25

l

2 S sin2 u du21
uv

2

l2 dv2D , ~40!

K54l2, H54l. ~41!

Let S be a surface generated by the symmetries of the sine-Gordon equation and defined
mappingF:V→R3. HereV,R2 is defined by the regular solutions of the sine-Gordon equa
~33!. We now present a global result regarding such surfaces.

Theorem 3.3: Let S be a regular surface defined in lemma~3.1! in terms of a generalized
symmetry of the sine-Gordon equation. IfS is an oriented, compact, and a connected surface
it is homeomorphic to a sphere.

Proof: All compact connected surfaces with the same Euler–Poincare characte
homeomorphic.40 For compact surfaces the Euler–Poincare characterx is given by

x5
1

2p E
V
E Adet~g!K du dv. ~42!

Sinceg5detgij5w2wu
2/l2, i , j 51,2, then the integrandAgK in ~42! simply becomes

AgK5luv sinu. ~43!

Hencex is independent of the deformationsw, i.e.,

x5
l

2p E
V
E uv sinu du dv. ~44!

This proves thatx has the same value for all generalized symmetries and hence for all sine-G
deformed surfaces. Thus in order to calculatex it is enough to choose the simplest case. Accord
to Corollary 3.2 the choicew5uv leads to a sphere with radius 1/2l, wherex52. Hence all
deformed surfaces have the Euler–Poincare characterx52. Therefore they are all homeomorph
to a sphere. This completes the proof of the theorem. Q

Compact connected surfaces withK.0 are calledovaloids. They all havex52. Hence we
have a corollary to theorem 3.3 concerning such surfaces.

Corollary 3.4: Surfaces defined in Theorem 3.3 are also homeomorphic to ovaloids.
Solitonic solutions of the sine-Gordon equation satisfy the rapidly decaying condit

u~6`!50, uu(6`)50, uv(6`)50,... . Then for such a case we have the following lemma.
Lemma 3.5:Let S be the surface defined in Lemma~3.1!. Suppose that this surface is no

compact. If the associated solutionu(u,v) of the sine-Gordon equation satisfies the conditions t
u,uu ,uv ,... tend to zero asu→6`, then

E
2`

`
Adet~g!K du50.
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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We now consider a different class of surfaces which are also constructed from solutions
sine-Gordon equation.

Lemma 3.6:Let S be the surface constructed fromU, V given by Eq. ~27! and from A
5m(]U/]l), B5m(]V/]l) wherem is a scalar depending onl. This surface has the following
fundamental forms and curvatures:

dsI
25

m2

4 S du21
2

l2 cosu dv dv1
1

l4 dv2D , dsII
256

m

l
sinu dv dv, ~45!

K52
4l2

m2 , H56
4l

m
cot~u!. ~46!

Corollary 3.7: Let u be a rapidly decaying solution of the sine-Gordon equation andS be the
surface defined in Lemma~3.6!. Then

E
2`

`
Adet~g!K du50.

Proof: This is a consequence of

Adet~g!K52sinu52uuv .
QED

We now consider yet a different class of surfaces associated with solutions of the sine-G
equation.

Lemma 3.8:Let S be the surface constructed fromU andV defined by Eq.~34! and from

A5m
]U

]l
1

ip

2
@s1 ,U#, B5m

]V

]l
1

ip

2
@s1 ,V#, ~47!

wherem andp are scalars depending onl. The immersion functionF is given by

F5F21Fm ]F

]l
1

ip

2
s1FG . ~48!

This surface is parallel to a surface of negative constant curvature. The distance betwee
surface isp/4.

Proof: A straightforward but lengthy calculation implies that for this surface

~m21l2p2!K12pl2H14l250. ~49!

Let K0 andH0 be the Gaussian and mean curvatures of a surfaceS0 with constant curvatureK0

and letS be parallel toS0 , then40

K05
K

122aH1a2K
, H05

H2aK

122aH1a2K
, ~50!

wherea is a constant. Hence comparing the first equation in Eq.~50! and ~49! we find that

a5
p

4
, K052

16l2

3p214m2 .

HenceS is parallel to a surfaceS0 with negative constant curvature.p/4 is the distance betwee
the surfaces.

There exists a particular case where the geometrical quantities become simpler:
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Lemma 3.9:Let S be the surface in Lemma~3.8! with m5lp. Then

dsI
25

p2

2 S l2 du222 sinu du dv1
1

l2 dv2D , ~51!

dsII
25

p

2 Fl2 du222~sinu1cosu!du dv1
1

l2 dv2G , ~52!

K52
2

p2 tanu, H5
2

p
2

2

p
tanu. ~53!

The curvature densityAdet(g)K has a form similar to the one in Corollary 3.7. ThusAdet(g)K
52sinu52uuv .

The following corollary of the Lemma~3.9! is for solitonic solutions of the sine-Gordo
equation:

Corollary 3.10:Let u be a rapidly decaying solution of the sine-Gordon equation andSbe the
surface defined in Lemma~3.9!. Then

E
2`

`
Adet~g!K du50.

IV. SURFACES ASSOCIATED WITH THE SINH-GORDON EQUATION

The sinh-Gordon equation is defined by

]2u

]u2 1
]2u

]v2 1
1

4
~H0

2e2u2e22u!50, ~54!

where u(u,v) is a real scalar function andH0Þ0 is a real constant. This equation is usua
associated with surfaces of constant mean curvatureH0 . In what follows we will show that this
equation can also be used to construct several other classes of interesting surfaces.

Lemma 4.1:Let the real scalar functionu(u,v) be a solution of the hyperbolic sine-Gordo
equation~54!, whereH0Þ0 is a real constant. Define the su~2! valued functionsU, V, A, B by

U5
i

4
@cosl~H0eu1e2u!s12sinl~H0eu2e2u!s212uvs3#, ~55!

V52
i

4
@sinl~H0eu1e2u!s11cosl~H0eu2e2u!s212uus3#, ~56!

A52m
]U

]l
1

ip

2
@s3 ,U#, B52m

]V

]l
1

ip

2
@s3 ,V#, ~57!

wherem andp are real constants. The immersion functionF is given by

F5F21F2m
]F

]l
1

ip

2
s3FG . ~58!

The associated surfaceS has the following fundamental forms and curvatures:

g115
1

16e2u ~@e2uH0
2~2m1p!1~p22m!#214H0~4m22p2!sin2 le2u!, ~59!
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g125
H0~4m22p2!sin 2l

8
, ~60!

g225
1

16e2u ~@e2uH0
2~2m1p!2~p22m!#224H0~4m22p2!sin2 le2u!, ~61!

d115
2H0

2e4u~p12m!2p12m22pH0 cos 2le2u

8e2u , ~62!

d225
2H0

2e4u~p12m!2p12m12pH0 cos 2le2u

8e2u , ~63!

d125
pH0 sin 2l

4
, ~64!

K54
e4uH0

221

e4uH0
2~2m1p!22~2m2p!2 , ~65!

H524
e4uH0

2~2m1p!1~2m2p!

e4uH0
2~2m1p!22~2m2p!2 . ~66!

It is easy to show thatK andH satisfy the following Weingarten relation:

~p224m2!K12pH1450. ~67!

There exists some interesting particular limiting cases. Ifp562m, S is a surface of constan
mean curvature

p52m, H52
1

m
, K5

e4uH0
221

4m2H0
2e4u , ~68!

p522m, H5
1

m
, K52

e4uH0
221

4m2 . ~69!

If p50, S is a surface of constant Gaussian curvature,

K5
1

m2 , ~70!

H52S 2

m D H0
2e4u11

H0
2e4u21

. ~71!

If m50, S is a sphere.
Surfaces Associated with the Liouville equation:The Liouville equation can be obtained from

the sinh-Gordon equation in the limitH050,

]2u

]u2 1
]2u

]v22
1

4
e22u50. ~72!

Lemma 4.2:Let the real scalar functionu(u,v) be a solution of the Liouville equation~72!.
DefineU, V, A, B by
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U5
i

4
~e2u cosls11e2u sinls212uvs3!, ~73!

V52
i

4
~e2u sinls12e2u cosls212uus3!, ~74!

whereA andB are given in~57! with pÞ62m. The immersion functionF is given in ~58! with
H050. Then the associated surfaceS has the following fundamental forms and curvatures:

dsI5
1

16 e22u~2m2p!2~du21dv2!, ~75!

dsII52 1
8 e22u~2m2p!~du21dv2!, ~76!

K5
4

~2m2p!2 , ~77!

H52
4

2m2p
. ~78!

Thus for anym, p with pÞ2m, S is a sphere.

V. DEFORMATIONS OF THE NONLINEAR SCHRÖ DINGER SURFACES

The nonlinear Schro¨dinger ~NLS! equation is an equation for a complex functionu(u,v).
Letting u(u,v)5r (u,v)1 is(u,v), the real valued functionsr ands satisfy

r v5suu12s~r 21s2!, ~79!

sv52r uu22r ~r 21s2!. ~80!

The associatedU andV matrices defining its Lax pair are given by

U5
i

2 S 22l 2~s2 ir !

2~s1 ir ! 2l
D , ~81!

V52
i

2 S 24l212~r 21s2! v12 iv2

v11 iv2 4l222~r 21s2!
D , ~82!

where

v152r u14ls, v2522su14lr . ~83!

Lemma 5.1:Let U and V be defined by Eqs.~81! and ~82!, wherer,s satisfy the integrable
nonlinear equations~79! and ~80! and v1 ,v2 are defined by~83!. Let A, B be defined byA
5m(]U/]l), B5m(]V/]l), wherem is a real constant, i.e.,

A5
i

2 S 22m 0

0 2m D , B52
i

2 S 28lm 4m~s2 ir !

4m~s1 ir ! 8lm D . ~84!

Let the new variablesq andf be defined in terms ofr ands by

r 5q cosf, s5q sinf. ~85!

In terms of these variables the NLS equations~79! and ~80! become
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qfv52quu22q31qfu
2, ~86!

qv5qfuu12qufu . ~87!

Then the geometrical quantities of the surfaceS associated with the su~2! valued functions
U,V,A,Bdefined in~81!, ~82!, and ~84! can be expressed in terms of the new variablesq andf
through the following equations:

dsI
25m2@~du24l dv !214q2 dv2#, ~88!

dsII
2522mq@du2~2fu12l!dv#212mquu dv2, ~89!

K52
quu

m2q
, ~90!

H5
quu2q~fu12l2!24q3

2mq2 . ~91!

The immersion function is given byF5F21m(]F/]l). In particular iff5nv, wheren is a real
constant,q5q(u), thenq(u) satisfies~Fig. 1!

quu522q32nq. ~92!

Lemma 5.3:Let U,V,A,B be defined by Eqs.~81!, ~82!, and ~84! where r 5q(u)sin(nv), s
5q(u)cos(nv), l,n,m are constants andq(u) satisfies~92!. Then the associated surfaceS is a
Weingarten surface satisfying the relation

2m2H2~m2K2n!5~3m2K14l222n!2. ~93!

If n524l2 the above-mentioned Weingarten relation becomes quadratic,

K2
2

9
H21

4l2

9m2 50. ~94!

FIG. 1. Weingarten surfaces of the form~94! with l50.
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VI. DEFORMATIONS OF THE MODIFIED KORTEWEG–DE VRIES SURFACES

Let r(u,v) satisfy the so-called modified Korteweg–de Vries~mKdV! equation

rv5ruuu1
3
2 r2ru . ~95!

The associatedU andV matrices defining its Lax pair are given by

U5
i

2 S l 2r

2r 2l
D , ~96!

V52
i

2 S 2
lr2

2
1l3 v12 iv2

v11 iv2
lr2

2
2l3

D , ~97!

where

v15ruu1
r3

2
2l2r, v252lru . ~98!

Lemma 6.1:Let U andV be defined by Eqs.~96! and ~97! where the scalar functionr(u,v)
satisfies the mKdV equation~95! andv1 ,v2 are defined by Eq.~98!. Let A andB be defined by
A5m(]U/]l), B5m(]V/]l), wherem is a real constant, i.e., let

A5
i

2 S m 0

0 2m D , ~99!

B52
i

2 S 2mr2

2
13ml2 22mlr1 imru

22mlr2 imru
mr2

2
23ml2

D . ~100!

The geometrical quantities of the surfaceS associated with theseU,V,A,Bare given by

K5
4l2

m2~ru
214l2r2!2 @4r3ruuuu24r2ruruuu24r2~ruu!

214rru
2ruu24l2r3ruu14r5ruu2ru

4

18r4ru
2#, ~101!

H5
4l

m~ru
214l2r2!3/2@2rruuuu1ruruuu23l2rruu2r3ruu12l2ru

223r2ru
224l4r224l2r4#,

~102!

dsI
25

m2

4 F S du1
1

2
~r226l2!dv D 2

1~ru
214l2r2!dv2G , ~103!

dsII
25

lm

~ru
214l2r2!1/2

@2r2 du21~22rruu1ru
212l2r22r4!du dv1 1

4 ~24rruuuu14ruruuuu

112l2rruu28r3ruu24l2ru
226r2ru

224l4r214l2r42r6!dv2. ~104!
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The immersion function is given byF5F21m(]F/]l). A particular reduction of the above
mentioned surface is a Weingarten surface with a complicated Weingarten relation.

Lemma 6.2:Let U, V be defined by Eqs.~96! and~97! wherel, m, a are constants andr(u)
satisfies

ruu5ar2
r3

2
. ~105!

Then the associated surfaceS is a Weingarten surface satisfying the relation

m2H2r2@4~a14l2!2r2#3516l2@r426r2~a14l2!28l2~a14l2!#2, ~106!

where

r254~a14l2!1
16l2

m
A a14l2

K14l2/m2. ~107!

It is interesting that using a different Lax pair for Eq.~105! it is possible to obtain a Wein
garten surface simpler than the above:

Lemma 6.3:Let U, V be defined by

U5
i

2 S l 2r

2r 2l
D , ~108!

V52
i

2 S r2

2
2~a1al1l2! ~a1l!r2 iru

~a1l!r1 iru 2
r2

2
1~a1al1l2!

D , ~109!

where l, a are constants andr(u) satisfies Eq.~105!. Let A and B be defined byA
5m(]U/]l) andA5m(]V/]l), wherem is a constant, i.e., let

A5
i

2 S m 0

0 2m D , ~110!

B52
i

2 S 2~am12ml! mr

mr am12ml
D . ~111!

The geometrical quantities of the surfaceS associated with theseU,V,A,Bare given by

K5
2

m2 @r222a#, H5
1

mr
@3r212~l22a!#, ~112!

dsI
25

m2

4
@~du1~a12l!dv !21r2dv2#, ~113!

dsII
25

mr

2
@du1~a1l!dv#21

mr

4
~r222a!dv2. ~114!

The immersion function is given byF5F21m(]F/]l). This surface is a Weingarten surfac
satisfying the relation

2m2H2~m2K14a!5@3m2K14l218a#2. ~115!
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In the special casea5l2, this relation becomes

2m2H259@m2K14l2#. ~116!

VII. INTEGRABLE SPHERICAL CURVES

Consider the motion of a curve on a sphere of radius 1/l. Assume thatruÞ0. Then, using the
results of Proposition A.1 it follows that its motion is characterized by

u t5
c0

l
cosuuu1

1

l
cosuV2u1l]u

21S V2

cosu D1uu cosu]u
21S sinu

~cosu!2 u t1
1

l
V2uuD , ~117!

where

r5
l

cosu
, t5uu . ~118!

The velocitiesV1 andV3 are given in terms ofV2 andu by

V15]u
21S l sinu

cos2 u
u t1V2uuD1c0 , V352

cosu

l
~V2u1V1uu!, ~119!

wherec0 is an arbitrary constant.
Proof: Spherical curves can be parametrized by~118!, since for spherical curves,41

S ru

r2t D 2

1
1

r2 5
1

l2 . ~120!

The last equation in~144! can be written asV352(V2u1V1t)/r, which is the second equatio
~119!. The first two equations in~144! imply ~117! and the first equation of~119!. QED

An integrable motion of a spherical curve. The motion of the curve on a sphere of radius~1/l!
is characterized by Eqs.~117!–~119!, whereV2 is an arbitrary function. Hence each choice of th
function yields a spherical surface. Let the velocity componentV2 of this curve be given by

V252l cosu~uu cosu!u , ~121!

and letc05l3, thenu evolves according to the integrable equation

u t2uu cosu]u
21S sinu

~cosu!2 u tD1
1

2
~uu cosu!31cosu@cosu~uu cosu!u#u50. ~122!

It seems that Eq.~122! has not appeared before in the soliton literature. We note that in the s
u limit this equation reduces to the potential modified KdV equation.

We note that the motion of curves on a sphere was studied recently in Ref. 8 by dema
that the geodesic curvature of these curves is constant and equal to 1/l. It can be shown that this
requirement is equivalent tor51/l, ~i.e., ru50!. Thus the integrable evolutions obtained in R
8 coincide with the modified KdV hierarchy.

VIII. CURVES FROM SURFACES

Appendices A and B show that it is possible to construct surfaces from the motion of cu
It is also possible to associate a curve evolution with a given surface. For this purpose it is
suitable to introduce the Darboux frame on curves.40
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Let S be an oriented regular surface anda:I→S be a curveC parametrized by its arc length
At the point p5a(s) consider the following three unit vectors, called theDarboux trihedron:
T(s) is the tangent vector toC at p, n(s) is the normal vector toS at p, and b(s)5n(s)
3T(s). These vectors satisfy the Darboux equations

dT

ds
5rgb1rnn, ~123!

db

ds
52rgT1tgn, ~124!

dn

ds
52rnT2tgb, ~125!

whererg5rg(s), rn5rn(s), tg5tg(s), sPI . The geometrical meaning of these coefficients
the following: The scalartg52dN/ds•b is called the geodesic torsion of the curveC. This curve
is a line of curvature ofS if and only if tg50. rn andrg are the normal and geodesic curvatur
of C, respectively, at a pointpPS.

Let r be the curvature ofa(s) at p which is defined bydT/ds5rN, andN be the principle
normal to the curve atp. Using the first equation~123! in the Darboux equations~123!–~125! we
find

r25rg
21rn

2 . ~126!

Since the tangent vectorT to the curveC is common in both frames it is possible to pass from
Frenet trihedronto the Darboux trihedronby a special local SO~3! transformation. LetT, b, n
define the Darboux trihedron andT, N, B denote the Frenet–Serret triad of orthogonal vecto
Then

n5sinuN1cosuB, b5cosuN2sinuB. ~127!

This enables us to connect the torsiont and curvaturer of the curveC to its geodesic torsiontg ,
geodesic and normal curvaturesrg ,rn .

This transformation induces a local SU~2! gauge transformation on the Lax equations~145!:
Letting F85SF, we find

U85SUS211SuS21, ~128!

V85SVS211SvS21. ~129!

The matrixS is given as

S5
1

&
S e2 iu/2 2eiu/2

e2 iu/2 eiu/2 D . ~130!

In what follows we given an example of how a curve motion can be identified from a g
surface.

Proposition 8.1:Consider the surface described in Theorem 2.2 of Ref. 1. This surfa
associated with the motion of a curve with curvature and torsion given by

r2~s,t !5S U2

a D 2

1S U3

a D 2

, ~131!
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t~s,t !5
U1

a
2

S U2

U3
D

s

11S U2

U3
D 2 , ~132!

wheret5v anda5ds/du. Heres denotes the arc length. The componentsV1 , V2 , andV3 of the
velocity of this curve are defined in terms ofr and t by the differential equations~A1!. An
orthogonal frame on this curve is

T5
]F

]s
52 iF21s1F, B52 iF21s2F, N52 iF21s3F. ~133!

Proof: Usinga5ds/du and the definitions ofF andF to computeFss andNs , it follows that

^Fss,N&5
U2

a
, ^Ns ,B&5

U1

a
, ^Fss,B&52

U3

a
. ~134!

Let T, b, n define the Darboux trihedron associated with the matricesFs ,B,N defined in
~133!. Using the Frenet–Serret equations

Ts5rN, Ns52rT1tB, Bs52tN, ~135!

it follows that

^Fss,N&5Ts•n5rn•~sinuN1cosuB!5r sinu, ~136!

^Fss,B&5Ts•b5r cosu , ~137!

^Ns ,B&5ns•b5~sinuN1cosuB!•~cosuN2sinuB! ~138!

5us2t. ~139!

Comparing these equations with~A4!, we find

U1

a
5us2t,

U2

a
5r sinu,

U3

a
5r sinu. ~140!

Eliminating u, Eqs.~131! and ~132! follow. It is now possible to identify the geodesic curvatu
rg , the normal curvaturern , and the geodesic torsiontg of the curveC in terms of the parameter
of S:

rg5r cos~u!5
U3

a
, ~141!

rn52r sin~u!5
U1

a
, ~142!

tg5u82t5
U1

a
. ~143!
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APPENDIX A: THE MOTION OF CURVES

Let u denote the arclength of a curve inR3. This curve can be uniquely characterized, with
a rigid motion inR3, by its curvature and its torsion. This characterization is expressed by
classical Frenet–Serret equations which define the dependence of the associated frame ou.3–9

Proposition A.1:Let the scalar real functionsr(u,t) and t(u,t), which are differentiable
functions ofu andt for every~u,t! in some neighborhood ofR2, denote the curvature and torsio
of a curve with arclength denoted byu. Let the real scalar functionsVj , which are differentiable
functions ofu andt for every~u,t! in some neighborhood ofR2, denote the velocity of this curve
The motion of this curve is defined by

]r

]t
2

]V1

]u
1V2t50,

]t

]t
1

]V3

]u
2V2r50,

]V2

]u
1V1t1V3r50. ~A1!

These equations are the compatibility conditions of the following equations for the SU~2! valued
function F(u,t),

]F

]u
5

i

2 S t 2r

2r 2t DF,
]F

]t
52

i

2 S V3 V12 iV2

V11 iV2 2V3
DF. ~A2!

Proof: Let xj , j 51,2,3, be a point on a curve inR3 whose arclength is denoted byu. This
leads to

(
j 51

3 S ]xj

]u D 2

51.

The Serret–Frenet frame is a triad of orthonormal vectors,T, N, B, whereT is the tangent vector
N is the principal normal unit vector, perpendicular toT which lies in the oscillating plane of the
curve, andB is the binormal unit vector, perpendicular to bothT andN. The components of thes
vectors satisfy the condition

Tj
21Nj

21Bj
251, j 51,2,3, ~A3!

and the classical Frenet–Serret equations

]

]u S Tj

Nj

Bj

D 5S 0 r 0

2r 0 2t

0 t 0
D S Tj

Nj

Bj

D , j 51,2,3. ~A4!

Suppose that the above curve is allowed to evolve in time and that it does not stretch duri
motion. Since the frame is orthogonal, its time evolution is given by

]

]t S Tj

Nj

Bj

D 5S 0 V1 2V2

2V1 0 V3

V2 2V3 0
D S Tj

Nj

Bj

D , j 51,2,3. ~A5!

Using the su~2! representation of so~3!, these equations yield~A2!.
Proposition A.2:Let the complex valued functionsc(u,t,l) andV(u,t,l), be differentiable

functions ofu and t for every ~u,t! in some neighborhood ofR2. Assume thatc andV satisfy

c t5Vu1 isc2 ilV, ~A6!

wheres is defined by
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su5
2 i

2
~V̄c1Vc̄ !. ~A7!

Equations~A6! and~A7! are the compatibility conditions of the following equations for the SU~2!
valued functionF(u,t,l):

]F

]u
5

1

2 S il c

2c̄ 2 il D F,
]F

]t
5

1

2 S is V

V̄ 2 is D F. ~A8!

Equations~A6! and~A7! describe the motion of a curve withr5ucu,t5(argc)u1l. The velocity
of this curve satisfies

V11 iV25V exp@2 i ]u
21t2 ilu#, V3u52t t1su .

Proof: Substituting the relations

c5rei ]u
21t1 ilu, V5~V11 iV2!ei ]u

21t1 ilu, ~A9!

into Eqs.~A6! and ~A7! we find ~A2! and

]u
21t t5

V2u1V1t

r
1s, su5V2r, ~A10!

where]u
21 denotes integration with respect tou. Eliminatings from these equations we find tha

the equation obtained from the equations in~A2! after eliminatingV3 .
Example A.1:~Constant torsion! The motion of a curve of constant torsiont5l is character-

ized by

r t52lV22
1

l
~]u

21r21ru]u
21r!V2 , ~A11!

where the velocitiesV1 andV3 can be expressed in terms ofV2 andr by

V152
1

l
~V2u1r]u

21~V2r!!, V35]u
21~V2r!. ~A12!

Proof: If t5l Eq. ~A2! becomes

rt5V1u2lV2 , V3u5V2r, V152
1

l
~V2u1rV3!. ~A13!

These equations yield Eq.~A11!.

APPENDIX B: INTEGRABLE CURVE MOTIONS

It is well known that there exist many curve evolutions which are integrable. We call a c
evolution integrable if the motion is defined in terms of an integrable PDE. Integrable evolu
of curves have been studied extensively in the recent literature3–8. It turns out that for particular
velocities, the motion of curves is defined by certain integrable equations, which includ
sine-Gordon, the modified Korteweg-de Vries, the nonlinear Schro¨dinger, and the Hirota equa
tions. An obvious approach for obtaining integrable curve evolutions is to choose the functioVj

in such a way that the nonlinear equations~A1! @or ~A6! and ~A7!# are independent ofl.
Example B.1:~Integrable evolutions of curves with constant torsiont! The motion of curve

with constantt5l is characterized by Eqs.~A11! and ~121!. Let its velocity be specified as
follows:
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Case 1:If

V150, V252
1

l
sinu, V35

1

l
cosu, ~B1!

thenr evolves according to the sine-Gordon equation,

r5uu , uut5sinu. ~B2!

Case 2:If

V15ruu1 1
2 r32l2r, V252lru , V352 1

2 lr21l3, ~B3!

thenr evolves according to the modified KdV equation,

r t5ruuu1
3
2 r2ru . ~B4!

Case 3:If l51 and

V15ruu1 1
2 r32r, V252ru , V352 1

2 r211, ~B5!

thenr evolves according to the Painlave II equation

r5t 1/3W~j!, j5u~ t !21/3, Wjj1 1
3 jW1 1

2 W35C, ~B6!

whereC is a constant.
Example B.2:~Integrable curve evolutions associated with the NLS! Let

V5 icx2lc,s5 1
2 ucu21l2, ~B7!

in Eqs.~A7! and ~A8!, thenc evolves according to the nonlinear Schro¨dinger equation,

c t5 icxx1
i

2
cucu2. ~B8!

This describes the integrable curve motion withr5ucu, t5]u arg(c)1l.
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