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Abstract

We study the computational aspects of the single-assignment p-hub center problem on the basis of a basic model and

a new model. The new model's performance is substantially better in CPU time than di�erent linearizations of the basic

model. We also prove the NP-Hardness of the problem. Ó 2000 Elsevier Science B.V. All rights reserved.
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Hub location problems arise when it is desirable
to consolidate and disseminate ¯ows at certain
centralized locations called hubs. Typical applica-
tions arise in airline passenger travel (Toh and
Higgins, 1985), cargo delivery (Kuby and Gray,
1993), and message delivery in computer commu-
nication networks (Klincewicz, 1998).

The existing studies in the literature on hub
location have almost exclusively focused on the
p-hub median problem which involves the minimi-
zation of the total cost. The case with p � 1; 2 is
posed by O'Kelly (1986) and the case for general p
is formulated as a quadratic binary program by
O'Kelly (1987). Di�erent linearizations of the basic

model of O'Kelly (1987) are investigated by Aykin
(1995), Campbell (1994), Campbell (1996), Ernst
and Krishnamoorthy (1996, 1998), Skorin-Kapov
et al. (1996).

Our focus in this paper is on the minimax cri-
terion which is essentially unstudied in the litera-
ture. The minimax criterion is traditionally used in
location applications to minimize the adverse ef-
fects of worst case scenarios in providing emer-
gency service. In hub location, even though
emergency service protection does not seem to be
an issue, the minimax criterion is still important
from the viewpoint of minimizing the maximum
dissatisfaction of passengers in air travel and
minimizing the worst case delivery time in cargo
delivery systems. The latter case is particularly
important for delivery of perishable or time sen-
sitive items.

The literature on hub location under the mini-
max criterion is restricted to two papers. The
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initial motivation for the minimax criterion is
given by O'Kelly and Miller (1987) in the context
of cargo delivery. In the same paper, the special
case with p � 1 is shown to be equivalent to the
well known 1-center location problem in which a
single facility is to be located to minimize the
maximum distance to the users of the facility. The
second paper that deals with minimax criterion in
hub location is Campbell (1994) in which he for-
mulates the p-hub center location problem. This
problem involves locating a ®xed number, p, of
hubs to minimize the maximum travel time be-
tween origin destination pairs. Campbell (1994)
gives a quadratic binary program for the p-hub
center problem which we refer to as the basic
model in the sequel. Campbell also gives a linea-
rization for the basic model, but he does not report
any computational results.

In this paper, our focus is on the single-as-
signment p-hub center location problem. We ®rst
give a combinatorial formulation of this problem
and prove that it is NP-Hard. We then focus on
di�erent linearizations of the basic model as well
as a di�erent model of the problem and study their
computational performances. We ®rst study the
computational performance of Campbell's original
linearization. Then we adapt a linearization of
Skorin-Kapov et al. (1996), developed initially for
the total cost criterion, to the p-hub center prob-
lem and study its computational performance.
Even though this linearization gives somewhat
improved performance, we obtain an even better
performance from a new linearization that we
propose in the paper. However, a dramatic com-
putational improvement is obtained from a new
formulation of the problem. This shows that it is
sometimes more important to devise a new model
for a given problem than to focus solely on im-
provements that come from di�erent linearizations
of the basic model.

The rest of the paper is organized as follows. In
Section 1 we provide a combinatorial formulation
of the p-hub center problem and prove that the
problem is NP-Hard for p < nÿ 1. We present the
basic model proposed by Campbell in Section 2.
We provide three linearizations of the basic model,
including Campbell's original linearization, in the
same section. We also report the computational

results on these linearizations. In Section 3, we
propose a new model of the p-hub center problem
and provide computational results on the new
model. The paper ends with concluding remarks in
Section 4.

1. Complexity

In this section we give a combinatorial for-
mulation of the p-hub center problem for the
single-assignment case and prove its NP-Hard-
ness. Even though hub location problems are
customarily de®ned based on a complete graph
whose arc costs satisfy the triangle inequality, we
deviate from this tradition and de®ne the problem
on a physical transportation network which is
assumed to be connected but not necessarily
complete. This way of de®ning the problem per-
mits reducing the dominating set problem to
the p-hub center problem, thereby proving its
NP-Hardness.

Let G � �N ;E� be a connected undirected
transportation network with node set N �
f1; . . . ; ng and arc set E. We may think of the arcs
in E as `physically existing' links of the transpor-
tation network, e.g. the arcs correspond to non-
stop ¯ight segments in air transport whereas they
correspond to physical roads in surface transpor-
tation. Associated with each arc �i; j� 2 E is a
weight sij > 0 which represents the length of that
arc. We may interpret sij as the time to traverse the
arc �i; j�. For each pair of nodes i; j 2 N , de®ne tij

to be the length of a shortest path in G connecting i
and j. Note that 06 tij <1 8 i; j 2 N due to
the connectedness assumption, tij6 sij 8�i; j� 2 E;
tij � 0 iff i � j; tij � tji and tij � tjk P tik 8i; j; k. Let
H � N be a set of nodes that specify the locations
of hubs and denote by a�i� 2 H the hub to which
node i is assigned. Let a � �a�1�; . . . ; a�n�� and let
Hn be the n-fold Cartesian product of H with itself.
Let a�06a6 1� be the discount factor for hub-to-
hub transportation. Given a positive integer
p �16 p < n� the p-hub center problem is:

min
H�N
jH j�p

; min
a2Hn

max
i;j2N
i< j

; �ti a�i� � ata�i� a�j� � ta�j� j�:
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We remark that every node is assigned to exactly
one hub in the above formulation (single-assign-
ment). There is also a multi-assignment version of
the problem in which a node may be allocated to
more than one hub meaning that the travel from a
given node i to di�erent destinations j may be
routed through di�erent hubs each of which is
assigned to node i. In this paper we do not con-
sider the multi-assignment problem and omit the
term `single-assignment' in the rest of the paper.

We now state the recognition form of the p-hub
center problem: Given G � �N ;E� with edge
lengths sij > 0; �i; j� 2 E, a rational a in the unit
interval, a positive rational b, and a positive inte-
ger p �16 p6 nÿ 1�, does there exist a subset H of
N consisting of at most p nodes and an assignment
vector a � �a�1�; . . . ; a�n�� 2 Hn such that ti a�i� �
ata�i� a�j� � ta�j� j6 b for 1 6 i < j 6 n?

Theorem. The recognition form of the p-hub center
problem for p < nÿ 1 is NP-Complete even if a � 0
and G � �V ;E� is a planar graph with unit arc
lengths and maximum degree three.

Proof. The theorem will be proved by reduction
from the dominating set problem.

Dominating set problem: Given a connected
graph G0 � �N 0;E0� and a positive integer k6 jN 0j,
does there exists a subset X of N 0 with jX j6 k such
that every node not in X is adjacent to at least one
node in X, i.e. 8u 2 N 0 n X 9 v 2 X for which
�u; v� 2 E0?

We note that the dominating set problem is NP-
Complete even if G0 is planar with maximum de-
gree 3 (Garey and Johnson, 1979).

Clearly, the recognition form of the p-hub
center problem is in class NP. Consider an instance
of the dominating set problem. We reduce it to the
p-hub center problem as follows: Take

N � N 0; E � E0; sij � 1 8�i; j� 2 E; p � k;

a � 0; b � 2:

We ®rst prove that if X solves the dominating
set problem, then X also solves the created in-
stance of the p-hub center problem. To prove the
claim, take H � X and construct an assignment
vector a � �a�1�; . . . ; a�n�� where, for each i 2 N ,

a�i� is a closest node in H to i. The constructed
solution �H ; a� satis®es jH j6 k � p and ti a�i� �
ata�i� a�j� � ta�j� j6 2 since a � 0 and H is a domi-
nating set so that ti a�i�6 1 8i 2 N . Conversely, if
�H ; a� solves the created instance of the p-hub
center problem, then X � H solves the dominating
set problem. To prove the claim, suppose there is a
node i which is not adjacent to any h 2 H . Then,
the distance of node i to a closest member of H is
at least 2. Since p < nÿ 1 there is at least one other
node j 62 H ; j 6� i; so that ti a�i� � ata�i� a�j� � ta�j� j P
2� 0� 1 � 3 contradicting that �H ; a� is a feasible
solution to the created instance of the p-hub center
problem. Note also that jH j6 p � k.

Hence, the dominating set problem has a YES
answer if and only if the corresponding instance of
the p-hub center problem has a YES answer. �

Since the recognition form of the p-hub center
problem is NP-Complete, we might say that the
optimization form for p < nÿ 1 is NP-Hard.

2. Basic model and its linearizations

In this section we ®rst give the original integer
programming (IP) formulation of Campbell
(1994). In Campbell's formulation the objective
function consists of the maximum of quadratic
terms in binary variables.

Let Xik be a binary variable which takes on the
value 1 if node i is allocated to a hub at node k and
the value 0 otherwise. Note that Xkk � 1 i� there is
a hub at node k. The p-hub center problem,
p-HC1, is:

min max
i;j;k;m

XikXjm�tik � atkm � tjm�
s:tX

k

Xik � 1 8 i; �1�

Xik 6Xkk 8 i; k; �2�X
k

Xkk � p; �3�

Xik 2 f0; 1g 8 i; k: �4�
Constraints (1) and (4) ensure that every node is
assigned to exactly one hub while constraint (2)

650 B.Y. Kara, B.Cß . Tansel / European Journal of Operational Research 125 (2000) 648±655



ensures that such an assignment cannot be made
unless there is a hub at node k. Constraint (3)
limits the number of hubs to p. The above qua-
dratic binary program has n2 binary variables and
n2 � n� 1 constraints.

We now give a linearization of p-HC1 proposed
by Campbell (1994). Let Xijkm be a binary variable
which takes on the value 1 if the path from origin
i to destination j is via hubs k and m
(i! k ! m! j). The linearization proposed by
Campbell, LIN1, is:

min Z

s:t

Z P Xijkm�tik � atkm � tjm� 8 i; j; k;m; �5�X
k

X
m

Xijkm � 1 8 i; j; �6�X
j

X
m

�wijXijkm � wjiXjimk�

�
X

j

�wij � wji�Xik 8 i; k; �7�

Xijkm 2 f0; 1g 8 i; j; k;m; �8�
and constraints�2�±�4�;

where wij P 0 is the ¯ow from origin i to desti-
nation j. Constraints (6) and (8) ensure that there
is exactly one pair of hubs �k;m� which are, re-
spectively, the ®rst and last hubs on the path
from origin i to destination j (k � m is possible).
Constraint (7) is the constraint that correctly re-
lates the path variables Xijkm to the allocation
variables Xik. The right hand side of (7) is the
total ¯ow originating and ending at node i pro-
vided that i is allocated to a hub at node k. When
Xik � 1, the left side of (7) achieves the same total
¯ow by summing all the incoming and outgoing
¯ows on all paths each of which includes a
shortest path between i and k as a subpath. Note
also that when Xik � 0, such path variables are
forced to take on the value zero. We refer to the
above formulation as LIN1.

In linearizing the problem, it is desired that
Xijkm � 1 if and only if Xik � Xjm � 1. This is ac-
complished by constraint (7) in the above lineari-
zation. The same thing can be achieved by using
the constraints:

X
m

Xijkm � Xik 8i; j; k; �9�X
k

Xijkm � Xjm 8i; j;m; �10�

as was done previously by Skorin-Kapov et al.
(1996) for the p-hub median problem. Imposing
the constraints (9) and (10) together with the zero/
one requirement on the variables Xijkm makes
constraints (6) and (7) redundant. We refer to the
linearization obtained from LIN1 by including (1)
and replacing (6) and (7) with (9) and (10) as
LIN2.

We now propose a third linearization, called
LIN3, which we obtain from LIN2 by replacing (9)
and (10) with constraint (11) below and by re-
placing the zero/one requirement on the variables.

Xijkm by Xijkm P 0 8i; j; k;m
Xijkm P Xik � Xjm ÿ 1 8 i; j; k;m:

�11�

Note that, integrality on Xijkm variables is not
necessary in LIN3, because the objective function
and constraints (5) and (11) force Xijkm variables to
take on their lowest possible values which is either
one or zero.

In all these linearizations, the objective function
and the constraints (2)±(4), and (5) are common.
Additionally, (8) is common in LIN1 and LIN2
and (1) is common in LIN2 and LIN3. In LIN1
and LIN2, there are n4 � n2 binary variables and,
in LIN3, there are n2 binary, n4 real variables,
while there are n4 � 3n2 � 1 constraints in LIN1,
n4 � 2n3 � n2 � n� 1 constraints in LIN2, and
2n4 � n2 � n� 1 constraints in LIN3.

We test these linearizations with the CAB data
by using CPLEX 5.0 on a 8 CPU, 50 Mhz super
Sparc station with 16B memory. The CAB Data
set is generated from the Civil Aurenatics Board
Survey of 1970 passenger travel data in the U.S. It
provides the passenger ¯ows and distances be-
tween 25 cities. Following the standard practice
that has been customarily utilized in computa-
tional p-hub median research, we generate a total
of 4 � 3 � 5 � 60 instances corresponding to n 2
f10; 15; 20; 25g; p 2 f2; 3; 4g; and a 2 f0:2; 0:4;
0:6; 0:8; 1:0g. The four problem sizes correspond-
ing to di�erent n utilize the distance data (and ¯ow
data for LIN1) for the ®rst n cities in the CAB
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Data. An upper limit of 15 hours is imposed on the
CPU time.

LIN1 has a poor computational performance as
it has not been able to solve any of the 60 instances
within the 15 hour limit. LIN2 has limited success
as it has been able to solve, within the 15 hour
limit, only 10 of the 60 instances corresponding to
all values of a for n � 10 and p � 2; 3. The maxi-
mum CPU time of LIN2 for the solved 10 in-
stances is 14.45 hours. LIN3 has a better
performance. It has been able to solve the 10 in-
stances that have also been solved by LIN2 within
a maximum time of 40.3 minutes, thus achieving
about a 20-fold reduction in CPU time. In addi-
tion, it has been able to solve the 5 instances cor-
responding to n � 10 and p � 4 within 1.1 hours.
The largest problem size that can be solved by
LIN3 is n � 15 for p � 2 (the cases p � 3; 4 are not
solved within the 15 hour limit). All the 5 instances
corresponding to �n; p� � �15; 2� has been solved
by LIN3 within the 15 hour limit where the max-
imum CPU time is 13.6 hours.

As can be seen from the reported results, LIN3
has the best performance among the three linea-
rizations but with limited success. The largest
problem size it can handle is n � 15 with p � 2
while none of the instances with larger n can be
solved by LIN3 regardless of p. In Section 3 we
reformulate the p-hub center problem from a dif-
ferent perspective. The resulting model solves, for
example, the �n; p� � �15; 2� combination in the
order of a few minutes while LIN3 spends almost
13.5 hours to solve the same combination. Sub-
stantial improvement has also been obtained from
the new model for larger sized problems.

3. New model

In the new model, tij is interpreted to be the
shortest travel time between nodes i and j. De®ne
now a real variable Tij which stands for the travel
time from node i to node j via the two hubs to
which i and j are assigned. Let Tij � Sir � trj where
Sir is another real variable which stands for the
travel time from origin i to node r under the as-
sumption that node j is assigned to a hub at node r.
In order to ensure that the real variables Tij's and

Sir's take on the correct values we impose the
constraints

Sir �
X

k

�tik � atrk�Xik; �12�

Tij �
X

r

�Sir � trj�Xjr; �13�

where Xij is a binary variable which takes on the
value 1 if node i is allocated to a hub at node j and
value 0 otherwise. With the single assignment
constraint (1), there is exactly one k for which
Xik � 1 and exactly one r for which Xjr � 1 so that
�12� and �13� supply the correct values for Sir and
Tij.

The new model, which we call p-HC20, is as
follows:

min Z

s:t:

Z P Tij 8i; j; �14�
�1�±�4�; �12�; �13�:
p-HC20 is a nonlinear mixed integer program with
2n2 � 1 real variables and n2 binary variables.

We may eliminate the real variables Tij and Sir

from p-HC20 to obtain a simpli®ed model which
retains the binary variables and the real variable Z.
Observe that, because of the single assignment
constraint, the summation operator in �13� can be
replaced by the maximum operator. With this and
using the right side of (12) for Sir, we have

Tij � max
r

X
k

�tik

 (
� atkr�Xik � trj

!
Xjr

)
: �15�

Using (15), it is direct to replace (14) by

Z P
X

k

��tik

(
� atkr�Xik� � trj

)
Xjr 8r and 8i; j:

�16�
The simpli®ed model which we refer to as p-HC2 is

min Z

s:t: �16�; �1�±�4�
p-HC2 is a nonlinear mixed integer program with
one real and n2 binary variables and n3 � n2�
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n� 1 constraints. In what follows we linearize
p-HC2.

Lemma.

Z P
X

k

��tik � atkr�Xik� � tjrXjr 8i; j; r �17�

correctly linearizes the constraint �16�.

Proof. There are 2 cases to consider depending on
the value of Xjr. Let s be the index for which
Xis � 1. Then

P
k�tik � atkr�Xik � tis � atsr both in

(16) and (17).
· Case 1: Xjr � 1. Then Z P tis � atsr � tjr which is

the time of journey between nodes i and j when i
is assigned to a hub at node s and j is assigned to
a hub at node r. Hence, the right sides of �16�
and �17� are identical for the pair i; j in this case.

Table 1

CPU times for the p-HC2LIN

n p

a 2 3 4 5

CPU in seconds

0.2 8.0 8.1 6.1 7.4

0.4 6.4 4.0 2.6 2.9

10 0.6 4.5 5.9 2.5 3.7

0.8 2.4 5.5 4.0 1.2

1.0 1.8 4.4 3.3 1.4

Avg. 4.6 5.6 3.7 3.3 4.3

Max. 8.0 8.1 6.0 7.0 8.1

CPU in seconds

0.2 211.8 313.2 311.8 238.2

0.4 124.3 180.6 137.3 62.2

15 0.6 16.3 25.9 77.4 77.4

0.8 20.0 20.5 17.8 35.1

1.0 23.7 15.3 13.4 6 .3

Avg. 79.2 111.1 111.5 83.8 96.4

Max. 211.8 313.2 311.8 238.2 313.2

CPU in minutes

0.2 43.4 62.2 69.2 45.4

0.4 35.5 55.6 56.6 34.4

20 0.6 23.3 36.1 21.8 15.4

0.8 13.0 21.4 11.6 27.6

1.0 2.4 0.9 6.8 1.9

Avg. 23.5 35.2 33.2 24.9 29.2

Max. 43.4 62.2 69.2 45.4 69.2

CPU in hours

0.2 3.8 8.1 10.2 7.1

0.4 4.0 7.5 11.3 8.5

25 0.6 3.0 8.2 7.9 8.2

0.8 1.9 4.2 4.4 5.4

1.0 0.8 0.5 1.9 1.8

Avg. 2.8 5.7 7.2 6.2 5.4

Max. 4.0 8.2 11.3 8.5 11.3
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· Case 2: Xjr � 0. This case gives Z P tis � atsr in
�17� while it gives Z P 0 in �16�. Even though
Xjr � 0; there exists another j0 such that
Xj0r � 1: For the pair i; j0, we have Xis � 1;
Xj0r � 1 so that Z P tis � atsr � trj0 . Hence,
Z P tis � atsr is ine�ective since trj0 P 0. �

The linearized version of p-HC2, referred to as
p-HC2LIN, is as follows:

min Z

s:t: �17�; �1�±�4�:

Note that p-HC2LIN requires n2 zero/one
variables and n3 � n2 � n� 1 constraints.

We test the computational performance of
p-HC2LIN by using 80 instances generated from
the CAB Data set corresponding to the same
combinations of �n; p; a� described in Section 2
with the additional parameter setting p � 5 which
was not included in the experimental design of
Section 2. In Table 1, we present the CPU times
reported by CPLEX 5.0 for each of the 80 in-
stances. In addition, for each �n; p� combination
we report the average and maximum CPU times
of the 5 settings of a. The last column of the same
table provides the averages and the maxima over
p for each setting of n. In addition, the maximum
reported CPU time for each setting of n is high-
lighted in bold.

As can be seen from Table 1, in comparison to
LIN3 which solves �n; p� � �15; 2� in a maximum
CPU time of 13.6 hours, p-HC2LIN solves the
same combination in a maximum CPU time of
3.5 minutes. This shows that the computational
performance of the new model is signi®cantly
better than all three linearizations of the basic
model.

This signi®cant improvement is also detected in
the larger problem sizes. For example, while the
linearizations of the basic model cannot solve the
problems with n � 15; p P 3 within the 15 hour
limit, the linearization of the new model solves
these instances in a matter of about 5 minutes.
Additionally, the 15 hour limit has not been en-
countered by the new model for the large problem
instances n � 20 and 25. For n � 20, the maximum
CPU time of the linearization of the new model is

a little over 1 hour while the average time is about
half an hour. For n � 25, the average and maxi-
mum times go up to 5.4 and 11.3 hours, respec-
tively. This shows that the exponential behavior of
the solution time becomes pronounced after
n P 20.

4. Conclusion

In this paper we focused on the p-hub center
problem which is essentially unstudied in the lit-
erature. A combinatorial formulation is provided
and its NP-Completeness is established. A com-
putational study based on 80 instances generated
from the traditionally used CAB Data is carried
out to test the computational performance of three
linearizations of the basic model provided by
Campbell (1994) and a linearized new model pro-
posed in this paper. The computational tests in-
dicate that the linearization of the new model's
performance is far more superior to the lineariza-
tions of the basic model. We also note that the
linearization of the new model results in a binary
program with n2 binary variables while the linea-
rizations of the basic model involve n4 � n2 binary
variables for LIN1 and LIN2, n2 binary and n4 real
variables for LIN3. This also shows that there are
substantial reductions in core storage requirements
in favor of the new model.
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