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Comparison of fully three-dimensional optical, normally
conducting, and superconducting interconnections

Haldun M. Ozaktas and M. Fatih Erden

Several approaches to three-dimensional integration of conventional electronic circuits have been pur-
sued recently. To determine whether the advantages of optical interconnections are negated by these
advances, we compare the limitations of fully three-dimensional systems interconnected with optical,
normally conducting, repeatered normally conducting, and superconducting interconnections by showing
how system-level parameters such as signal delay, bandwidth, and number of computing elements are
related. In particular, we show that the duty ratio of pulses transmitted on terminated transmission
lines is an important optimization parameter that can be used to trade off signal delay and bandwidth
so as to optimize applicable measures of performance or cost, such as minimum message delay in parallel
computation. © 1999 Optical Society of America
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1. Introduction

Several approaches to three-dimensional integration
of conventional electronic circuits have been pursued
recently ~see Ref. 1 and references cited therein!.

ome have claimed that these developments negate
he advantages of optical interconnections. In this
aper we compare the utilities and the limitations of
ully three-dimensional circuit layouts based on opti-
al, normally conducting, repeatered normally con-
ucting, and superconducting interconnections. We
how that, even if fully three-dimensional plain or
epeatered normally conducting interconnections are
ossible, they are still inferior to optical interconnec-
ions. Fully three-dimensional superconducting in-
erconnections, however, are comparable with optical
nterconnections.

Present-day VLSI technology is a very mature
echnology in the sense that, for a given lithographic
atterning accuracy, the interconnections on a chip
re packed almost as closely as fundamental limita-
ions would allow for. Little room for improvement
y modification of parameters such as the aspect ra-
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ios of the lines and so forth is left, since these have
lready been fairly optimized. Further reduction of
inewidths, even if achievable, are unlikely to offer
ignificant returns, because, at such linewidths, it is
ot the linewidth but heat removal and other consid-
rations that limit the size and the performance of
he chip.

What we refer to as a fully three-dimensional cir-
uit layout is best imagined as the three-dimensional
ersion of a VLSI chip. Thus a fully three-
imensional VLSI “chop,” as we might refer to it, is
ssumed to be the three-dimensional analog of a
LSI chip in the sense that active circuits and inter-
onnections can occupy and be routed through three-
imensional space with the same kind of freedom and
fficiency with which they are routed through ~sever-
l layers of ! two-dimensional space in VLSI chips.
A VLSI chop, as we have described it, may not be

easible in the near future, because there seems to be
o effective way of manufacturing it. However, for
ighly interconnected circuits, the following result is
f relevance2–5: Provided the interconnections are

permitted to be routed through three-dimensional
space, there is no disadvantage in restricting the ac-
tive devices to a plane. That is, the overall volume
and signal delay and the thus clock rate of a highly
interconnected three-dimensional system in which
the active devices are restricted to a plane will not be
inferior to a system in which the active devices can be
situated freely throughout the volume. This is be-
cause the volume and the delays in a highly intercon-
nected system are determined primarily by the space
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occupied by the interconnections so that additional
restrictions on the active devices are of little or no
significance. This result, which is based on purely
geometrical considerations, is valid for all types of
interconnection, including optical interconnections.

The above result is encouraging in that it seems to
indicate that three-dimensional chops may be man-
ufactured by use of the planar process to manufac-
ture two-dimensional chips with a large number of
wiring layers. However, it is important to realize
that a many-layered chip thus manufactured will
merit being called a fully three-dimensional chop only
if the number of layers is comparable with the num-
ber of line tracks across the horizontal extent of
the chip. Otherwise, it is merely a two-dimensional
chip with a large number of layers and will exhibit
the general properties and limitations of two-
dimensional systems. Moreover, even if the number
of layers can be as great as the number of line tracks
across the chip, it is possible that the quality ~capac-
itance, resistance, and thus speed, density, and cou-
pling! of vertically running lines may be inferior to

orizontally running lines.
An alternative approach that has been pursued is

to stack a large number of two-dimensional chips ~or
wafers! on top of one another and connect them with
a grid of regularly spaced interconnections from one
chip to another.6 Although such structures have
been referred to as three-dimensional, they are not
fully three-dimensional in the sense we have defined,
because the number of chips stacked is small com-
pared with the number of line tracks across the chips.
However, if each chip incorporates a large number of
wiring layers and if the number of chips is further
increased, it is conceivable that in the near future the
total number of layers in all chips may approach the
number of line tracks on a single chip, and thus such
systems merit being called fully three-dimensional
chops. For this, however, it will also be necessary to
ensure that the density, speed, and routability of ver-
tical lines approach that of those confined to a single
chip.

Even if unrealizable, the fully three-dimensional
VLSI chop serves as an appropriate basis for
comparison with optically interconnected systems,
because it represents the best case for normally
conducting interconnections. Since we show that
optical and superconducting interconnections both of-
fer performance that is superior to even this best
case, the difficulty in manufacturing fully three-
dimensional normally conducting chops only
strengthens our conclusion.

The above discussion also applies to repeatered
normally conducting interconnections. However,
since repeatered lines incorporate active devices,
they can be optimally utilized only if active devices
are permitted on all layers. Thus the use of repeat-
ers, which, as we will see, offers a significant perfor-
mance advantage over plain normally conducting
lines, is more demanding from a manufacturing view-
point. Given this, it is not possible to make a simple
argument in favor of one over the other. However,
1

this point will not be of concern to us, since we will
show that optical and superconducting interconnec-
tions are superior to both.

Having said this, it also seems necessary to clarify
the realizability of fully three-dimensional optical and
superconducting circuits. Fully three-dimensional su-
perconducting circuits are subject to considerations
similar to those of plain normally conducting circuits,
apart from the fact that the materials involved are
different. Thus it seems realistic to expect that sim-
ilar circuit structures can be manufactured with both
technologies. However, superconducting intercon-
nections offer performance that is clearly superior to
that of both plain and repeatered normally conduct-
ing interconnections.

Optical interconnections offer performance that is
superior to plain and repeatered normally conducting
interconnections and that is comparable with super-
conducting interconnections, if we assume similar
structural and manufacturability constraints on all
technologies. However, we can almost certainly get
closer to full three dimensionality with optical inter-
connections than with any of the other technologies;
so optics emerges as the best option.

Although most people are readily willing to accept
the fact that only optics will allow for fully three-
dimensional circuits, there is a point in more careful
justification of this as well. Our justification rests
on three points. The first point is based on the pre-
viously stated observation that there is nothing to be
lost by constraining the active devices to lie on a
plane, provided that the interconnections are able to
occupy three-dimensional space. This is important
because there does not seem to be an efficient and
practical optical architecture that can provide inter-
connections among a three-dimensional array of op-
tical sources and detectors ~although one approach is
suggested in Ref. 7!; most optical architectures pro-
ide interconnections between planes of sources and
etectors. Second, it is possible to realize arbitrary
atterns of interconnections with optical interconnec-
ions with the effective interconnection density as-
umed in the models we use below to show the
uperiority of optics.8–10 Thus the density of optical

communication is determined primarily by the den-
sity of the optical sources, modulators, or detectors.
This brings us to our third point. Currently, self-
electro-optic effect devices flip-chip bonded to silicon
chips11,12 can be spaced at least as close as 50-mm
part and perhaps even closer. Although this is
uite large compared with the size of an optical wave-
ength, in light of what is achievable today it seems
air to assume that the density of vertical connections
n three-dimensional electrical technologies will not
reatly exceed ~if they do exceed! the density of this
nd other optical technologies so that optical inter-
onnections will always allow us to construct systems
hat are comparatively closer to full three dimension-
lity.
To support our claim that optics is superior, we are

elying only on optical systems’ being at least as
hree-dimensional as normally conducting systems
0 December 1999 y Vol. 38, No. 35 y APPLIED OPTICS 7265
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~since we show that optics is superior when both are
fully three-dimensional!. However, superconduc-
tors offer performance that is comparable with optics
when both are fully three-dimensional. Thus, if
some kind of volume lithography or other technique
allows for the construction of fully three-dimensional
superconducting circuits in the future, these may
contend with optical circuits. In that case the choice
will be based on a number of factors not accounted for
in this study, such as voltage isolation, impedance
matching in the presence of multiple taps, electro-
magnetic interference, etc. Finally, we add that,
even solely on the basis of the considerations of this
study, there are a number of circumstances in which
fully three-dimensional superconducting systems
may be preferable to optical ones.

2. General Considerations

Our comparison of different interconnection technol-
ogies will be based on the trade-off relations between
the quantities S 5 1yt ~inverse signal delay or laten-
cy!, B ~bit repetition rate or bandwidth!, and N ~num-
er of devices or computing elements!. These trade-

off relations determine the largest values of S, B, and
N that are simultaneously achievable; given any two
of these parameters, we can determine the largest
value attainable by the other. Another quantity of
importance, denoted by H, is the bisection of the sys-
tem. The bisection is the number of connections
crossing an imaginary plane that divides the system
into two approximately equal parts. The bisection–
bandwidth product HB and the bisection–inverse-
delay product HS are often more meaningful
measures of performance or throughput than aggre-
gate bandwidth NB or NS. It is often appropriate to
model the dependence of the bisection on N by a
power-law expression of the form H 5 kkNp, where k
is a constant, 2y3 # p # 1 is a measure of the con-
nectivity of the system ~larger p means greater con-
nectivity!, and k is the average number of connections
per element.13 @We can let k be absorbed in the def-
inition of k but prefer not to do so. As defined, k is
iven in terms of p by k 5 ~p 2 2y3!21~p 1 1y3!21#.

Yet another interesting quantity that is of impor-
tance in certain contexts is the first-to-last bit mes-
sage delay tL 5 t 1 LyB, where L is the bit length of
a message ~for definitions of all symbols used, please
see Appendix A!.

We assume that the system consists of N primitive
elements or devices each of size dd, arrayed in the
form of a three-dimensional N1y3 3 N1y3 3 N1y3 grid.
The grid spacing will be denoted by d and the linear
extent of the system by + 5 N1y3d. We further as-
sume that there is an average of k connections per
element and that the average length of each connec-
tion in grid units is r#. Each logical connection may
be realized with x $ 1 physical interconnections to
increase the bandwidth B.

Heat-removal considerations imply that a system
dissipating a total power 3 must have a minimum
cross-sectional area of at least 3yQ, where Q is the
maximum amount of power that can be removed per
266 APPLIED OPTICS y Vol. 38, No. 35 y 10 December 1999
unit area. This implies that the linear extent of
the system + be at least + 5 ~3yQ!1y2.

Three basic considerations apply to all interconnec-
tion media. The total volume occupied by the ele-
ments is Ndd

3. The total volume occupied by the
nterconnections is kxNr#dW2, since kxN is the total

number of physical connections, r#d is their average
length in physical units, and W2 5 A is the cross-
ectional area of an interconnection. Heat-removal
onsiderations imply a volume of at least ~3yQ!3y2 5

~kNBEyQ!3y2, where E denotes the energy per trans-
mitted bit, since there are kN connections, each dis-
sipating power BE. Thus the linear extent of the
system + 5 N1y3d must satisfy

+3 5 Nd3 5 max@dd
3N, kxr#W2Nd, ~kEByQ!3y2N3y2#.

(1)

It is known that the bisection and the average con-
nection length of a system are closely related. If the
bisection can be modeled as kkNp, then the average
connection length is r# 5 kNp22.13 Inserting this into
the above, we obtain

+ 5 N1y3d 5 max@ddN
1y3, ~kxk!1y2WNpy2, ~kEByQ!1y2#.

(2)

urther progress requires the introduction of physi-
al interconnection models, which we do below.

3. Interconnection Models

The interconnection models used are summarized in
Tables 1–4 below. Their justification and derivation
have been given elsewhere2 ~also see Refs. 15 and 16
for further references!. These models are simply re-
ations between the external parameters of intercon-

nections, which are

1. Interconnection length l.
2. Cross-sectional area A or transverse linear ex-

tent W, where A 5 W2. These parameters define
packing density and thus include any necessary line-
to-line separations.

3. Signal delay t, which is given by the greater of
the propagation delay Tp and the minimum temporal
pulse width T, which in turn is the greater of a line-
imposed component Tl and a device-imposed compo-
nent Td:

t 5 max~Tp, T!, T 5 max~Tl, Td!.

4. Minimum pulse repetition interval Tr, which is
usually equal to T, the minimum temporal pulse
width along the interconnection

Tr 5 T.

5. The energy per transmitted bit, E.

The relationships in Tables 1–4 represent a full char-
acterization of the physical properties of the intercon-
nections, as far as this study is concerned. All other
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Table 1. Optical Interconnection Modela when T < T < T

T
w

d Inte

el wh
internal parameters that are commonly used to char-
acterize such lines, such as transverse aspect ratio,
capacitance, resistance, etc., are assumed to be set ~at
east approximately! to their optimal values in the
erivation of these models and thus do not appear in
hese models.

For optical interconnections ~Table 1! the cross-
ectional area is taken to be proportional to the wave-
ength squared: A 5 W2 5 ~ f l!2, where the
onstant f can be as small as ;1 for a diffraction-
imited system but may be larger in practice. ~It is
mportant to note that for certain classes of optical
nterconnection architectures, which we collectively
efer to as multifacet architectures, f is not a constant
ut increases with N. Such architectures are clearly

l d p

W t T 5 Tr E

f l 5 constant lyc Td5constant constant

aThe delay t 5 Tp is a function of length l only. The pulse width
5 Td and the energy E are assumed independent of length l and
idth W.

Table 2. Normally Conducting Interconnection Modela when Td < Tl

t T 5 Tr E Termination

W2 # 16revl 16re
l2

W2 16re
l2

W2 2eV2l no

W2 $ 16revl
l
v

16re
l2

W 2 2eV2vT yes

aThe delay t 5 max~T, Tp!, pulse width T 5 max~Tl, Td!, and
energy E are given as functions of length l and width W. Tp 5 lyv
is the propagation delay. The final column indicates whether the
line is to be terminated in that region.

Table 3. Repeatere

t

W # 4SrR0C0

m D 1y2

4~R0C0re!1y2 l
W R0C

W $ 4SrR0C0

m D 1y2

=me l R0C

The delay t, pulse width T, and energy E are given as functions o
of the line are to be terminated in that region.

Table 4. Superconducting Interconnection Mod

t T

W #
4V

JscÎmye

16eVlp

Jsc

l
W 2

16
J

4V

JscÎmye
# W # 4lp

4lp

v
l

W Td 5

W $ 4lp

l
v Td 5

The delay t 5 max~Tp, T!, pulse width T, and energy E are giv
whether the line is to be termianted or not in that region.
1

ndesirable. See Refs. 7–10 for further discussion.!
he signal delay is taken to be the greater of the
peed-of-light delay and the device rise time: t 5
ax~lyc, Td!. Since the effects of dispersion and at-

tenuation can be made small for the length scales in
consideration, T 5 Tr and E are assumed to be con-
stants. This model is valid for free-space intercon-
nections as well as guided-wave interconnections,
although the value of f can be much smaller with
free-space interconnections.8

In Table 2 we see the relationships tying the
length, cross-sectional area, delay, and energy for
normally conducting lines for the case Td # Tl. The
symbols r, e, m, and v 5 ~em!21y2 denote the resistivity
of the conductor, permittivity and permeability of the
dielectric, and propagation velocity in the dielectric,
respectively. V denotes the nominal voltage level.
What is unique to our model is that it intrinsically
accounts for the proper scaling effects that are due to
the skin effect and deals with unterminated RC lines
and transmission lines in a unified manner. One
conclusion that may be derived on careful inspection
of our model is that the use of many narrow lines is
not more beneficial than a single wide line in terms of
increasing information density. ~Use of a single
wide line amounts to setting x 5 1.! Yet another
conclusion is that it is beneficial to photographically
scale down interconnection-density-limited layouts
until we are in the unterminated region. After this,
further reduction in scale does not further improve
system signal delay. ~This conclusion is related to a
well-known argument stating that the rise time of a
RC line remains constant when all of its dimensions
are downscaled.!

The use of active repeater devices along the line
changes the relationship for delay versus linewidth

rconnection Modela

Tr E Termination

onstant 2eV2l no

onstant 8eV2SrR0C0

m D 1y2 l
W yes

th l and width W. The final column indicates whether the stages

en Td < Tp ~Td < Tl in the Unterminated Case!a

r E Termination

l
W 2 2eV2l no

tant 2Îe

m
V 2 W

4lp
Td yes

tant 2Îe

m
V 2Td 5 constant yes

s functions of length l and width W. The final column indicates
T 5

0 5 c

0 5 c

f leng
5 T

eVlp

sc

cons

cons

en a
0 December 1999 y Vol. 38, No. 35 y APPLIED OPTICS 7267
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as shown in Table 3. R0C0 denotes the intrinsic
elay of the repeating devices. The optimal number
f repeaters ~which may be zero! is used at optimal
pacings for each line.17

Table 4 is for superconducting lines. Our models
take into account the proper scaling effects associated
with the superconducting penetration depth lp and
the critical current density Jsc. A conclusion that
can be derived on careful examination of the table is
that for wire-limited layouts it is optimal to scale
down the system until we are in the intermediate
region ~the second line of the table!.

We will assume the following in our numerical ex-
amples: f l 5 10 mm, c 5 3 3 108 mys, Td 5 100 ps,

5 1 pJ, V 5 1 V, r 5 0.0274 V mm ~aluminum!, e 5
.9 3 8.85 3 1023 fFymm ~silicon dioxide!, m 5 4p 3

1027 Hym ~nonmagnetic materials!, v 5 1.52 3 108

mys, R0C0 5 100 ps, lp 5 0.2 mm, and Jsc 5 50
mAymm.

4. Analysis

A. Optical Interconnections

In the case of optical interconnections, W and E are
aken as constants. Assuming that Td does not dom-

inate the propagation delay S 5 1yt 5 1y~lyc! 5
1y~+yc! 5 cy+, the trade-off relation between S, B,
and N is obtained from Eq. ~2! as

1
S

5
1
c

max@ddN
1y3, ~kxk!1y2~ f l!Npy2, ~kEByQ!1y2N1y2#,

x 5 max~1, BTd!. (3)

Clearly, we choose x to be equal to By~1yTd! when this
atio is greater than 1 to support that value of B, but

of course we cannot have less than one channel even
if this ratio is less than 1. This relationship defines
a surface in the three-dimensional parameter space
defined by S, B, and N. By examining this relation-
ship, we can tell the price we have to pay in terms of
a decrease in one or two of these parameters to in-
crease the remaining one~s!. Note that there are
several regions that might be referred to as the
element-size-limited region ~when the first term dom-
inates!, the interconnection-density-limited region
~when the second term dominates!, and the heat-
removal-limited region ~when the third term domi-
nates!.

B. Normally Conducting Interconnections

Unlike with optical interconnections where W is con-
stant, with normally conducting interconnections we
are free in choosing W, provided it exceeds a certain
minimum manufacturable value Wmin. If dd is small
and heat removal is not an issue, we would prefer to
set W to this minimum so as to make d and the
overall system as small as possible. However, the
minimum manufacturable value of W is not the only
determinant of how small the system can be made.
If element size or heat removal require that we set
+3 5 Nd3 . kNr#dWmin

2, we will agree to increase W
268 APPLIED OPTICS y Vol. 38, No. 35 y 10 December 1999
until Nd 5 kNr#dW . ~If d and hence the lengths of
the lines are already set by factors other than inter-
connection density, we increase W so as to fill up
available space. In this way we reduce the resis-
tance of the lines as much as possible. Keeping the
lines narrow while we have extra space around is
clearly suboptimal.! We also assume that device de-
lays Td are small so that T 5 Tl.

Thus, using d2 5 kr#W2, l 5 + 5 N1y3d, and the
interconnection model, we obtain

T 5 ~16re!~kr#!N2y3, (4)

and the maximum value of B satisfies B 5 1yT or

BNp 5 ~16re!21~kk!21, (5)

an expression in which S does not appear. By defi-
ition, S 5 1yt may never exceed 1ymax~Tl, Td, Tp! 5
ymax~Tl, Tp! 5 1ymax~T, Tp!. Thus the above re-

lation for B may be used to find S 5 1ymax~1yB, Tp!
5 min~B, 1yTp!. From Table 2 we see that the con-
dition for Tp , T is W2 , 16revl. As we scale down
the system photographically, all linear dimensions
are decreased in proportion. Thus, below a certain
critical W, this condition is satisfied so that propaga-
tion effects need not be considered, and we have en-
sured that S is not worse than B.

However, a number of factors may be an impedi-
ment to downscaling. First, our lithographic accu-
racy may not enable us to pattern lines sufficiently
fine. This is not an issue with the availability of
submicrometer scaling. Second, the system cannot
be made smaller than dictated by the size of the
elements N1y3dd. This is also not a limitation in
highly connected systems with a large number of el-
ements. Finally, heat-removal limitations may pre-
vent us from scaling the system down sufficiently.

For typical parameter values two-dimensional lay-
outs may be downscaled to the extent that propaga-
tion effects need not be considered on the longest line
~i.e., Tp 5 lyv , T! so that S is simply equal to B.2 To
understand this, note that T does not depend on the
scale of the system as measured by the value of the
grid spacing d. However, the propagation delay
along the longest line Tp 5 N1y3dyv depends linearly
on d. Thus, as we downscale the system by reducing
d, eventually Tp will fall below T, and Tp will not be
a limiting factor in determining t and S. This may
not be possible for three-dimensional layouts, espe-
cially for room-temperature voltages. This is be-
cause we cannot downscale the system below a
certain value of d and still be able to remove the
dissipated heat. Thus the propagation delay Tp may
remain larger than T, and thus the value of S may be
quite less than the value of B. This is the essential
qualitative difference between two-dimensional sys-
tems and three-dimensional systems.

Now we give a complete analysis of the effects of
heat removal, enabling us to determine the scale of
the system as set by heat-removal considerations.
We will assume that pulses of identical temporal
width are launched into all lines regardless of their
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length. Thus the minimum value of this pulse width
is set by the longest connection. ~In principle, there
is nothing that stops us from launching shorter
pulses into the shorter lines, resulting in some energy
savings. The following analysis may be modified for
this case if such an approach is deemed practical.!
The minimum pulse width for the longest line is
given by

T 5 ~16re!
l2

W2 , (6)

with l 5 +. The above expression for T is indepen-
dent of the scale of the system. This is because both
l and W will change by the same factor when the
ystem is scaled. Pulses of this duration are emitted
nto lines of all lengths. According to our intercon-
ection model, the shorter lines, for which T $ Tp,

will be left unterminated, whereas the longer lines,
for which T , Tp, will be terminated. ~On termi-
nated lines, several pulses of length T might simul-
taneously be in transit along the line.! Let us denote
the break-even length for termination ~in grid units!
s rx. Thus lines for which rxdyv # T will be left

unterminated and those for which rxdyv . T will be
terminated. If the length N1y3d of the longest line in
our system satisfies N1y3d # Tv, all lines will be
unterminated.

The problem is that initially we do not know d,
which depends on the total power dissipated, which
in turn depends not only on d but also on what frac-
tion of the lines are unterminated. Let us assume
initially that N1y3d # Tv so that all lines are unter-
minated. Then the average energy per bit is given
by 2eV2r#d, the power dissipation by 2eV2r#dB, and the
otal power dissipation by kN2eV2r#dB. This must
e less than the cross-sectional area of the system
2y3d2 times Q. Thus

d $
2eV2kkNp21y3B

Q
. (7)

Now, if indeed N1y3d # Tv, justifying our assump-
ion, we are done and d is given by relation ~7!. If
ot, this means that some of the longer lines will be
erminated, for which the energy per bit is given by
eV2vT. Then the total power consumption and
eat-removal condition may be expressed in terms of
piecewise integral

QN3y2d2 $ F*
1

rx

2eV2rdg~r!dr 1 *
rx

N1y3

2eV2vTg~r!drGB,

(8)

where g~r! is the line-length distribution,2,3 given ap-
proximately by g~r! ' ~2dydr!@kr3~p21!~1 2 r3yN!# for
he analytical form of the bisection we have assumed.
he first integral represents the power dissipated on

he unterminated lines, and the second represents
1

he power dissipated on the terminated lines. Eval-
ating the above, we find

Qd2 $ N1y3k@2eV2krx
3p22d 1 2eV2vTrx

3~ p21!z#B, (9)

where z # 1 is a factor whose exact form will not be
important. Now, using rx 5 vTyd, it is possible to
solve for d as

d3p21 $
2eV2~vT!3p22kkN1y3B

Q
, (10)

where, since z # 1, we replaced k 1 z . k with little
error. Note that this expression forms continuity
with relation ~7! at N1y3d 5 vT. Thus, combining
the two expressions, we may write the minimum in-
terelement spacing d as set by heat removal in the
form

d 5 minH2eV2kkNp21y3B
Q

,

F2eV2~vT!3p22kkN1y3B
Q

G
1

3p21J . (11)

The virtue of this equation is that it combines com-
pactly all possible cases. Finally, the signal delay is
given by 1yS 5 max~N1y3dyv, N1y3ddyv, T!.

C. Repeatered Interconnections

First, assume that element size and heat removal
need not be considered. Using t 5 4~R0C0re!1y2lyW,
l 5 N1y3d, and d2 5 kxr#W2, we obtain

SNpy2 5 @4~R0 C0re!1y2#21~kxk!21y2,

x 5 max~1, BR0 C0!, (12)

where we assumed that the system has been down-
scaled sufficiently so that W # 4~rR0C0ym!1y2. This
relation is similar to the corresponding relation for
optical communication in form @the second term of
Eq. ~3!#.

Equation ~12! is scale independent when W #
~rR0C0ym!1y2, as we have assumed to be the case
W # 5 mm for the assumed parameter values!.

hen element size is accounted for, S is given
y the minimum predicted by Eq. ~12! and 1yS 5
meN1y3dd.
When heat-removal considerations are taken into

account, it may be the case that it is not possible to
downscale the system so that W # 4~rR0C0ym!1y2.
In this case it is possible to show that the minimum
value of d is given by

d 5 minH2eV2kkNp21y3B
Q

, F8eV2~rR0 C0ym!1y2

Q G1y2

3 x1y4~kk!3y4N3py421y3B1y2J . (13)

Thus the resulting delay is the greater of =meN1y3d
ith d given above, =meN1y3dd, and that given by Eq.

~12!.
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D. Superconducting Interconnections

As with normal conductors, we agree to choose W so
that the condition d2 $ kxr#W2 is always satisfied
with equality. Mostly we will be at an advantage
~because of the inverse dependence of t on W for given
!, and never at a disadvantage, by doing so.
When we refer to Table 4, some reflection reveals

that if dd is small and heat removal need not be
considered, it is optimal to work in the intermediate
region, assuming we can manufacture W # 4lp. ~To
see this, note that, as we scale the system photo-
graphically, l varies in linear proportion to W.! As-
uming Td is small, an analysis similar to that for

repeaters results in

SNpy2 5 S v
4lp

D~kxk! 2 1y2,

x 5 max~1, BTd!. (14)

This relation is independent of the specific choice of
W, provided that it lies between 4Vy~Jsc=mye! and
4lp.

Heat removal has no effect on performance unless
t requires that d be large enough that W $ 4lp. The

analysis and the results are similar to the optical case,
provided that we replace the energy E4 2V2=eymTd:

1
S

5
1
v

max@ddN
1y3, ~kxk!1y2~4lp!N

py2,

~k2V2Îeym TdByQ!1y2N1y2#,

x 5 max~1, BTd!. (15)

f low voltage values are used, this energy can be
uch less than ever achievable with optical intercon-

ections.

5. Comparisons

A. Qualitative Comparisons

For optical and superconducting interconnections
there is no upper limit to B for any value of N. One
can simultaneously choose N and B arbitrarily large.

hus one can also increase the bisection–bandwidth
roduct HB 5 kkNpB arbitrarily, at the expense of
reater signal delay ~smaller S!. The value of S cor-

responding to a given value of B and N may be found
rom Eq. ~3! or Eq. ~15!. A particularly simple trade-
ff between bisection–bandwidth product HB and S
s obtained when interconnection density is the dom-
nating consideration ~the second term in Eq. ~3! or
q. ~15!#:

S~HB!1y2 5 constant. (16)

The bisection–inverse-delay product HS can also be
etermined from Eq. ~3! or Eq. ~15!. Assuming dd is

small, we can show

HS }
Np21y2

B1y2 , (17)
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from which we see that this measure of performance
can also be increased without bound.

For normally conducting interconnections, B is re-
lated to N through Eq. ~5! so that, for a given value of
N, it is not possible to increase B beyond that dictated
by this equation. This is in contrast with the optical
and the superconducting cases where B could be ar-
bitrarily increased. Any attempt at increasing B by
using wider lines or x . 1 parallel channels is
thwarted by the increase in line lengths, since T }
l2yW2. We further see that the bisection–
bandwidth product is a constant and cannot be in-
creased beyond a certain value:

HB 5 constant. (18)

Thus even when we assume very fast devices ~Td neg-
igible!, negligible element size dd, arbitrarily small

manufacturable linewidths Wmin, a fully three-
dimensional layout, and ignore the effects of heat re-
moval, we still find that there is a fundamental upper
limit to the bisection–bandwidth product for nor-
mally conducting interconnections.

We have seen that, because heat removal may not
allow for such systems to be scaled down sufficiently,
the inverse delay S may be even smaller than B.
Thus the bisection–inverse-delay product HS may be
ven more inferior than the bisection–bandwidth
roduct HB. The use of normal conductors is inhib-
tive for applications for which these products are
uitable figures of merit.
The behavior of repeatered systems is similar to

hat of optical and superconducting systems, when
eat removal is not considered. However, the situ-
tion is worse when heat removal is considered. We
efer to Eq. ~13!, which accounts for the effects of heat
emoval. For large N and B, the second term in this
quation will be applicable so that d } r#3y4B3y4N1y6,

which is larger than d } r#1y2B1y2 dictated by intercon-
nection density considerations. Thus the resulting
growth rate of signal delay becomes t } r#3y4B3y4N1y2,
which is worse than t } B1y2N1y2, which we found in
the optical case. For given B the growth rate of the
bisection–inverse-delay product is then found to be

HS } Npy4, (19)

which is inferior to the optical HS } Np21y2 ~since p .
y3!. If we do not terminate each stage of the repeaters
ndividually and charge up the segments, as would most
ikely be the case in practice, then the first term in Eq.
13! becomes applicable so that t } r#BN2y3. In this case

we find that, for given B, the bisection–inverse-delay
product is bounded from above and cannot be increased
with increasing N, an inhibiting situation.

B. Quantitative Comparisons

There are many ways to present quantitative com-
parisons of S–B–N surfaces for different interconnec-
tion media. First, we will plot S as a function of N
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for the four media, with B set to the largest value
allowed for by normally conducting interconnections
for each value of N @as given by Eq. ~5!; For the three
other media, B can be specified independently.
However, since this is not the case for normal con-
ductors, choosing B in this manner allows for a fair
comparison of the values of S that correspond to the
same values of N and B.# S, B, and N are related by
Eq. ~3! for optics and by Eq. ~15! for superconductors.
For repeaters the relation between S, B, and N is
calculated as described by the comment following Eq.
~13!. For normal conductors S is determined as a
function of N as described by the comment following
Eq. ~11!. We see in Fig. 1 that the decrease of S with
increasing N occurs more slowly with optical and
superconducting interconnections so that they are su-
perior for larger values of N. For lower values of N,
repeatered interconnections may offer superior or
comparable values of S.

On comparison of the coefficients of Eq. ~12! and
the second term of Eq. ~3!, we see that repeaters are
comparable with optics in terms of interconnection
density considerations, but the picture changes when
heat-removal considerations are accounted for.

We also note that Eq. ~15! is identical in form to Eq.
~3! derived for optical interconnections. The numer-
ical factors are also comparable, as is also evident
from Fig. 1. We stress that, despite the similarity of
the final relations, the physics involved is quite dif-
ferent. The scale of the optical system is fixed,
whereas the scale of the superconducting system may
be reduced, resulting in much smaller system size
~this does not result in greater performance though,
since the reduction in line lengths is precisely can-
celed by the inverse dependence of the delay on W.!

An alternative comparison is provided in Fig. 2,
whose four panels each correspond to a different ~con-
stant! value of B, constituting sections of the S–B–N

Fig. 1. Comparison of optical ~solid curve!, normally conducting
~dashed curve!, repeatered ~dotted–dashed curve!, and supercon-
ducting interconnections ~dotted curve!. We take k 5 5, p 5 0.8,
Q 5 10 Wycm2 and assume dd, Td, and Tr to be small enough to

ave no effect.
1

space. The comments made for the previous figure
hold in this case as well. Note, however, that the
curve for normal conductors terminates at a certain
value of N, reflecting the fact that information cannot
be transmitted at the indicated value of B beyond
that value of N, regardless of the value of S.

We have also examined the effect of reducing the
nominal voltage value V from 1 V down to 0.1 and 0.01
V, which may be possible at lower temperatures ~the
improvements saturate near the lower level, and fur-
ther improvements are not obtained for even lower
voltages!. Since the energy dissipation for the three
conducting technologies will also be consequently re-
duced, this is expected to alter the comparison in favor
of these technologies. From Fig. 3 we see that this is
indeed the case, especially for higher values of B for

hich the dissipated power is higher. All three con-
ucting technologies are able to offer much higher val-
es of S; however, the curve for normal conductors still
erminates at a certain value of N: The fact that in-
ormation cannot be transmitted at the indicated value
f B beyond that value of N is not based on heat-

removal considerations and so is not alleviated by a
reduction of the voltage level. Reduction of the volt-
age level makes superconductors look especially at-
tractive. It is important to note that in this figure we
have assumed the reduction in voltage to have no effect
on optical interconnections. However, it is likely that
a reduction of temperature and voltage will also reduce
the energy per transmitted bit for optics. If the reduc-
tion in energy is, for instance, 10, the curves for optics
should simply be moved upward by =10 in Fig. 3.

Finally, we discuss the effect of varying p. Choosing
arger values of p favors optics and superconductors,
hereas choosing lower values of p has the opposite ef-

ect. The values of p for problems requiring global in-
ormation flows, such as sorting, permutation and
nterconnection networks, discrete Fourier transforms,
nd global filtering, are usually close to unity. In other
ords, the bisections are proportional to N. The value
f p 5 2y3 represents complete locality in three dimen-
ions. The value p 5 0.8 used in our numerical exam-
les thus represents an intermediate value.

C. Optimal Operating Point on the S–B–N Surface

In Fig. 1 we set B to its largest possible value for
normal conductors, as determined by Eq. ~5!. Of
course, it is not necessary to transmit bits along the
lines at this maximum possible rate; one can transmit
bits at lower rates as well ~as is the case in Fig. 2!.
Referring back to Eq. ~11!, we see that if we choose B
to be smaller, d will be smaller, resulting in larger
values of S. Thus we see that there is a trade-off
between S and B. If we set B to its largest possible
value of B 5 1yT, this will result in a particular value
of S, as shown above. However, by choosing B to be
smaller ~i.e., by operating at a smaller duty ratio!, we
can reduce power dissipation, pack the elements more
densely ~i.e., reduce d!, and thus decrease propagation
delays, resulting in a larger value of S. ~There is no
purpose in reducing B beyond a certain extent, how-
ever, since once the scale of the system is reduced to
0 December 1999 y Vol. 38, No. 35 y APPLIED OPTICS 7271
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the extent that all lines become unterminated, further
reduction in scale will not improve S. There is an
upper limit to both quantities S and B regardless of the
ther; however, they can be traded off for each other
ver a certain range.! Given any optimization func-
ion involving B and S, we can find the optimum duty
atio and the associated values of S and B.

As a first example, let us assume that we would like
o maximize S 5 B ~that is, maximize S and B under
he constraint that they are equal!. This optimiza-
ion function might be appropriate for a synchronous
ystem whose clock rate is set by the signal delay
long the longest connection. The duty ratio will be
enoted by x # 1 so that the bit repetition rate may
e expressed as B 5 xyT. In Fig. 4~a! we plot the
ptimum duty ratio x that maximizes S 5 B. We
bserve that rather small duty ratios are optimal for
wide range of N.
A similar trade-off between S and B exists for the

ther interconnection media as well. Figure 4~b!
hows the resulting comparison of the four media

Fig. 2. Comparison of optical ~solid curve!, normally conducting
conducting interconnections ~short-dashed curve!. We take k 5 5
to have no effect. ~a! B 5 10 Mbitys. ~b! B 5 100 Mbitys. ~c! B
272 APPLIED OPTICS y Vol. 38, No. 35 y 10 December 1999
hen the duty ratio is chosen such that S 5 B is
aximized. Despite the fact that the asymptotic su-

eriority of optical and superconducting interconnec-
ions remains and similar break-even values are
bserved, the performance offered by repeatered in-
erconnections is much more comparable with that
ffered by optics and superconductors in this exam-
le. The major strength of optics and superconduc-
ors is their ability to provide large values of N and B
imultaneously with minimal sacrifice in terms of S.
hus their superiority is less pronounced when S is
mphasized as strongly as or more strongly than B.
We now consider a second example. In certain

arallel computing contexts, it is the case that one
esires to minimize the first-to-last bit communica-
ion latency tL of L bit messages, given by

tL 5 t 1
L
B

5
1
S

1
L
B

. (20)

-dashed curve!, repeatered ~long–short-dashed curve!, and super-
0.8, Q 5 10 Wycm2 and assume dd, Td, and Tr to be small enough
Gbitys. ~d! B 5 10 Gbitys.
~long
, p 5

5 1



c

1

The trade-off relations we have derived between S
and B allow us to find the optimum operating point
resulting in the smallest value of tL and also to
ompare the resulting values of tL for the different

media. The results are shown in Fig. 5. Although
this example does not add significant new informa-
tion with regard to the comparison of the technolo-
gies, it serves to illustrate the usefulness of our
models and analysis in obtaining quantitative re-
sults.

An alternative discussion of related issues may be
found in Refs. 18 and 19.

6. Conclusions

In this paper we have compared hypothetical fully
three-dimensional normally conducting, repeatered
normally conducting, superconducting, and optical
systems. We find that optical and superconducting
interconnections are comparable with each other and
superior to the others. Since optics seems to allow

Fig. 3. Comparison of optical ~solid curve!, normally conducting
conducting interconnections ~short-dashed curve!. Similar assum
0.1 V; ~b! B 5 100 Mbitys, V 5 0.01 V; ~c! B 5 10 Gbitys, V 5 0.1
~long-dashed curve!, repeatered ~long–short-dashed curve!, and super-
ptions are made as in the previous figures. ~a! B 5 100 Mbitys, V 5
V; ~d! B 5 10 Gbitys, V 5 0.01 V.
1

Fig. 4. Comparison of optical ~solid curve!, normally conducting
~dashed curve!, repeatered ~dotted–dashed curve!, and supercon-
ducting interconnections ~dotted curve! when S 5 B is maximized.
Similar assumptions are made as in the previous figures, but Td 5
00 ps. ~a! Optimum duty ratio. ~b! Resulting S 5 B versus N.
0 December 1999 y Vol. 38, No. 35 y APPLIED OPTICS 7273
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us to approach full three dimensionality more closely,
it represents the most superior option.

It is important to understand that none of the in-
terconnection media we have considered enables con-
tinual reduction of signal delay by downscaling.
~Optical interconnections cannot be downscaled, and
all kinds of conducting interconnections exhibit an
inverse dependence of delay on linewidth, below a
certain linewidth.!

In discussing the limitations of conducting inter-
connections, we allowed for arbitrarily small scaling
and arbitrarily fast devices. We saw that normal
conductors, whether terminated or not, did not allow
for B to be kept constant with increasing system size
~which is possible with the other media!. Both B
nd S were found to decrease sharply with increasing
. The bisection–inverse-delay and bisection–
andwidth products were found to be bounded from
bove. This is in contrast to the other media with

Fig. 5. Comparison of optical ~solid curve!, normally conducting
conducting interconnections ~short-dashed curve! when tL is mini
Td 5 100 ps. ~a! Optimum duty ratio for L 5 10. ~b! Resulting
Resulting tL

21 versus N for L 5 100.
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hich it is possible to arbitrarily increase B and the
isection–bandwidth product for any given N.
Repeaters are inferior to optics and superconduc-

tors, since they result in faster growth of signal delay
and slower growth of the bisection–inverse-delay
product with increasing N.

Optical and superconducting interconnections
lead to similar performance for similar communica-
tion energies. Although superconducting layouts
may be much smaller than optical layouts, they do
not result in smaller delay because of the inverse
dependence of delay on linewidth, once conductor
thickness drops below the penetration depth. Op-
tical interconnections may allow us to more closely
approach full three dimensionality and offer free-
dom from termination problems. Superconductors
may offer much lower energies, especially if the
voltage level is reduced. This in turn might enable
reduction of signal delay.

-dashed curve!, repeatered ~long–short-dashed curve!, and super-
. Similar assumptions are made as in the previous figures, but
versus N for L 5 10. ~c! Optimum duty ratio for L 5 100. ~d!
~long
mized
tL

21



2. H. M. Ozaktas and J. W. Goodman, “The limitations of inter-
Appendix A: Definitions of Symbols Used

S inverse signal delay 5 1yt,
B bit repetition rate ~bandwidth!,
N number of devices or elements,
H bisection of the system 5 kkNp,

HB bisection–bandwidth product,
HS bisection–inverse-delay product,

k average number of connections per element,
p system connectivity measure ~Rent exponent!,
k 5 ~p 2 2y3!21 ~p 1 1y3!21,

dd linear size of each device or element,
d grid ~lattice! spacing of the layout,
+ linear extent of the system 5 N1y3d,
r length of an interconnection in grid units ~dimen-

sionless!,
r# average connection length in grid units 5 kNp22y3,
x number of physical interconnections per logical con-

nection,
3 total power dissipated by the system,
Q maximum amount of power that can be removed per

unit area,

l length of an interconnection in physical units 5 rd,
W transverse linear extent of an interconnection,
A cross-sectional area of an interconnection 5 W2,
t signal delay ~latency! 5 max~Tp, T!,

Tp propagation delay along an interconnection,
T minimum temporal pulse width 5 max~Tl, Td!,
Tl line-imposed component of T,
Td device-imposed component of T,
Tr minimum pulse repetition interval, usually 5 T,
E energy dissipated per transmitted bit,

Wmin minimum manufacturable value of W,

l optical wavelength,
c speed of light in free space,
f effective f-number of optical interconnection sys-

tem,
r resistivity of conductor,
e permittivity of dielectric,
m permeability of dielectric,
v propagation velocity in dielectric,
V nominal voltage level,

R0C0 intrinsic delay of a repeater,
lp superconducting penetration depth,

Jsc superconducting critical current density.
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