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Constructing Convex Directions for Stable Polynomials

A. Bülent Özgüler

Abstract—New constructions of convex directions for Hurwitz-stable
polynomials are obtained. The technique is based on interpretations of
the phase-derivative conditions in terms of the sensitivity of the root-locus
associated with the even and odd parts of a polynomial.

Index Terms—Convex direction, polynomials, robust control, stability.

I. INTRODUCTION

A polynomial p(s) is called aconvex direction (for all Hurwitz
stable polynomials of degreen) if for any Hurwitz stable polynomial
q(s) the implication

q + p is Hurwitz anddeg(q + �p) = n 8� 2 [0; 1]

) q + �p is Hurwitz 8� 2 (0; 1)

holds. Rantzer in [12] has shown that a polynomialp(s) is a convex
direction if and only if it satisfies thephase growth condition [12],
[1]

 
0

p(!) �
sin(2 p(!))

2!
8! > 0 (1)
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whenever p(!) := arg p(j!) 6= 0. Condition (1) is in a sense a
complement of the phase increasing property of Hurwitz stable poly-
nomials: For a Hurwitz stable polynomialq(s) the rate of change of
the argument satisfies

 
0

q(!) �
sin(2 q(!))

2!
8! > 0 (2)

where the inequality is strict ifdeg q(s) � 2. Property (2) also given
in [12] seems to be known in network theory as pointed out by [2]
(see also [7] for a proof based on Hermite-Biehler theorem and [8] for
related growth conditions). The phase growth condition directly gives
that: i) anti-Hurwitz polynomials; ii) polynomials of degree one; iii)
even polynomials; iv) odd polynomials; and v) any multiple of poly-
nomials from i)–iv) (taken one from each set) are examples of convex
directions for the entire set of Hurwitz polynomials.

There are various reasons for studying the phase growth condition
and convex directions in more depth. First, verifying the condition re-
quires checking the nonnegativity of a nonlinear function of frequency
at all frequencies, limiting the verification to graphical methods.
Second, there has been little success in enlarging the class ofRantzer
polynomials (i.e., convex directions) given in i)–v); see [3] and [9].
Third, the nature of Rantzer polynomials needs to be understood at
least as well as the nature of Hurwitz stable or anti-Hurwitz polyno-
mials. Finally, progress onlocal convex directions seems to require
a better understanding of the phase growth condition of Rantzer and
the related phase conditions as pointed out in [5]. The local problems
are still not sufficiently investigated despite the existence of some
geometric criteria such as in [5] or a combinatorial check as in [11].

Below, we examine the phase growth condition from a new perspec-
tive. The point of departure is a new interpretation of the phase in-
creasing property of a Hurwitz polynomial in terms of the “sensitivity”
of some component root-loci associated with the even and odd parts of
the polynomial. This clarifies the exact relation of the phase increasing
property to the property of Hurwitz stability. The phase growth condi-
tion of Rantzer is then restated in terms of the sensitivity of the com-
ponent root-loci in Lemma 2. It is then shown in Theorem 1 that the
real negative roots of the even and odd parts of a Rantzer polynomial
must be interlacing with odd multiplicities. This is a “positive pair”
type of property. Finally, various techniques of construction of convex
directions are obtained. Corollaries 1 and 2 show that a new convex di-
rection can be obtained from a given convex direction by the addition of
a real negative zero or a complex pair of zeros to its even (or, odd) part
provided the sensitivity of the component root-loci are bounded from
below at certain frequencies. The results demonstrate that the sensitiv-
ities of component root-loci are basic tools in characterizing Hurwitz
stability as well as the property of being a convex direction.

II. HURWITZ STABLE POLYNOMIALS

LetR[s] denote the set of polynomials ins with coefficients in the
field of real numbersR. Givenq 2 R[s], the even–odd parts(h; g) of
q(s) are the unique polynomialsh; g 2 R[u] such thatq(s) = h(s2)+
sg(s2). The even–odd parts of a polynomial and the real and imaginary
parts ofq(j!); ~h(!) := Refq(j!)g and~g(!) := Imfq(j!)g, are re-
lated by~h(!) = h(�!2); ~g(!) = !g(�!2). Note thatq(s) is an
even (respectively, odd) polynomial ofs if and only if g = 0 (respec-
tively, h = 0). A necessary and sufficient condition for the Hurwitz
stability ofq in terms of its even–odd parts(h; g) is known as the Her-
mite-Biehler theorem which is based on the following definition.

A pair of polynomials(h(u); g(u)) is said to be apositive pair[4,
Section XV, 14] ifh(0)g(0) > 0, the rootsfuig of h(u) andfvjg of
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g(u) are all real, negative, simple, and withk := deg h andl := deg g
either i) or ii) holds:

i) k = l and0 > u1 > v1 > u2 > v2 > � � � > uk > vl;
ii) k = l+ 1 and0 > u1 > v1 > u2 > v2 > � � � > vl > uk.

The Hermite-Biehler theorem, [4], states: A polynomial q(s) is
Hurwitz stable if and only if its even–odd parts(h(u); g(u)) form a
positive pair.

The “root interlacing conditions” i) and ii) can be replaced by posi-
tivity of certain polynomials ofu. Consider the polynomials

Vq(u) := h0(u)g(u)� h(u)g0(u)

Vsq(u) := h(u)g(u)� u[h0(u)g(u)� h(u)g0(u)]:

Lemma 1: Let h; g 2 R[u] be coprime withdeg h = deg g�1 or
with deg h = deg g+1 � 1. Then,(h; g) is a positive pair if and only
if: i) all roots of h andg are real and negative, ii)Vq(u) > 0 8u < 0,
and iii) Vsq(u) > 0 8u < 0.

We note that the necessity of the conditions ii) and iii) of Lemma 1 is
essentially known since they are closely related to the phase increasing
property as elaborated in Remark 3. What may be new is that the addi-
tion of i), together with the degree requirements, makes the conditions
sufficient. A proof of Lemma 1 is given in [10].

Remark 1: Variation on the Statement of Lemma 1:Conditions ii)
and iii) are equivalent to

Vq(u) > 0 8u < 0 such thath(u)g(u) � 0

Vsq(u) > 0 8u < 0 such thath(u)g(u) < 0: (3)

To see that (3) implies i) and ii), note that ifh(u)g(u) � 0, then
Vsq(u) = h(u)g(u)� uVq(u) > 0 so thatVsq(u) > 0 for all u < 0.
Also if h(u)g(u) < 0, then�uVq(u) = Vsq(u) � h(u)g(u) > 0
yieldingVq(u) > 0 for all u < 0. 4

Remark 2: Root-Loci Interpretation:Let us consider�(K;u) :=
h(u) + Kg(u) and (K;u) := ug(u) + Kh(u) for K 2 R. The
equation�(K;u) = 0 implicitly defines a functionu(K). The root
sensitivityof �(K;u) (see, e.g., [6]) is defined byjKj(du=dK), and
gives a measure of the variations in the root location of�(K;u) with
respect to percentage variations inK. The root sensitivities of�(K;u)
and (K;u), respectively, are easily computed to be

Sq(u) :=
h(u)g(u)

Vq(u)
; Ssq(u) :=

ug(u)h(u)

Vsq(u)
: (4)

Suppose all roots ofh andg are real and negative. If(h; g) is a positive
pair, then a plot of the root-loci of�(K;u) and (K;u) for K � 0
shows that the roots remain on the negative real axes and move to the
left with increasingK. This implies that the sensitivities (4) are pos-
itive for all u in the root-loci. Conversely, if the sensitivities (4) are
positive for allu in the root-loci, then forK � 0 roots of�(K;u) and
 (K;u) are contained in the negative real axis and they all move to
the left with increasingK. This is the case only if the roots ofh andg
are interlacing as required in the definition of a positive pair. Note that
this argument which establishes the equivalence between positivity of
root sensitivities, or (3), and positive-pairness is a sketch of an alterna-
tive proof of Lemma 1. See Fig. 1 (where the dashed curves show the
polynomialsh(u); g(u), andug(u) with the horizontal axes taken to
beu). 4

Fig. 1. Root-loci withK > 0 for Remark 2.

Remark 3: Phase Increasing Property:Supposedeg q(s) � 2.
Using the following relations betweenVq(u); Vsq(u), and q(!) :=
arg(q(j!)):

 0

q(!) =
h(u)g(u)� 2u[h0(u)g(u)� h(u)g0(u)]

h(u)2 � ug(u)2

=
Vsq(u)� uVq(u)

h(u)2 � ug(u)2
;

sin(2 q(!))

2!

=
h(u)g(u)

h(u)2 � ug(u)2
(5)

whereu = �!2, it is easy to see that (3) holds if and only if (2) holds
with strict inequality whenever q(!) 6= 0. Hence,q(s) is Hurwitz
stable if and only if: i) all roots ofh(u) andg(u) are real and negative
and ii) the inequality (2) holds with strict inequality at all! > 0. If
q(s) = h + sg has degree one, then by direct computation (2) holds
with equality andVq(u) = 0; Vsq(u) = hg. 4

III. CONVEX DIRECTIONS

Let p(s) = f(s2) + se(s2) and consider the conditions

Vp(u) � 0 8u < 0 : f(u)e(u)� 0

Vsp(u) � 0 8u < 0 : f(u)e(u)< 0: (6)

In terms of the sensitivities of the root-loci of�(�K;u) = f(u) �
Ke(u) and (�K;u) = ue(u)� Kf(u) for K � 0, condition (6)
becomes

Sp(u) � 0 8u < 0 : f(u)e(u)� 0

Ssp(u) � 0 8u < 0 : f(u)e(u)< 0: (7)

We can hence state the following.
Lemma 2: A polynomialp(s) is a convex direction if and only if

one of the equivalent conditions (1), (6), or (7) holds.
Proof: If deg p(s) � 2, then the result follows by the identi-

ties (5), wherep; f; e replacesq; h; g, respectively, employed in (1). If
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Fig. 2. Root-locus off(u) �Ke(u).

Fig. 3. Root-locus ofue(u)�Kf(u).

p(s) = f + se has degree one, thenVp(s) = 0; Vsp(s) = fe for
all u < 0 so that (6) is satisfied. Condition (1) is also satisfied with
equality for all! > 0.

The root sensitivity condition (7) allows an immediate identifica-
tion of a Rantzer polynomial from the root-loci ofh(u) � Kg(u)
andug(u)� Kh(u). The conditions mean that the values of the real
negative roots of�(�K;u) and (�K;u) do not increase with in-
creasingK � 0. Hence, once the root-loci ofh(u) � Kg(u) and
ug(u) � Kh(u) are plotted forK � 0 (with arrows pointing from
poles to zeros), all arrows on the negative real axis point to the left
if and only if p(s) = f(s2) + se(s2) is a Rantzer polynomial. The
root-loci in Figs. 2 and 3 indicate thatf(s2) + se(s2) is a Rantzer
polynomial.

This root sensitivity interpretation of a Rantzer polynomial indi-
cates a “positive-pairlike” property which is made precise in Theorem
1 below. It is easy to verify by Lemma 2 thatr(s) = n(s2)+sm(s2) is
a Rantzer polynomial if and only if�r(s) = �n(s2) + s �m(s2) is, where
n = d�n; m = d �m andd is a greatest common factor of(n;m) over
R[u]. The assumption that(n;m) is coprime in Theorem 1 is hence
without loss of generality.

Theorem 1: Let r(s) = n(s2) + sm(s2) be a Rantzer polynomial
with coprime even–odd parts(n;m). Then, all real negative roots, if
any, ofn(u) andm(u) have odd multiplicities and are interlacing.

Proof: Let u1 < 0 be a root ofn(u) with multiplicity k � 1.
Let f(u) = n(u)=(u� u1)

k ande(u) = m(u) so thatr(s) = (u �
u1)

kf(u)+se(u).Suppose thatk is even. By Lemma 2 and (6) applied
to r, the following implications hold foru < 0:

u� u1 � 0

f(u)e(u)� 0) kf(u)e(u)+ (u� u1)Vp(u) � 0

u� u1 � 0

f(u)e(u)� 0) kf(u)e(u)+ (u� u1)Vp(u) � 0

u� u1 > 0

f(u)e(u)< 0) �kuf(u)e(u) + (u� u1)Vsp(u) � 0

u� u1 < 0

f(u)e(u)< 0) �kuf(u)e(u) + (u� u1)Vsp(u) � 0:

Since(n;m) is coprime, we havef(u1)e(u1) 6= 0 and hence for
� > 0 sufficiently smallf(u1��)e(u1��) 6= 0 and has the same sign
asf(u1)e(u1).Supposef(u1)e(u1)< 0 and consideru = u1��. We
haveu�u1 < 0 andf(u)e(u)< 0 so that according to the fourth im-
plication, we must have�kuf(u)e(u)��Vsp(u) � 0. This inequality
holds for sufficiently small� only if f(u)e(u) � 0 which contradicts
our assumption thatf(u)e(u) < 0. Supposef(u1)e(u1) > 0 and
consideru = u1. We haveu � u1 = 0 andf(u)e(u) > 0 so that
according to the first implicationf(u)e(u) � 0, giving a contradic-
tion. Therefore,k must be odd. This shows that any real negative root
of n(u) has odd multiplicity. In a similar manner, it is shown that any
root v1 < 0 of m(u) has odd multiplicity as well.

Sincek is odd, (6) applied tor(s) now gives that for allu < 0;

u� u1 � 0

f(u)e(u)� 0) kf(u)e(u)+ (u� u1)Vp(u) � 0

u� u1 � 0

f(u)e(u)� 0) kf(u)e(u)+ (u� u1)Vp(u) � 0

u� u1 > 0

f(u)e(u)< 0) �kuf(u)e(u) + (u� u1)Vsp(u) � 0

u� u1 < 0

f(u)e(u)> 0) �kuf(u)e(u) + (u� u1)Vsp(u) � 0 (8)

for every rootu1 of n(u). If f(u1)e(u1)� 0, then the first implication
would give a contradiction atu = u1. Hence,f(u1)e(u1) < 0 for
every rootu1 < 0 of n(u) so thatsign f(u1) = � sign e(u1) =
� signm(u1). Let k1 denote the number of distinct real roots
of n(u) in the interval (u1; 0). Since each root has odd multi-
plicity, it follows that sign f(u1) = (�1)k sign f(0+). Thus,
signm(u1) = (�1)k +1sign f(0+) = (�1)k +1signn(0+), where
we usedsign f(0+) = signn(0+) which is due to(u� u1)k > 0 at
u = 0. It follows, by signm(u1) = (�1)k +1signn(0+), that there
is an odd number of distinct real roots ofm(u) between every pair
of distinct real negative roots ofn(u). Let v1 < 0 be a root ofm(u)
with odd multiplicity l � 1. Write r = n(u) + s(u � v1)

l �m(u) for
polynomial �m := m=(u � v1)

l. Then, condition (6) and a similar
reasoning as above gives that there are an odd number of real roots
of n(u) between every pair of distinct real negative roots ofm(u).
Therefore, the real negative roots ofn andm are interlacing.

The necessary condition given by Theorem 1 need not be sufficient,
neither does it seem possible to state a necessary and sufficient condi-
tion in terms of the algebraic properties ofn andm as the values of the
roots do matter.

Example 1: Let n(u) = (u � u1)
k andm(u) = (u � v1)

l with
u1 < v1 < 0 andk; l odd integers. It is straightforward to show using
Lemma 2 and condition (6) thatr is Rantzer if and only ifk > l + 1
andlu1�kv1 � 0. If, for instance,l = 1; k = 3; u1 = �4; v1 = �1,
thenr is Rantzer. �
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Given a Rantzer polynomialp(s) = f(s2)+se(s2), we now obtain
conditions onp, in terms of root sensitivities, under which the com-
posite polynomialr(s) := f(s2)h(s2)+se(s2)g(s2) is also a Rantzer
polynomial for some polynomialsh(u) and g(u) having real nega-
tive or complex zeros. This will give a construction procedure which
starts with a Rantzer polynomial and gives new convex directions of
increasing complexity by adding zeros to its even and/or odd parts.

Corollary 1: Let p(s) = f(s2) + se(s2) be a Rantzer polynomial
with (f(u); e(u)) coprime anddeg p(s) > 1.

i) There exist an odd integerk > 0 and a real numberu1 < 0 such
thatr(s) = (s2� u1)

kf(s2)+ se(s2) is also a Rantzer polynomial if
and only if

min
u2U

Sp(u) = min
u2U

f(u)e(u)

Vp(u)
(9)

exists, whereU+ := fu � 0 : f(u)e(u) � 0g.
ii) There exist an odd integerl > 0 and a real numberv1 < 0

such thatr(s) = f(s2) + s(s2 � v1)
le(s2) is also a Rantzer polyno-

mial if and only if minu2U Ssp(u) exists, whereU� := fu � 0 :
f(u)e(u) � 0g.

Proof: i) Let us first note thatVp(u) is not identically zero since
if it were, then, by coprimeness of(f; e), bothf; e would be nonzero
constants anddeg p(s) = 1. By Lemma 2 and (6)r(s) is a Rantzer
polynomial if and only if (8) above holds.

Necessity:If r(s) is Rantzer andf(u)e(u) > 0 at someu < u1,
thenVp(u) � 0 asp is Rantzer. The fourth implication in (8) gives that
�kuf(u)e(u)+(u�u1)Vsp(u) � 0 or�[u1+(k�1)u]f(u)e(u)�
u(u � u1)Vp(u) � 0. The quantity on the left-hand side in this last
inequality is, however, positive and a contradiction is obtained. Hence,
f(u)e(u) � 0 for all u < u1. By Theorem 1, any possible root of
f(u)e(u) at someu < u1 should have odd multiplicity so thatf(u�
�)e(u � �) andf(u + �)e(u + �) will have opposite signs for small
� > 0. Therefore,f(u)e(u) < 0 for all u < u1. SinceVp(u) � 0 for
all u < 0 such thatf(u)e(u)� 0, the first implication in (8) gives that

u � u1; f(u)e(u)� 0; Vp(u) 6= 0)
f(u)e(u)

Vp(u)

�
u1 � u

k
: (10)

We have establishedf(u)e(u)< 0 8u < u1 so thatU+ = fu1 � u �
0 : f(u)e(u) � 0g, on which the right-hand side of (10) is bounded
below by the negative numberu1=k. It follows that (9) exists.

Sufficiency:Suppose that the minimum in (9) is equal to (a finite
number)c1. SinceVp(u) � 0 for all u 2 U+, it follows thatc1 � 0.
Suppose, by way of contradiction, thatf(u)e(u) > 0 for u ! �1.
Then the setU+ contains all sufficiently small negative numbers and is
an infinite interval. Hence,f(u)e(u)> 0 for u! �1 contradicts the
hypothesis that the minimum (9) exists. Therefore,f(u)e(u) < 0 for
u! �1, i.e.,deg[f(u)e(u)] is odd. Let us now choose an odd integer
k such thatdeg[kf(u)e(u)+uVp(u)] is odd. Since,deg[f(u)e(u)] �
deg uVp(u), such ak always exists. Letc2 < 0 be such that

kf(u)e(u) + uVp(u) < 0 8u < c2: (11)

Such a c2 exists as kf(u)e(u) + uVp(u) has odd degree.
Note that for allu < c2, we also havef(u)e(u) < 0 since
f(u)e(u) > 0 for someu < c2 would give thatVp(u) � 0
and hencekf(u)e(u) + uVp(u) > 0 contradicting (11). Define
u1 := kc1+c2 < 0. We now show thatr(s) = (u�u1)

kf(u)+se(u)
is Rantzer by verifying the implications (8). By the fact that
f(u)e(u) < 0 for all u < u1 < c2, the fourth implication in
(8) trivially holds. The third implication also holds sincep(s) is a
Rantzer polynomial by hypothesis. The second implication holds
by (11) and by the equality�u[kf(u)e(u) + (u � u1)Vp(u)] =
�ku1f(u)e(u) � (u � u1)[kf(u)e(u) + uVp(u)], where

the right-hand side is nonpositive for allu � u1 such that
f(u)e(u) � 0. Finally, to see that the first implication in (8) also
holds, note thatU+ = fu � 0 : u � c2; f(u)e(u) � 0g by (11).
Hence, for allu 2 U+ we havekf(u)e(u) + (u � u1)Vp(u) =
kVp(u)((u� u1=k) + (f(u)e(u)=(Vp(u))) �
kVp(u)((u� u1=k) + minu2U f(u)e(u)=Vp(u)) �
kVp(u)((c2 � u1=k) + minu2U f(u)e(u)=Vp(u)) = 0, where the
second inequality follows byu � c2 and the last equality by the
definition ofu1. ii) The proof parallels the proof of i) and is omitted.

Wheneverdeg[f(u)e(u)] is even,U+ is an infinite interval and the
minimum (9) does not exist. The following example shows that the
minimum (9) may also fail to exist whenf(u)e(u)=Vp(u) has a pole
of even multiplicity inU+.

Example 2: Considerp(s) = f(s2)+se(s2),wheref(u) = �(u+
2:0)3[(u + 1:0)2 + 4:5]2; e(u) = (u + 27:5)3[(u + 8:0)2 + 4:5]2.
The root-loci off(u) � Ke(u) andue(u) � Kf(u) for K > 0
are shown in Figs. 2 and 3. It is clear from the figures that the sen-
sitivitiesSp(u) andSsp(u) have correct signs forf(u)e(u) � 0 and
f(u)e(u)< 0, respectively, so thatp(s) is a Rantzer polynomial. How-
everlimu!�10:6 Sp(u) = �1. At u = �10:6, three branches of the
root-locus of Fig. 2 intersect andSp(u) has a pole of multiplicity two.

Remark 4: In i), the choice of the multiplicityk of the introduced
zerou1 is restricted only by the condition “deg[kf(u)e(u)+uVp(u)]
is odd” and is otherwise free. Similarly, in ii), the choice ofl is only
subject to “deg[lf(u)e(u)+ Vsp(u)] is even”. 4

Corollary 2: Let p(s) = f(s2) + se(s2) be a Rantzer polynomial
with (f(u); e(u)) coprime anddeg p(s) > 1.

i) There exist real numbersa; b such thatr(s) = [(s2 + a)2 +
b2]f(s2) + se(s2) is also a Rantzer polynomial if and only if

min
u2U \(�1;u ]

Ssp(u); min
u2U \[u ;1)

Sp(u) (12)

exist for some real numberu0.
ii) There exist real numbersc; d such thatr(s) = f(s2) +

s[(s2 + c)2 + d2]e(s2) is also a Rantzer polynomial if and only if
minu2U \(�1;u ] Sp(u); minu2U \[u ;1) Ssp(u) exist for some
u0 � 0.

Proof: We prove i) only as the proof of ii) is similar. By Lemma
1 and the condition (6) applied tor, it is straightforward to see thatr(s)
is Rantzer if and only if

Vp(u)

f(u)e(u)
� �

2(u+ a)

(u+ a)2 + b2
; 8u < 0 : f(u)e(u)� 0

Vsp(u)

uf(u)e(u)
�

2(u+ a)

(u+ a)2 + b2
; 8u < 0 : f(u)e(u)< 0:

Since p(s) is Rantzer, the first inequality is satisfied for all
u � �a; u < 0; f(u)e(u) � 0 and the second inequality is satisfied
for all u � �a; u < 0; f(u)e(u) < 0. Hence,r(s) is Rantzer if and
only if

Vp(u)

f(u)e(u)
� �

2(u+ a)

(u+ a)2 + b2
;

8u < 0 : u > �a; f(u)e(u)� 0

Vsp(u)

uf(u)e(u)
� �

2(u+ a)

(u+ a)2 + b2
;

8u < 0 : u < �a; f(u)e(u)< 0: (13)

Necessity:Let r be Rantzer so that (13) holds. We first show that
the second condition in (13) implieslimu!�1 f(u)e(u) > 0, i.e.,
deg[f(u)e(u)] is even. In fact, iflimu!�1 f(u)e(u)< 0, then since
deg; Vsp(u) < deg[uf(u)e(u)], the left-hand side is asymptotically
u�k for somek � 1 whereas the right-hand side is2u�1 asu! �1.
It follows that the second condition will fail for sufficiently smallu
unlesslimu!�1 f(u)e(u)> 0. Hence,U� \ (�1; u0] is a union of
closed intervals for anyu0. Let T (u) := �j(2(u+ a))=((u+ a)2 +
b2)j. Note thatT (�a) = 0; T (u) < 0 for all u 2 (�1;�a) [
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(�a;1), andT (u) � �1=jbj for all u with equality holding at the
local minimau = �a � b andu = �a + b. It follows by (13) and
by the characteristics ofT (u) for u � 0 that the rational functions
S�1p = Vp=fe andS�1sp = Vsp=ufe can have at most one zero at
u = �a. Moreover,S�1p (�a) = 0 andS�1sp (�a) = 0 are not both
possible in view of the identityS�1sp + S�1p = u�1 which follows by
Vsp = fe� uVp. We now let� > 0 be arbitrarily small and letu0 =
�a+ � if S�1p (�a) = 0; u0 = �a� � if S�1sp (�a) = 0, andu0 = 0
(or any other number) ifS�1p (�a) 6= 0 andS�1sp (�a) 6= 0. It follows
that the minima in (12) exist (or the set over which the minimum is
taken is empty).

Sufficiency:Suppose (12) both exist for someu0. Let a := �u0.
By the existence of the first minimum in (12),deg[f(u)e(u)] is even.
Hence, there exists sufficiently large� > 0 such thatf(u)e(u) > 0
for all u < ��. Also letmsp := minu2U \[��;u ] Ssp(u); mp :=
minu2U \[u ;�] Sp(u). If U+ \ [u0; �] = ;, then letmp = �1.
Finally, chooseb > 0 such that�b�1 > maxfmp;mspg. It is now
straigtforward to verify that (13) is satisfied and, thus,r(s) is Rantzer.

We illustrate the constructions given in the sufficiency parts of the
proofs of Corollaries 1 and 2 by the following example.

Example 3: Consider the Rantzer polynomialp(s) = s3+s+1with
the even-odd partsf(u) = 1; e(u) = u+1. We employ the procedure
in the proof of Corollary 1.i to obtain another Rantzer polynomial by
introducing a real negative zero to its even part. We haveVp(u) = �1;
Sp(u) = �(u + 1), andU+ = fu 2 [�1; 0]g. The minimum (9) is
attained atu = 0 and has value�1 so thatc1 = �1. The smallest
odd integerk for which kf(u)e(u) + uVp(u) = k(u + 1) + u(�1)
has odd degree isk = 3. With this choicekf(u)e(u) + uVp(u) =
2u + 3 < 0 for all u < �1:5 so that we can setc2 = �2. Finally,
we setu1 = kc1 + c2 = �5. The polynomialr(s) = (s2 + 5)3 +
s(s2 + 1) is a Rantzer polynomial. Let us now employ the proof of
sufficiency of Corollary 2.i to further introduce a pair of complex zeros
to the even part ofr(s) and obtain yet another Rantzer polynomial. Our
initial polynomial now has even-odd partsf(u) = (u + 5)3; e(u) =
u + 1 andSp(u) = (u + 1)(u + 5)=2(u� 1); Ssp(u) = �u(u +
1)=(u2 � 8u � 5). Let u0 = 0:1 > 0 so that only the first minimum
in (12) need be checked. We haveU� = fu 2 [�5;�1]g = U� \
(�1; 0:1] and the first minimum has value�0:29 attained atu =
�3:96. We leta = �0:1 and proceed with a choice ofb. With � = 5;
f(u)e(u) > 0 8u < �� and we computemsp = �0:29. The choice
b = 4 satisfies�1=b > msp. Therefore,r(s) = (s2 + 5)3[(s2 �
0:1)2 + 16] + s(s2 + 1) is a Rantzer polynomial. We remark that
both minima in (12) actually exist for any choice ofu0 and a Rantzer
polynomial will be obtained for anya 2 R and a correspondingb. �
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Disturbance Decoupled Observer Design for Linear
Time-Invariant Systems: A Matrix Pencil Approach

Delin Chu

Abstract—In this paper we give a new analysis of the observer design
problem for linear time-invariant systems with partly unknown inputs. We
use a matrix pencil approach that is based on a condensed form under or-
thogonal transformations. The solvability conditions that we obtain can be
verified and the desired observer can be constructed by a numerically stable
method.

Index Terms—Condensed form, disturbance decoupled estimation, ob-
server, orthogonal transformation.

I. INTRODUCTION

In this paper we study the classical disturbance decoupled observer
design problem for linear time-invariant systems of the form

_x =Ax +Bu+Gq; x(t0) = x
0

y =Cx+Du; z = Hx; (1)

where
y, u are observations,
z is an estimated output and
x0 is a given initial value.

The system matrices satisfyA 2 RRRn�n, B 2 RRRn�m, G 2 RRRn�p,
C 2 RRRq�n, D 2 RRRq�m, H 2 RRRl�n. The disturbanceq(t) may
represent noise or just an unknown input to the system.

Consider the construction of an observer of the form

_w =Acw +Ky + Su; w(t0) = w
0
;

ẑ =Fw + Ly +Nu; (2)
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