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a b s t r a c t

The window method, where the microstructural sample is embedded into a frame of a
homogeneous material, offers an alternative to classical boundary conditions in computa-
tional homogenization. Experience with the window method, which is essentially the self-
consistent scheme but with a finite surrounding medium instead of an infinite one, indi-
cates that it delivers faster convergence of the macroscopic response with respect to
boundary conditions of pure essential or natural type as the microstructural sample size
is increased to ensure statistical representativeness. In this work, the variational back-
ground for this observed optimal convergence behavior of the homogenization results with
the window method is provided and the method is compared with periodic boundary con-
ditions that it closely resembles.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Boundary conditions (BCs) play an important role in homogenization. In the context of mechanical problems, they are
primarily of three types: (i) pure displacement, (ii) pure traction, and (iii) periodic. Periodic BCs are indispensable in the
mathematical theory of homogenization (Pavliotis & Stuart, 2008) whereas the former two are of particular significance
in analytical approaches for random microstructures and are typically combined with self-consistency schemes (Nemat-
Nasser & Hori, 1999). Computational homogenization techniques, which often build upon and improve existing analytical
methods, may be more favorable to pursue if exact or sufficiently accurate microstructural data is available (Zohdi & Wrig-
gers, 2005). Within such methods, one clearly observes the effect of the employed BCs on various macroscopic quantities of
interest in a wide range of physical problems (Ostoja-Starzewski, 2006). A basis for these observations can be robustly stated
in linearized problems. In the context of mechanical problems, an ordering of the macroscopic elastic properties obtained
under pure displacement and pure traction BCs was proven in Huet (1990), later extended to include BCs of the periodic type
in Hazanov and Huet (1994). It was additionally demonstrated that BC effects could be profitably incorporated into a scheme
whereby arbitrarily refinable computational bounds are constructed (Huet, 1990; Zohdi, 2002), in the spirit of refinable high-
er-order analytical bounds (Torquato, 2002).

There are, however, cases where a direct application of the these BCs may be unfavorable. For instance, when soft phases or
voids are present in the vicinity of the boundary, pure traction and periodic type BCs may cause overly deformed meshes that
are numerically undesirable (Miehe & Koch, 2002). In fact, these BCs are simply not applicable when voids intersect the bound-
ary of the analysis domain. This leaves pure displacement type BCs as an option. These, on the other hand, can significantly
overestimate the macroscopic stiffness for a given microstructural sample (Zohdi & Wriggers, 2005). A remedy to these prob-
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lems is to embed the sample into a frame of a homogeneous material following similar ideas from analytical approaches. This
window method was proposed in Babuška, Andersson, Smith, and Levin (1999) where the window frame material was chosen as
the matrix. Average stresses and strains were monitored in the entire extended domain and hence a correction factor was intro-
duced in order to alleviate the effect of the frame. The idea was later employed in Hain and Wriggers (2008) where the frame
material was represented by the average stiffness of the microstructural constituents while still monitoring average quantities
in the sample only. Finally, this approach was further developed towards a self-consistent scheme in Krabbenhøft, Hain, and
Wriggers (2008) wherein the frame material was iteratively updated until it matched the macroscopic response obtained from
the sample. See also Düster, Sehlhorst, and Rank (2012) for an application to three-dimensional cellular microstructures as well
as Zohdi (2010) where the frame material is representative of the original heterogeneous medium.

Experience with the window method indicates that it delivers faster convergence of the macroscopic response with re-
spect to BCs of pure displacement or traction type as the microstructural sample size is increased, a procedure that is nec-
essary to assess the statistical representativeness of the sample. In this work, the variational background for this observed
optimal convergence behavior of the homogenization results with the window method is provided. The emphasis is on the
effects of employing frames with finite width since the case of an infinite surrounding frame medium corresponds to the
classical self-consistent scheme. A detailed overview of self-consistent methods is given in Kanaun and Levi (2008) and a
recent discussion of their generalizations in Benveniste (2008). These methods have classically been applied to particulate-
or fiber-reinforced composites, although extensions to more complicated heterogeneous media such as polycrystals have
also been pursued (Jiang & Weng, 2004; Su & Weng, 2006). Presently, no restrictions are imposed on the microstructural
geometry however the presentation is limited to linear thermal conduction. The same variational principles apply to other
physical phenomena within a linear framework in a straightforward fashion, in particular to diffusion or elasticity. An exten-
sion to the analysis of the overall electromagnetic response of heterogeneous media does not follow from this presentation
yet is expected to be realizable with additional effort in view of the applicability of classical micromechanics techniques to
this physical regime (Benveniste & Milton, 2011; Su & Weng, 2006; Zohdi, 2010).

2. Variational framework

2.1. Minimum principles

As the classical homogenization problem posed on a microstructural sample V, with boundary @V ¼ @Vh [ @Vh, the stea-
dy-state energy balance is considered in the absence of an external heat supply. The problem may be stated within a vari-
ational setting via the functional
DðhÞ ¼
Z
V

1
2

g � Kg dv �
Z
@Vh

h�hda: ð2:1Þ
Here, h is the temperature, g = grad[h] and K is the thermal conductivity tensor. The corresponding heat flux is q = �Kg. The
solution h to the problem among all admissible temperature fields —those which satisfy the essential BCs h ¼ �h on @Vh—min-
imizesD, implying the energy balance div[q] = 0 in V as well as the natural BCs h ¼ �h on @Vh. Here, h = �q � n is the normal heat
flux on a surface having outward unit normal n. The same problem may also be stated within a complementary setting. Consider
DcðqÞ ¼
Z
V

1
2

q � Rqdv �
Z
@Vh

�hhda; ð2:2Þ
where R = K�1 is the thermal resistivity tensor. The solution q to the problem among all admissible flux fields —those which
satisfy div[q] = 0 in V and h ¼ �h on @Vh—is the one that minimizes Dc , implying h ¼ �h on @Vh.

2.2. Window method

The variational results apply to any domain X. Typically, linear (LN), uniform (UF) or periodic (PR) BCs on @X are of
interest:
LT-BCs : h ¼ �g � x; UF-BCs : h ¼ ��q � n;
PR-BCs : hþ � h� ¼ �g � ðxþ � x�Þ and hþ ¼ �h�:

ð2:3Þ
With PR-BCs, the boundary of the domain is partitioned into periodically linked + and � regions. The notation
hQiX ¼
1
jXj

Z
X
Qdv ð2:4Þ
for the average of an arbitrary quantity Q will be useful for compactness. Standard averaging theorems (Nemat-Nasser &
Hori, 1999) are then recalled under the assumptions of a diverge-free flux field and a continuous temperature field. The the-
orems state that for LT- and PR-BCs on @X one obtains hgiX ¼ �g and for UF-BCs hqiX ¼ �q. Additionally, for all the BCs in (2.3),
hq � giX ¼ hqiX � hgiX: ð2:5Þ



Fig. 1. The window method is summarized.
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The microstructure is now embedded within a homogeneous frameW and the extended domain V [W is denoted with X
(Fig. 1). The frame is assigned a judiciously chosen material property Kw ¼ R�1

w . After solving the problem, subject to a set of
BCs in the form above, the homogenized response is characterized through the macroscopic tensors K ¼ R�1 such that
hqiV ¼ �KhgiV : ð2:6Þ
However, the window method is incomplete in this form. It is additionally required that the solution from the window meth-
od satisfies self-consistency—replacing Kw by K followed by a repetition of the solution should again deliver K . In practice,
self-consistency is satisfied within a few iterations to very good accuracy, as to be demonstrated.

It is important to highlight that the domain of averaging in (2.6) is the microstructure only. Note that (Zohdi & Wriggers,
2005)
hQiX ¼ fvhQiV þ fwhQiW ; ð2:7Þ
where fv ¼ jVj=jXj and fw ¼ jWj=jXj ¼ 1� fv . Therefore, without self-consistency,
hqiX ¼ fvhqiV þ fwhqiW ¼ �fvKhgiV � fwKwhgiW ¼ �KðfvhgiV þ fwK�1KwhgiWÞ– � KhgiX : ð2:8Þ
Only at convergence of the iterations is Kw ¼ K so that the domain of averaging can be V or X .

3. Augmented ordering relationship

Let fKLT;KUF;KPRg denote the homogenized conductivities under different BCs obtained using the window method. With-
out the frame, it is well-known (Hazanov & Huet, 1994) that the ordering relationship
K ð0ÞUF 6 K ð0ÞPR 6 K ð0ÞLT ð3:1Þ
holds, where the superscript is used to denote that there is no frame and A 6 B means B � A is positive semi-definite. In this
section, it will be shown that the window method subject to self-consistency delivers the augmented ordering relationship
K ð0ÞUF 6 KUF 6 KPR 6 KLT 6 K ð0ÞLT : ð3:2Þ
Now, a signature of a statistically representative microstructural sample is that its response is independent of the boundary
conditions imposed. Therefore, the gap between K ð0ÞUF and K ð0ÞUF is an indication of how well the sample represents the desired
homogenized response. Increasing sample size typically results in a diminishing gap. When the gap is sufficiently small, the
sample is deemed representative for computational purposes. Since it is undesirable to use very large samples, the practical
significance of the augmented ordering relationship becomes apparent. The window method delivers results that always fall
between the two alternative BC results and therefore, similar to periodic BCs, one expects it to deliver faster convergence
with increasing sample size. In this sense, the window method provides a tighter control over the sample size such that
it is eventually possible to use a smaller sample compared to the situation without a frame, assuming LT- or UF-BCs are
of concern. Where K ð0ÞPR falls in (3.2) will be commented upon.

3.1. Linear temperature boundary conditions

To prove KLT 6 K ð0ÞLT , let go = grad[ho] and qo constitute the solution to the problem without the frame under LT-BCs on @V.
The solution ho is extended into a fictitious frame domain via ho ¼ �g � x for x 2 W. This extension is compatible with LT-BCs on
@V or @X . On the other hand, the solution with the window method using LT-BCs on @X is computed. The same frame mate-
rial is employed in both cases. For the latter problem @Vh ¼ ; and, since the extended field is admissible, the minimum prin-
ciple based on (2.1) implies
�1
2
jXjhg � qiX 6 �

1
2
jXjhgo � qoiX ; ð3:3Þ
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or, upon using (2.5),
�hgiX � hqiX 6 �hgoiX � hqoiX : ð3:4Þ
By construction, hgiX ¼ hgoiX ¼ �g. Therefore, using (2.7), further manipulation yields
��g � ðfvhqiV þ fwhqiWÞ 6 ��g � ðfvhqoiV þ fwhqoiWÞ; ð3:5Þ
or
�g � ðfvKLThgiV þ fwKwhgiWÞ 6 �g � ðfvK ð0ÞLT
�g þ fwKw�gÞ: ð3:6Þ
Self-consistency is now invoked by replacing Kw by KLT:
�g � KLT�g 6 �g � ðfvK ð0ÞLT
�g þ fwKLT�gÞ; ð3:7Þ
or
fv �g � KLT�g 6 fv �g � K ð0ÞLT
�g: ð3:8Þ
Since �g is arbitrary, this result states the positive semi-definiteness of K ð0ÞLT � KLT.

3.2. Uniform flux boundary conditions

The proof of K ð0ÞUF 6 KUF closely follows the steps of the previous section. Only the beginning is stated. Let go = grad[ho] and
qo constitute the solution to the problem without the frame under UF-BCs on @V. The solution qo is extended into a fictitious
frame domain via qo ¼ �q for x 2 W. This extension is compatible with UF-BCs on @V or @X . On the other hand, the solution
with the window method using UF-BCs on @X is computed. For the latter problem @Vh ¼ ; and, since the extended field is
admissible, the complementary minimum principle based on (2.2) implies
�1
2
jXjhq � giX 6 �

1
2
jXjhqo � goiX : ð3:9Þ
The remaining steps are identical, leading to the positive semi-definiteness of Rð0ÞLT � RLT.

3.3. Completing the ordering

The end inequalities in (3.2) have been proven. To complete the ordering, it is sufficient to adapt the steps leading to the
classical result (3.1). Only the idea in Hazanov and Huet (1994) is recalled here. Let {hLT,hUF,hPR} be the three solutions under
the three different boundary conditions using the window method, with corresponding flux and gradient fields. Moreover, it
is assumed that �q in UF-BCs is chosen such that the average temperature gradient is enforced, i.e. hgiX ¼ �g. One observes:

1. qPR is an admissible flux field for the LT-BC problem. The complementary minimum principle is applicable, which leads to
KPR 6 KLT.

2. hPR is an admissible temperature field for the UF-BC problem. The minimum principle is applicable, which leads to
KUF 6 KPR.

Again, invoking self-consistency is critical to completing the proofs.
It is noted that none of the arguments apply to K ð0ÞPR , i.e. where it stands in (3.2) cannot be predetermined. Regarding the

limit response with increasing sample size, let K⁄ denote the effective thermal conductivity tensor that is obtained from a
statistically representative sample. Arguments (Huet, 1990; Zohdi, 2002), based on the partitioning of a very large sample
into smaller ones indicate that, provided ensemble averaging hh�ii of the arithmetic type is used,
hhRð0ÞUF ii
�1
6 K� 6 hhK ð0ÞLT ii: ð3:10Þ
In other words, LT- and UF-BCs offer bounds on the unknown effective response. While the above bounds monitor only the
mean response of the sample population, ordering relations for higher-order statistical measures may also be constructed
(Zohdi, 2005). Moreover, these bounds can be argued to be arbitrarily refinable, i.e. the gap between them diminishes with
increasing sample size. Presently, one cannot show that KUF and KLT, which are obtained with the window method, consti-
tute similar arbitrarily refinable bounds—their positions with respect to K⁄ are unknown. In this sense, the window method
resembles periodic boundary conditions. This observation will be verified numerically.

3.4. Choosing the frame width

The width of the frame appears to be a free variable and this was of concern in the original work of Babuška et al. (1999)
as well. Numerically, it is expected that choosing the frame width is similar to choosing the sample size—for a given sample
size, one observes that K saturates to a limit with increasing frame width. This expectation is based on the well-known



Fig. 2. Increasing frame thickness is depicted.
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self-consistent scheme, where the frame is essentially an infinite surrounding medium, which delivers a unique response
independent of whether LT- or UF-BCs are employed (Nemat-Nasser & Hori, 1999). In fact, one can show that the augmented
ordering complemented by increasing frame width delivers a monotonic closure of the gap between LT- and UF-BC results:
Fig. 3.
(Right)
ensured
K ð0ÞUF 6 K ð1ÞUF 6 K ð2ÞUF 6 . . . 6 Kw 6 . . . 6 K ð2ÞLT 6 K ð1ÞLT 6 K ð0ÞLT : ð3:11Þ
Here, increasing superscript indicates the results obtained under increasing frame width and Kw is the limit of the window
method which corresponds to the classical self-consistent scheme. The proof is very similar to the one outlined for (3.2)
therefore only the case for LT-BCs is discussed. Consider the setup in Fig. 2 and let ho constitute the solution to the problem
with the thinner frame. It is extended into a fictitious frame domain Xð2Þ n Xð1Þ via ho ¼ �g � x and compared with the solution h
using the frame Wð2Þ. Invoking self-consistency for both cases, the result (3.7) now takes the form
�g � K ð2ÞLT
�g 6 �g � faK ð1ÞLT

�g þ fbK ð2ÞLT
�g

� �
; ð3:12Þ
where fa ¼ jXð1Þj=jXð2Þj ¼ 1� fb, which indicates K ð2ÞLT 6 K ð1ÞLT .
Where the PR-BC results fall with respect to the limit Kw is unknown at small frame widths. However, the limit obtained

is independent of the BCs employed since PR-BC results are bounded in (3.2). On the other hand, this limit is not the effective
limit K⁄ since the sample is not necessarily statistically representative. On the computational side, of course, it is undesirable
to choose a very large width since this increases the size of the problem. Therefore, a trade-off exists between increasing the
frame width and the sample size in practice.

4. Numerical investigations

In this section, the observations of the earlier discussions are briefly demonstrated through computations on two types of
three-dimensional microstructures: (i) periodic microstructures where a unit cell corresponds to a sphere embedded in a
matrix, and (ii) random microstructures which are obtained through the computed tomography scan (CT-scan) of hardened
cement paste.

4.1. Periodic media

For investigations in the periodic setting, the unit cell width is set to 10 units while the diameter of the sphere is 9 units,
corresponding to a volume fraction of approximately 0.38. The thermal conductivity of the sphere is 500 W/mK and the one
of the matrix is 1 W/mK. The unit-cell displays macroscopic isotropy, represented by �k ¼ khqiVk=khgiVk. The unit cell is
(Left) Iterations under PR-BCs with respect to various initial thermal conductivities k [W/mK] assigned to the frame of 1 unit around a unit cell.
Influence of the frame width and number of unit cells per direction on the macroscopic thermal conductivity under PR-BCs. Self-consistency is
.



Fig. 4. (Left) Comparison of the macroscopic response with and without a frame (fixed width at 1 unit) under different BCs and increasing number of unit
cells per spatial direction of the sample. (Right) The influence of the frame width under different BCs with four unit cells per direction.

Fig. 5. (Top-left) The CT-scan of an HCP sample with 64 voxels per direction, embedded in a frame. (Top-right) effect of the frame width on a single sample
with 20 voxels per direction subjected to different BCs. (Bottom-Left) Using a frame width of 4 units, the effect of the sample size is demonstrated without a
frame. 150 samples are tested and the results are averaged to alleviate randomness effects. (Bottom-Right) The same set of samples are tested with a frame.
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embedded within a homogeneous frame and various BCs are directly prescribed on the frame to investigate the influence of
the window method on the macroscopic response. The number of self-consistency iterations vary depending on the conduc-
tivity initially assigned to the frame material but is typically less than four as summarized in Fig. 3. The influence of the
width of the frame is also illustrated in Fig. 3 based on PR-BCs, where it is observed that the results obtained with a frame
converge to a limit with increasing frame width. In this periodic setting, it is also observed that this limit is very close to the
exact result that is obtained with PR-BCs directly on the unit cell. Clearly, for a given frame width, increasing the number of
unit cells in the periodic sample also drives the results closer to the exact result as expected, which is also shown in Fig. 4 for
the three types of BCs without a frame as well as with a fixed frame width of 4 units. Finally, the results (3.2) and (3.11) are
also demonstrated in Fig. 4, where strict ordering among different BCs as well as their convergence to a common limit with
increasing frame width are observed.
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4.2. Random media

As an application to random media, hardened cement paste (HCP) is considered. The microstructure originates from a
micro-CT scan although the assigned conductivities are artificial. The representation of an HCP sample embedded in a frame
is illustrated in Fig. 5 where the hydration products are indicated with the gray color, the unhydrated residual klinker with
blue and the micropores with red. The volume fraction of the klinker is 0.84, the one of unhydrated residual is 0.02 and the
one of micropores is 0.14. The thermal conductivity of the klinker is set to 100 W/mK while the others are set to 1 W/mK. In
presenting the results, a single quantity �k is monitored assuming macroscopic isotropy. This assumption is only satisfied for
sufficiently large samples and therefore leads to some deviation from the predicted ordering relations for smaller sample
sizes, the size referring to the number of voxels per spatial direction of the sample. This is observed in Fig. 5 on a sample
with 20 voxels per direction. Nevertheless, the response under different BCs approach each other with increasing frame
width. In order to obtain a statistically representative sample, larger CT-scans have to be employed. To alleviate randomness
effects, 150 samples are tested per sample size. If no frame is used, it is observed that the LT- and PR-BC results are close to
each other but they remain significantly far away from UF-BC predictions. This large gap casts a doubt on the quality of the
macroscopic predictions since the types of BCs should not affect the response of a statistically representative sample. When
the same computations are carried out with a window, it is observed that the gap is small even at small sample sizes. Con-
sequently, one can state with confidence that the macroscopic conductivity is in the range of 70 to 75 W/mK. Considering
that the frame width is only 4 units and that only two iterations were sufficient to ensure self-consistency, the additional
cost of using the window method is negligible with this observed advantage. This advantage translates into a tighter control
over the sample size when analyzing randomly heterogeneous media.
5. Conclusion

The observed optimal convergence behavior of the homogenization results with the window method has been proven
analytically and demonstrated numerically with periodic particulate and random digital microstructures. In contrast to
the three types of classical boundary conditions, it was shown that the window method delivers a unique macroscopic re-
sponse for any given sample size independent of the type of boundary conditions imposed—provided that the window is
chosen to be sufficiently thick and that the overall scheme satisfies self-consistency. For randomly heterogeneous media,
the window method enables a tighter control over the sample size in trying to ensure statistical representativeness.
Although the presentation was pursued in a thermal context, the underlying variational basis is applicable to linear elasticity
in a straightforward manner. Specifically, denoting the macroscopic fourth-order stiffness tensor by IE, the counterpart of
the ordering relation (3.2) which delivers refined predictions reads
IEð0ÞUF 6 IEUF 6 IEPR 6 IELT 6 IEð0ÞLT ; ð5:1Þ
while the monotonic convergence relation (3.11) of the window method predictions to a common limit IEw as the frame
width is increased under different BCs may be stated as
IEð0ÞUF 6 IEð1ÞUF 6 IEð2ÞUF 6 . . . 6 IEw 6 . . . 6 IEð2ÞLT 6 IEð1ÞLT 6 IEð0ÞLT : ð5:2Þ
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