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Abstract

In this study the variance of the bivariate kernel density estimators for the left truncated and right censored (LTRC)
observations are considered. In LTRC models, the complete observation of the variable Y is prevented by the truncating
variable T and the censoring variable C. Consequently, one observes the i.i.d. samples from the triplets (T; Z; �) only if
T6Z , Z=min(Y; C) and � is one if Z=Y and zero otherwise. G�urler and Prewitt (1997, submitted for publication) consider
the estimation of the bivariate density function via nonparametric kernel methods and establish an i.i.d. representation of
their estimators. Asymptotic variance of the i.i.d. part of their representation is developed in this paper. Application of
the results are also discussed for the data-driven and the least-squares cross validation bandwidth choice procedures.
c© 1999 Published by Elsevier Science B.V. All rights reserved
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1. Introduction

Our main purpose in this paper is to establish the variance of the bivariate density estimate when one
component is left truncated and right censored (LTRC). LTRC data naturally occurs if the time origin of
the study is later than the time origin of the individual events, which leads to the truncation of certain
items=individuals. Moreover, the truncated sample can also become subject to right censoring during the course
of study, due to the drop outs or failure to follow-up which is common to cohort follow-up studies. Studies
analyzing univariate data arising from such models include Tsai et al. (1987), Uzuno�gullar�� and Wang (1992)
and Gijbels and Wang (1993), among others. Recently, G�urler and Gijbels (1996) proposed a nonparametric
bivariate distribution function estimator when a component is subject to LTRC. G�urler and Prewitt (1997)
considered a similar data structure and introduced the bivariate kernel density estimates. Due to the truncation
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and censoring e�ects, the resulting estimates are in the form of the sums of dependent random variables
which complicates the large sample analysis. G�urler and Prewitt (1997) present a strong representation of
their estimator as a sum of mean zero i.i.d. variables with an asymptotically negligible remainder term.
Although the variance of the i.i.d. term of this representation is very complicated, knowing the variance is
important for several purposes such as the analysis of the small and large sample behavior, construction of
con�dence intervals, hypothesis testing, comparison of the alternative estimators, etc. Moreover, evaluating and
estimating the variance of estimators gain particular importance in the context of kernel estimation. As is well
known, kernel estimators require a bandwidth choice which is a crucial parameter of such methods, and often
optimal bandwidth selection criteria depend on the leading terms of the variance. For example, an optimal
bandwidth might be the one which minimizes the leading terms of the MSE with a data-driven bandwidth
choice, de�ned by replacing the theoretical terms with their associated estimates. The techniques involved in
evaluating the variance of the kernel density estimate make use of several properties of the kernels which are
not straightforward, particularly in the bivariate case. As mentioned before, the expression for the variance
of the considered estimator displays a quite complex structure due to both the higher dimension considered
and the involvement of nuisance functionals produced by truncation=censoring. We provide in this paper the
key aspects of decomposing the variance expression to a leading and the negligible terms and �nding their
corresponding orders.
The rest of the paper is organized as follows: In Section 2, we present the bivariate density estimator,

the essential de�nitions and the preliminary results. In Section 3, we provide the main result regarding the
variance and the bias of the density estimator and provide a brief discussion on the bandwidth choice. Finally
in the appendix we present the proofs of the presented results.

2. Preliminaries

Let F(y; x) denote the joint distribution function (d.f.) of the random pair (Y; X ) with the corresponding
density f(y; x). In the model where Y is subject to LTRC, the observed data has the following features: Let
T be the truncating variable with d.f. G, and let C be the censoring variable with d.f. H ; then we observe
(Zi; Xi; Ti; �i), i = 1; : : : ; n, for which Ti6Zi, where Zi = min(Yi; Ci) and �i = I(Yi6Ci). Here T and C are
assumed to be independent, and are also independent of both Y and X . The d.f.’s of the observed random
variables will be denoted by W with the subscript(s) indicating the particular variable(s) involved. Hence
WZ = (1 − FY ) (1 − H) will stand for the d.f. of Z . Let FY and FX denote the marginal d.f.’s of Y and
X , respectively. Let W 1

Z;X (y; x) stand for the sub-distribution function of the observed uncensored variables
and let � = P(T6Z), t ∧ u = min(t; u) and t ∨ u = max(t; u). Also, for any d.f. F , let �F = 1 − F and
F(z−) = limh→ 0 F(z − h). Then

W 1
Z;X (y; x) = P(Z6y; X6x; �= 1|T6Z)

= �−1
∫ ∞

0

∫ x

0

∫ y∧c

0
G(u)F(du; dv)H (dc):

From which, one can also derive

W 1
Z (z) = �

−1
∫ z

0
G(u) �H (u−)FY (du);

W 1
Z;X (dz; dx) = �

−1G(z) [1− H (z−) ]F(dz; dx);

W 1
Z (dz) = �

−1G(z) [1− H (z−) ]FY (dz):
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We also de�ne C(u) = �−1G(u) �FY (u−) �H (u−) and A(u) = �F(u−)=C(u) and assume that inf u C(u)¿� for
some �¿ 0: Exploiting the foregoing relations, G�urler and Gijbels (1996) suggest the following estimator for
the joint d.f. of (Y; X ), where s(u) = #{i :Zi = u}; for u¿ 0:

Fn(y; x) =
1
n

∑
i

An(Zi)I(Zi6y; Xi6x; �i = 1); (2.1)

where

An(u) =
�FY;n(u−)
Cn(u)

; �FY;n(y) =
∏

i : Zi6y

[
1− s(Yi)

nCn(Yi)

]�i
(2.2)

and

nCn(u) = #{i :Ti6u6Zi}: (2.3)

For the estimator of F(y; x) given above, G�urler and Gijbels (1996) provide the following representation
with an asymptotically negligible remainder term:

F̃n(y; x) = W̃ n(y; x)a(y)−
∫ y

0
W̃ n(s; x)A(ds)−

∫ y

0

A(s)
C(s)

C̃n(s)W 1
Z;X (ds; x)

−
∫ y

0
A(s)L̃n(y)W 1

Z;X (ds; x) +
√
nRn(y; x) (2.4)

≡ A1(y; x)− A2(y; x)− A3(y; x) + A4(y; x) + R∗n(y; x) ≡ �̃�n(y; x) + R̃n(y; x); (2.5)

where

F̃=n(y; x) =
√
n{Fn(y; x)− F(y; x)}C̃n(y) =

√
n{Cn(y)− C(y)};

W̃ n(y; x) =
√
n{W 1

Z;X;n(y; x)−W 1
Z;X (y; x)}L̃n(y) =

√
n �Ln(y)

(2.6)

and

Li(z) =
I(Zi6z; �i = 1)

C(Zi)
−
∫ z

0

I(Ti6u6Zi)
C2(u)

W 1
Z (du) and �Ln(y) =

n∑
i=1

Li(y)=n: (2.7)

For the purpose of density estimation, the order of the remainder term in the foregoing representation is
further improved in G�urler and Prewitt (1997) and the following result is obtained, where Tb is a compact
set:

E

[
sup

(y; x)∈Tb
|Rn(y; x)|2

]
=O(n−2): (2.8)

The covariance functions of the processes C̃n(y), W̃ n(y; x) and L̃n(y) (see Gijbels and G�urler, 1998) are
used to derive the variance of the bivariate density estimator.

2.1. Bivariate density estimator

G�urler and Prewitt (1997) suggest the following bivariate density estimator fn(y; x) for the LTRC data,
by convolving the bivariate d.f. estimator Fn(y; x) with an appropriately chosen kernel function. In particular,
they consider the following estimator:

fn(y; x) =
∫ ∫

1
bxby

Fn(y − byu; x − bxv)K(du; dv); (2.9)
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where K(u; v) is a bivariate kernel function satisfying

∫ ∫
K(u; v)uivj du dv=



1; i + j = 0;

0; i + j¡k;

�(i; j)¡∞ (6= 0 for some (i; j): i + j = k):
(2.10)

As mentioned earlier, the choice of the kernel function is important for the tractability of the variance
terms, particularly for the bivariate case. We adopted the following properties for the construction of these
kernel functions. For the kernel function and for any bivariate function, de�ne

Kij(u; v) =
@i+j

@ui@vj
K(u; v) (2.11)

with

K(y; x) =
∫ y

−1

∫ x

−1
K11(u; v) du dv: (2.12)

Then we construct K(u; v) by using a product kernel K(u; v) = K(u)K(v), from which it is obvious that
K11(u; v)=K1(u)K1(v). The kernel K(·) is constructed by choosing K1(·)∈M�;k with �=1 and k =3, where
M�;k is as de�ned in M�uller (1988, p. 28), satisfying K(−1) = K(1) = 0, and K ∈M0;2.

3. Main results

In this section we present the leading terms of the asymptotic mean and the variance of the bivariate density
estimator. These expressions are important since the quality of the resulting estimator depends critically on
the bandwidth choice, and most of the suggested methods for choosing the bandwidth utilize estimates of the
mean squared error. A brief discussion about the possible approaches for the bandwidth choice is provided
below. First note that we can write

fn(y; x)− f(y; x) = 1
bxby

∫ ∫
��n(y − byu; x − bxv)K(du; dv)

+
1
bxby

∫ ∫
F(y − byu; x − bxv)K(du; dv)− f(y; x) + rn(y; x);

≡ Sn(y; x) + Bn(y; x) + rn(y; x); (3.13)

where

rn(y; x) =
1
bxby

∫ ∫
Rn(y − uby; x − vbx)K(du; dv): (3.14)

The following lemma which is a consequence of the result given in (2.8) indicates that the variance of the
remainder term in the foregoing representation (3.13) is asymptotically negligible:

Lemma 1.

Var(rn(y; x)) = O
(

1
(nbybx)2

)
:

Since the Bn(y; x) term of (3.13) which corresponds to the bias of the kernel estimator is not stochastic,
the leading term for the variance of the density estimator is contributed by the term Sn(y; x). We present
below this main result regarding the asymptotic variance, the proof of which is given in the appendix. For
completeness and reference purposes the asymptotic bias expression is also given in Theorem 1; the proof of
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which involves standard applications of Taylor expansion. See G�urler and Prewitt (1997) for more details.
Let V =

∫
K2(u) du.

Theorem 1. Suppose
∫
FY (du)=G(u)¡∞. Then

Bias(fn(y; x)) = (−1)k
∑
i+j

∑
=k

biyb
j
x

i!(k − i)!f
ij(y; x)�(i; j) + o((bxby)k) + O

(
1

nbxby

)
;

Var(fn(y; x)) =
1

nbxby

[
A(y)2

@2

@y@x
W (y; x)

]
V 2 + o

(
1

nbxby

)

=
1

nbxby

FY (y)
C(y)

f(y; x)V 2 + o
(

1
nbxby

)
:

3.1. Special cases

First note that the variance expression given above reduces to the variance of the bivariate kernel estimator
for the case of i.i.d. observations since no truncation and no censoring implies that C(y) = �FY (y). For the
LTRC model we observe that as a consequence of the incomplete data structure, this variance is magni�ed
by the component a(y) = �FY (y)=C(y), which re
ects the noise introduced in the model by truncation and
censoring. Apart from the trivial i.i.d. model, we can also elaborate the following cases which corresponds to
the truncated only and the censored only type of data:
(a) Right censored data. In this case �=1, G(y)= 1; ∀y and C(y)= �FY (y) �H (y), so that a(y)= 1= �H (y).

This implies that the estimation becomes particularly di�cult, indicating large variances for large y values.
This is a result consistent with the complications of estimation on the right tail with the right censored data.
(b) Left truncated data. In this case C(y) = �−1 �FY (y)G(y), so that a(y) = 1=�−1G(y). We then confront

a magni�ed variance in the left tail, which is an expected problem for the left truncated data.

3.2. Bandwidth choice

As mentioned before, the most important choice in kernel smoothing is the choice of the bandwidth
parameter. There is a vast literature on di�erent perspectives such as local, global and adaptive choices
and numerous approaches within each perspective. Most of these results however are directly applicable to
the univariate data with i.i.d. observations. A detailed discussion of most of the available methods and their
applicability in the case of truncated=censored data is beyond the scope of this study. Therefore, we brie
y
present below a possible approach, namely a data-driven local bandwidth procedure which minimizies the
asymptotic MSE (AMSE) at the point (y; x) which is written as below if a product kernel is used

AMSE(y; x) =
1
4
[b2yf

20(y; x)� + b2xf
02(y; x)�]2 +

1
nbxby

FY (y)
C(y)

f(y; x)V 2;

where

� =
∫
u2K(u) du:

The optimal choices would then be the bx and by which minimize AMSE(y; x). A solution is guaranteed
for the case bx 6= by if f02(y; x) and f20(y; x) have the same sign and are non-zero. It is given by

bx =
[
FY (y)f(y; x)V 2(f20(y; x)=f02(y; x))1=2

2C(y)f02(y; x)2�2

]1=6
n−1=6 and by = bx[f02(y; x)=f20(y; x) ]1=2: (3.15)
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For the simple case of b= bx = by with at least one of f20(y; x) or f02(y; x) non-zero the minimizing value
for b is given by

b(y; x) =

(
[FY (y)=C(y) ]f(y; x)V

[ 12�
2[f20(y; x) + f02(y; x) ]2]

)1=6
n−1=6:

A consistent estimator of this bandwidth can be obtained by replacing the unknown quantities by their
consistent estimators. In particular, (2.2) and (2.3) provide consistent estimators for FY and C(y), respectively.
The estimator given in (2.9) with a pilot bandwidth is consistent for f(y; x). Consistent derivative estimators
f̂20(y; x) (=(@=@y2)f̂(y; x)) and f̂02(y; x) (=(@=@x2)fn(y; x)) can be obtained from (2.9).

Appendix. Proof of the asymptotic variance

Using the notation of (3.13) and noting that Bn is not stochastic,

Var(fn(y; x)) = Var(Sn(y; x)) + Var(rn(y; x)) + 2Cov(Sn(y; x); rn(y; x)): (A.1)

We will show that the leading term in the expression Var(Sn)=O(1=nbxby), which together with Lemma 1
will imply that |Cov(Sn(y; x); rn(y; x))|6[Var(Sn(y; x)) ]1=2Var(rn(y; x)) ]1=2=O(1=(nbybx)2)=o(1=nbybx). Let-
ting S̃n =

√
nSn, we write Var(Sn(y; x)) = n−1E[S̃n(y; x)2], and from (3.13) we have

E[S̃n(y; x)2] =
(
1
bxby

)4 ∫ x+bx

x−bx

∫ y+by

y−by

∫ x+bx

x−bx

∫ y+by

y−by
E �̃�n(u1; u2) �̃�n(v1; v2)

×K11
(
y − u1
by

;
x − u2
bx

)
K11

(
y − v1
by

;
x − v2
bx

)
du1 du2 dv1 dv2: (A.2)

From the expressions given in Section 2, �̃�n(u1; u2) �̃�n(v1; v2) can be written as the sum of 16 terms which are
the squares and cross-products of Ai(y; x)’s, i = 1; : : : ; 4. Let T1 = A1(u1; u2)A1(v1; v2) be the �rst of these.
It is shown in Lemma 3 below that T1 contributes the leading term for the variance and all the others have
negligible orders. Proofs of the remaining terms use similar techniques and can be found in Prewitt and G�urler
(1998) with further details. The following result is used in the lemmas below:

[∫ 1

−1
s1K(s1)K1(s1) ds1

]2
=
1
4

[∫ 1

−1
K2(s1) ds1

]2
: (A.3)

Lemma 2. For i + j + k + l62

∫ 1

−1

∫ 1

t2

∫ 1

−1

∫ 1

t1
si1s

j
2t
k
1 t
l
2K

11(s1; s2)K11(t1; t2) dt1 ds1 ds2 dt2

=




− 1
4

[ ∫ 1

−1
K2(s1) ds1

]2
for j = 1; k = 1; i; l= 0 or j; k = 0; i = 1; l= 1;

1
4

[ ∫ 1

−1
K2(s1) ds1

]2
for k; l= 0; i = 1; j = 1; or i; j = 0; k = 1; l= 1:

0

(A.4)
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Lemma 3.

T1∗ ≡ E
(
1
bxby

)4 ∫ x+bx

x−bx

∫ y+by

y−by

∫ x+bx

x−bx

∫ y+by

y−by
T1

×K11
(
y − u1
by

;
x − u2
bx

)
K11

(
y − v1
by

;
x − v2
bx

)
du1 du2 dv1 dv2

=
(

1
nbxby

)[
A(y)2

@2

@y@x
W 1
Z;X (y; x)

][∫ 1

−1
K2(u) du

]2
+ o
(

1
nbxby

)
: (A.5)

Proof. Using the covariance result of G�urler and Gijbels (1996) we write

T1∗ =
(
1
bxby

)4 ∫ x+bx

x−bx

∫ y+by

y−by

∫ x+bx

x−bx

∫ y+by

y−by
W 1
Z;X (u1 ∧ v1; u2 ∧ v2) (A.6)

×A(u1)A(v1)K11
(
y − u1
by

;
x − u2
bx

)
K11

(
y − v1
by

;
x − v2
bx

)
du1 du2 dv1 dv2

−
(
1
bxby

)4 ∫ x+bx

x−bx

∫ y+by

y−by

∫ x+bx

x−bx

∫ y+by

y−by
W 1
Z;X (u1; u2)W

1
Z;X (v1; v2)A(u1)A(v1) (A.7)

K11
(
y − u1
by

;
x − u2
bx

)
K11

(
y − v1
by

;
x − v2
bx

)
du1 du2 dv1 dv2 = I1 + I2: (A.8)

Splitting the area of integration �rst with respect to (u1; v1), then (u2; v2) and making the appropriate change
of variables, we have after some algebra

I1 = 4
(
1
bxby

)2 ∫ 1

−1

∫ 1

t2

∫ 1

−1

∫ 1

t1
W 1
Z;X (y − bys1; x − bxs2)A(y − bys1)A(y − byt1)

×K11(s1; s2)K11(t1; t2) ds1 dt1 ds2 dt2: (A.9)

Let gT1(y−bys1; x−bxs2)=W 1
Z;X (y−bys1; x−bxs2)A(y−bys1); g01T1(y; x)=@=@xgT1(y; x) and g11T1(y; x)=@2=@y@x.

Applying a Taylor expansion yields

gT1(y − bys1; x − bxs2) =W 1
Z;X (y; x)A(y) + g

10
T1(y; x) (−bys1) + g01T1(y; x) (−bxs2)

+1=2g20T1(y; x) (−bys1)2 + 1=2g02T1(y; x) (−bxs2)2

+ g11T1(y; x) (−bys1) (−bxs2) + O((bx ∨ by)3); (A.10)

A(y − byt1) = A(y) + A1(y) (−byt1) + 1=2A(2)(y) (−byt1)2 + O(b3y ): (A.11)

When the product of (A.10) and (A.11) is taken, any term producing a product of three bandwidths will be
of smaller order than the leading term. Also, by Lemmas 2 and 3, many of the other terms will vanish, and
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the only remaining non-zero intergral produces the following after application of Lemma 2 and (4:18):

I1 =

[∫ 1

−1
K2(s1) ds1

]2{
A(y)
bxby

[
A(y)

@2

@y@x
W 1
Z;X (y; x) + A

1(y)
@
@x
W 1
Z;X (y; x)

]
+ o
(

1
nbxby

)}

−
[∫ 1

−1
K2(s1) ds1

]2 [
1
bxby

@
@x
W 1
Z;X (y; x)A(y)A

1(y) + o
(

1
nbxby

)]
(A.12)

=
(
1
bxby

)[
A(y)2

@2

@y@x
W 1
Z;X (y; x)

][∫ 1

−1
K2(s1) ds1

]2
+ o
(
1
bxby

)
: (A.13)

For the second term in (A.8) we obtain I2=o(1=bxby), which follows since after Taylor expansions, the integral
is zero for sm1 or s

m
2 ; m62, it is of order 1=n for terms including s1s2 and the terms including s

i
1s
j
2; i + j¿3

procedure integrals of order b2.
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