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REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 70, NUMBER 5 MAY 1999
Noise analysis of geometrically complex mechanical structures using
the analogy between electrical circuits and mechanical systems

G. G. Yaralioglua) and A. Atalar
Electrical and Electronics Engineering Department, Bilkent University, Ankara, Turkey 06533

~Received 21 August 1998; accepted for publication 5 February 1999!

Random fluctuations of displacement or velocity in mechanical systems can be calculated by using
the analogy between electrical circuits and mechanical systems. The fluctuation-dissipation theorem
expresses the relation between the generalized mechanical admittance and the noise in velocity.
Similarly, correlation of mechanical noise can be calculated by using the generalized Nyquist
theorem which states that the current noise correlation between two ports in an electrical circuit is
dictated by the real part of the transadmittance. In this article, we will present the determination of
the mechanical transadmittance and we will use the mechanical transadmittance to calculate the
noise correlation on geometrically complex structures where it is not possible to approximate the
noise by using the simple harmonic oscillator model. We will apply our method to atomic force
microscope cantilevers by means of finite element method tools. The application of the noise
correlation calculation method to rectangular cantilever beams shows some interesting results. We
found that on the resonance frequencies, the correlation coefficient takes values 1~full correlation!
and21 ~anti-correlation! along the cantilever axis depending on the mode shapes of the structure.
© 1999 American Institute of Physics.@S0034-6748~99!04005-8#
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I. INTRODUCTION

Random vibrations of mechanical parts set the fun
mental limit on the minimal detectable displacement in ma
precision displacement measuring devices like the ato
force microscope~AFM!, laser interferometric gravitationa
wave detectors, accelerometers, etc. Similar to the se
voltage noise of a resistor in an electrical circuit, the sou
of random vibrations is the thermal agitation. To determ
the merit of a displacement sensing system, it is crucia
understand this noise source and calculate the amplitud
the random vibrations.

The resolution of an AFM system which uses an opti
detection method is determined by the thermal noise of
cantilever. In an optical AFM system, the cantilever is ill
minated by a laser beam and the reflected beam from
cantilever is detected by a photodetector. Since the lase
tegrates the mechanical noise within its beam, the correla
of noise plays an important role in the output noise.

Thermal noise of an AFM cantilever has been inte
sively studied.1–5 In most of the earlier work, the cantileve
has been modeled by a simple harmonic oscillator and
noise of the free end has been calculated by employing
equipartition theorem.6 However, the output noise calcula
tion of the optical AFM system using the simple harmon
oscillator model assumes that the noise within the laser
mination is fully correlated. As we will show in Sec. IV, thi
is a good approximation to predict the output noise
simple AFM cantilevers since the noise correlation var
slowly at the free end. However, for geometrically compl
structures like interdigital cantilevers7,8 which are composed

a!Electronic mail: goksenin@ee.bilkent.edu.tr
2370034-6748/99/70(5)/2379/5/$15.00
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of two sets of interleaving fingers, the noise correlation b
tween fingers should be calculated for an accurate analys
the noise performance.

In this work, we will present a method for the calcul
tion of noise and noise correlation for geometrically comp
mechanical structures. The structure may be made up of
ferent materials or may have different loss coefficients
different parts of the structure. For the noise calculation,
will employ the analogy between electrical circuits and m
chanical systems. First, electrical noise equations will be p
sented. We will repeat the result of the fluctuatio
dissipation theorem9,10 for the calculation of noise at a singl
point, then present the calculation of noise correlation
tween two points on the mechanical structure. For the m
chanical response calculations, we will use the finite elem
method~FEM!. Depending on the FEM meshing of the m
chanical structure, we will define the noise correlation mat
corresponding to the mechanical structure.

We will also define the noise correlation coefficie
which can be used to estimate the degree of noise correla
between different parts of the structure.

II. ELECTRICAL NOISE EQUATIONS

In dissipative linear electrical systems, thermal
Johnson noise was characterized by Nyquist11 in 1928. The
thermal noise of a two terminal network can be represen
by a series voltage noise source,e, or by a shunt current
noise source,i, as determined by the Nyquist theorem. T
mean values of the source phasors are zero,^e&50, ^ i &50,
and the mean square noise voltage or noise current is d
mined by the real part of the impedance~Z! or the admittance
~Y! seen between the terminals
9 © 1999 American Institute of Physics
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^e2&54kBTD fRe$Z%, ~2.1!

^ i 2&54kBTD fRe$Y%, ~2.2!

wheree andi is the root mean square~rms! noise voltage and
noise current, respectively, andRe$% denotes the real part
kB is the Boltzmann constant andT is temperature in Kelvin.
Infinitesimal measurement bandwidth is denoted byD f . In
general,Z or Y is a function of frequency and the abov
equations are valid in the narrow frequency band ofD f .

The Nyquist theorem can be generalized to mu
terminal networks to include the correlation of noise betwe
the two ports.12 Consider a general dissipative linear pass
n-port network~Fig. 1! with a Z-parameter matrix

~2.3!

whereV5@V1V2 . . . Vn#T is the column vector of port volt-
ages,I5@ I 1I 2 . . . I n#T is the column vector of port current
andZ is the impedance matrix. An equivalent representat
can be given as

I5YV , ~2.4!

whereY is the admittance matrix (Y5Z21). If ei shows the
open circuit noise voltage at porti, then the mean value ofei

is zero, and the mean square noise voltage is given by

^ei
2&54kBTD fRe$Zii %. ~2.5!

Hence, the mean square noise voltage of the open-circu
port is determined by the real part of the open-circuit imp
ance at the corresponding port. Equivalently, the m
square noise current is

^ i i
2&54kBTD fRe$Yii %. ~2.6!

Moreover, it is also possible to calculate the correlation
noise between ports. Correlation of the noise voltages
tween porti andk is given by

^eiek* &54kBTD fRe$Zik%, ~2.7!

where * represents the conjugate operation. For recipro
circuits, theZ matrix is symmetric (Zik5Zki). In general,
the above equations are also valid for nonrecipro
circuits.12 Equation ~2.7! states that the correlation of th

FIG. 1. Generaln-port network.
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noise voltages is determined by the real part of the trans
pedance. Equivalently, correlation of noise currents is d
tated by the real part of the transadmittance

^ i i i k* &54kBTD fRe$Yik%. ~2.8!

III. NOISE IN MECHANICAL STRUCTURES

Results obtained from the Nyquist theorem can be
tended to lossy mechanical systems.10 Any linear mechanical
structure can be represented as a three-dimensional elec
circuit with nodes arranged like a finite element model of t
mechanical structure.13 The inductive elements represent th
springs and the capacitive elements represent the mass o
mechanical structure. Resistive elements stand for the lo
in the structure. The mutual inductors can be used to re
sent the coupling between different directions. For mecha
cal systems, a driving point admittance at any point may
defined and the mechanical noise at this point in the struc
can be found from the real part of this driving poi
admittance.10 For an accurate analysis of noise performan
it is also necessary to calculate the correlation of noise
tween the two points on the mechanical structure. Noise c
relation can be calculated by using Green’s functions a
damping parameters.14 For this calculation, we will use the
electrical analog of this problem and the correlation of t
noise at any two points will be related to the real part of t
mechanical transimpedance or transadmittance.

Mechanical systems and electrical circuits are analog
each other~Fig. 2!. Mechanical equations expressing the r
lation between force and velocity can be obtained by rep
ing voltage,V, with force,F, and current,I, with velocity,v.
By using this convention, we can define the driving po
resistance~real part of the driving point impedance! of point
i on the mechanical structure as the real part of the ratio
the F to v:

Rii 5ReH Fi

v i
J , ~3.1!

whereFi andv i are phasors.Fi is the applied force to poin
i and v i is the resulting velocity. The amplitude of the m
chanical thermal noise force acting on this resistance is gi
by

^Fni

2 &54kBTD f Rii . ~3.2!

Similarly, the mechanical driving point conductance~real
part of the driving point admittance! is defined as

Gii 5ReH v i

Fi
J ~3.3!

FIG. 2. Analogy between mechanical systems and electrical circuits
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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and the mechanical noise in velocity is

^vni

2 &54kBTD f Gii , ~3.4!

where^vni

2 & shows the mean square mechanical noise am

tude in the velocity of pointi on the mechanical structure.
The determination of the driving point admittance i

volves applying a sinusoidal force to a specific pointi and
measuring the velocity of the same point. If there is no lo
in the mechanical structure, the phase difference between
force phasor and the velocity phasor will be 90° or290°.
Hence, Eqs.~3.2! and ~3.4! will give zero noise. Similarly,
we can find the transadmittance between two points by
plying a sinusoidal force to the pointi and measuring the
velocity of the other pointk. Transconductance is given by

Gik5ReH vk

Fi
J . ~3.5!

By using the mechanical analog of Eq.~2.8!, the correlation
of the velocity noise between two points is given by

^vni
vnk

* &54kBTD f Gik . ~3.6!

It is customary to use the rms displacement noise, ra
than the noise in velocity. We can easily derive noise eq
tions for displacement,u, from Eqs.~3.4! and ~3.6!. Since
velocity is the derivative of displacement, the Nyquist re
tion for the displacement noise is

^uni

2 &54kBTD f ImH 2
1

v

ui

Fi
J ~3.7!

and the correlation of displacement noise between pointi and
k is

^uni
unk
* &54kBTD f ImH 2

1

v

uk

Fi
J , ~3.8!

where Im$% denotes the imaginary part andv52p f is the
radial measurement frequency. For displacement we can
fine a noise correlation matrix,N, where the diagonal ele
ments show the mean square absolute displacement no
point i and the off-diagonal elements are the correlation
displacement noise between pointsi andk:

Nik5^uni
unk
* &. ~3.9!

The noise correlation matrix is symmetric for reciprocal s
tems.

IV. APPLICATION OF THE METHOD: CANTILEVER
BEAM

Cantilever beams are widely used in atomic force m
croscopy. The deflection of the cantilever is monitored
measure the atomic forces. Noise analysis of the cantile
beam is especially important for AFM where the ultima
resolution of the system is determined by the thermal m
chanical noise of the cantilever.

Consider the cantilever beam depicted in Fig. 3. In t
figure, the cantilever is meshed into 5mm by 5 mm four-
node finite elements.15 The length and the width of the can
tilever are 100 and 40mm, respectively. Hence, the finit
Downloaded 26 Feb 2013 to 139.179.14.46. Redistribution subject to AIP l
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element~FE! model of the cantilever beam is composed
160 elements and 189 nodes. Each node can be viewed
electrical port. The electrical analog of this mechanical str
ture is then a 189-port electrical circuit with a 189 by 189Z
matrix.

We can determine the displacement noise of any node
the cantilever by using Eq.~3.7!. To calculate theui /Fi ratio
in this equation, a sinusoidal force is applied to the node
the displacement of the same node is calculated through
frequency ~harmonic! analysis of finite element metho
~FEM! software, ANSYS 5.4.16 We applied this procedure to
the node in the middle of the free end~nodeM in Fig. 3! to
calculate the displacement noise. The rms noise spectru
nodeM is depicted in Fig. 4. Two resonance peaks are v
ible between 100 Hz and 1 MHz. These resonance pe
have nonzero bandwidths, since a small amount of los
present in the system. The loss coefficient is chosen such
the quality factor of the first resonance is 100. Without t
loss, the quality factor will be infinity and the imaginary pa
of the displacement phasor, and hence Eq.~3.7! will be zero.
The main sources of noise in the cantilever are the struc

FIG. 3. FEM modeling of a cantilever beam and the electrical model. T
length and the width of the cantilever is 100 and 40mm, respectively. The
thickness of the cantilever is 1mm. Cantilever material is silicon~Young
modulus,E5130 Pa, density,r52.332 g/cm3, Poisson ratio,s50.278).
NodeM is in the middle of the free end.

FIG. 4. Calculated rms mechanical noise amplitude (Azn
2) of the free end

~nodeM! of the cantilever by using FEM and Eq.~3.7! ~temperature,T, is
300 K! ( f A5100 Hz, f B570 kHz, f C5123 kHz, f D5380 kHz, f E5768
kHz!.
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions



tio
nt
e

b
e

e
t

oi
th
a
s

un
.
lcu

n
n

the

the
rre-
q.
e
ea-

low

p-
ncy

o-

ery
nt

cies
nd

ax
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damping~Rayleigh damping!, air damping and coupling to
the bulk waves in the cantilever stand.

Figure 5 shows the mechanical noise amplitude varia
along the longitudinal axis of the cantilever for two differe
frequencies (f A and f C). At each FE node a sinusoidal forc
is applied and the displacement of the node is calculated
FEM. The rms mechanical noise amplitude is evaluated
using Eq.~3.7!. For the cantilever depicted in Fig. 3, nois
correlation matrix~N! is 189 by 189 and in Fig. 5 only som
of the diagonal elements which correspond to nodes on
cantilever axis are plotted. For the cantilever beam, the n
amplitude increases towards the free end. It is zero at
node (x50) where the cantilever is fixed. The free end h
the most noise. The ratio of the noise amplitude at the re
nance to the noise amplitude at very low frequency is aro
100, which is equal to the quality factor of the cantilever

Correlation of noise between two nodes can be ca
lated by using FEM and Eq.~3.8!. We will use the correla-
tion coefficient to compare noise correlation within the ca
tilever beam. Correlation coefficient is a unitless variable a
defined as

FIG. 5. Calculated rms mechanical noise amplitude (Azn
2) along the canti-

lever axis atf 5 f A5100 Hz andf 5 f C5123 kHz. The symbolL shows FE
nodes,i ~nodes along the cantilever axis!.

FIG. 6. Correlation coefficient between the nodes along the cantilever
and the node at the middle of the nodeM.
Downloaded 26 Feb 2013 to 139.179.14.46. Redistribution subject to AIP l
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. ~4.1!

Figure 6 shows the correlation coefficient between
nodes on the cantilever axis and the nodeM for five different
frequencies. We have increased the number of nodes in
FE model so as not to miss any rapid changes of the co
lation coefficient. While calculating the numerator of E
~4.1!, the nodeM is excited by a sinusoidal force and th
displacements of the nodes on the cantilever axis are m
sured. Figure 6 shows some elements in a row ofN. These
elements correspond to nodes on the cantilever axis. Be
the first resonance frequency,f 5 f A and f 5 f B , the correla-
tion coefficient is zero at the fixed end, and gradually a
proaches unity along the axis. When the excitation freque
is equal to the resonance frequency (f 5 f C), the correlation
coefficient is unity for most of the nodes. On the first res
nance the noise of nodeM is fully correlated with the noise
of all the nodes on the cantilever except with those v
close to the fixed end. Note that, unity correlation coefficie
does not mean that absolute noise values are the same.

Between the first and the second resonance frequen
( f 5 f D) the correlation coefficient takes both negative a
positive values and it has another zero atx575 mm which is
the node at rest when the cantilever is excited atf 5 f D . At
the second resonance frequency (f 5 f E), the correlation co-

is

FIG. 7. Correlation coefficient between the node at the free end (x5100
mm! and the nodes atx530 mm, x560 mm, x585 mm for Q5100 and
Q51 as a function of frequency.

FIG. 8. Interdigital cantilever and the form of correlation matrix.
icense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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efficient is 21 between the fixed end and the node at r
(x578 mm!, which means that this part of the axis is an
correlated with the free end, whereas other nodes~between
the nodeM and the node at rest! are fully correlated with the
free end.

The correlation coefficient can also be calculated a
function of frequency. Figure 7 shows the correlation co
ficients between the three different points on the axis and
nodeM for two different quality factors. For highQ systems,
the correlation coefficient is very weakly dependent onQ.
Only when the quality factor is very low is a significa
change observed. We note that, below the first resonance
correlation coefficient is almost independent of loss.

Interdigital ~ID! cantilevers7,8 are new interferometric
deflection detection sensors for atomic force microscopy.
ID cantilever is composed of two sets of interleaving fing
~reference fingers, moving fingers! to form an optical diffrac-
tion grating as depicted in Fig. 8. Such gratings when il
minated by a laser beam reflect incidence light into ma
orders. The intensities of the orders depend on the rela
displacement of the fingers. If a photodetector is used
detect the order intensity, the output current from the de
tor gives the cantilever deflection. The total noise at the
tector output is determined by integrating the mechan
noise within the illuminated area on the cantilever. For
accurate evaluation of the output noise, the noise correla
between fingers should be calculated.

For the ID cantilever, the correlation matrix has the fo
depicted in Fig. 8 if the FEM nodes are arranged prope
Off-diagonal sub-matrices are zero since there is no
chanical coupling between alternate fingers; for example,
correlation between nodes A~on reference fingers! and D~on
moving fingers! is zero. In this section, we will present th
correlation coefficient calculation between two reference
gers, specifically between nodes A, B and C as depicte
Fig. 8.

There is a close relationship between resonance m
shapes and the correlation coefficient. Figure 9 shows
mode shapes of the ID cantilever at the first longitudi
resonances. There are four longitudinal resonances betw
0 and 300 kHz. The length of the fingers is 70mm. The
cantilever material is silicon and the thickness is 1mm. Fig-
ure 10 shows the correlation coefficient between node

FIG. 9. Mode shapes of the fingers at different resonance frequencies
length of the reference part is 150mm. Finger length is 70mm. Arrows
indicate the direction of motion. Dotted lines show the undeformed shap
the ID cantilever.
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and B and between nodes A and C. The resonances re
themselves as peaks in Fig. 10. Atf 1 all fingers move up and
down at the same time as depicted in Fig. 9, hence at
frequency, noise displacements at nodes A, B and C are p
tively correlated. Atf 2 , B and C move in the opposite di
rection of A. Hence correlation coefficients,rAB , rAC , are
negative. Atf 3 , A and B move in the same direction whic
gives positive correlation, whereas the motions of A and
are in the opposite direction as depicted in Fig. 9, hencerAC

is negative. Atf 4 , the situation is reversed;rAB is negative
andrAC is positive.
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