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Abstract 

We address the single-machine batch scheduling problem which arises when there are job families and setup 
requirements exist between these families; our objective is to minimize the maximum lateness. As our main result, we give 
an improved dynamic program for the solution of the problem. © 1997 Elsevier Science B.V. 
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1. Introduction 

The single-machine batch scheduling problem 
can be described as follows. Suppose that there are 
F, F ~> 1, job families of which a fami lyf  1 <~f<<.F, 
contains N ( f ) j o b s ,  that these jobs are ready at 
time zero, and that they will have to be processed 
without interruption on a single machine which is 
available continuously. Suppose further that a job 
j in family f, 1 <~j <~N(f) and 1 <~f<~F, has a pro- 
cessing time Pit and a due-date dij associated with 
it, and that a setup time sy o is needed when two jobs 
j and k belonging to separate families f and 9 are 
processed consecutively in that order (note that no 
setup time is required i f j  and k belong to the same 
family f or 9, i.e., syy =soo =0). Assume that the 
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machine is initially set up for a hypothetical job 
family-  call it 0 for convenience; thus, a job belong- 
ing to family f, 1 <~f<~F, incurs a setup time s0i 
whenever it is scheduled first. Also, make the very 
reasonable assumption that the setup times obey 
the triangle inequality: that is, given families f, 9 and 
h, we have slo + sgh >~ Slh. Finally, let CIj represent 
the scheduled completion time of job j of family f 
Note that the objective typically is to minimize 
some function of CIj. 

Batch scheduling problems of the above kind 
arise frequently in process industries, parts manu- 
facturing environments and cellular assembly 
systems. They also appear often in various other 
contexts where a changeover is necessary (such as 
loading shared software into a computer's main 
memory, assigning labor to machines in a dual- 
constrained production shop and sequencing the 
landing of differently sized aircraft on a runway). 
For  further details on batch scheduling, the 
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interested reader is referred to the recent papers 
by Monma and Potts [6] and Potts and Van 
Wassenhove [8]. 

In this note, we examine the batch scheduling 
problem with the objective of minimizing the 
maximum lateness which is given by Lma x = 

max1 ~_S <_F.I <.s~N~s) {Lys}, where Lfs = Cs, J -dfs. 
Using the notation of Potts and Van Wassenhove 
[8], the problem can be referred to as either 
l[syglLmax or l[sylL . . . .  depending upon whether 
the setup times are sequence-dependent or sequence- 
independent (that is, set = sy for all e # f ) .  

Let N = ( 1 / F ) ~ T < , F N ( f )  +1. Monma and 
Potts [6] have presented a generic dynamic pro- 
gram which can solve l[sfg[Lma x in O(F2N F-'+2F} 
and llsflLmax in O(FaN 2e) time. They have indi- 
cated, as have Bruno and Downey [2] before them, 
that llsfolLma x is strongly NP-hard. Bruno and 
Downey [2] have also shown that l[syl Lmax is 
NP-hard as well but is solvable in pseudo-poly- 
nomial time if the number of distinct due dates 

call it D is fixed. Recently, there has been 
a revival of interest in the problem. Potts and 
Van Wassenhove [8], Unal and Kiran [10] and 
Webster and Baker [11] have all presented new 
structural results with respect to variations of 
the problem. Shutten et al. [9] have addressed 
l lsf l  Lmax in presence of job release dates and have 
proposed a branch and bound algorithm that can 
solve moderately sized problem instances. Baker 
and Magazine [1] have also provided some pre- 
liminary computational results. To the best of our 
knowledge, no approximation algorithm exists for 
l[sfol Lma x or  l[sll Lma x per se. However, Zdrzalka 
[12, 13] has given such algorithms for a problem 
which is equivalent to llsy[L . . . .  both for the case 
when the setup times are all equal and the case 
when they are not. (It should be noted though 
that the performance guarantees obtained for his 
equivalent problem do not hold for l lsf[Lmax. ) 

Our main contribution is the development of 
a new dynamic program for llsfglL . . . .  which 
solves it in O(F2N F) time. This resolves the vexing 
situation that the problem could not thus far be 
solved in this time order, even though most of the 
other single-machine batch scheduling problems 
(including the threshold version of 1 [Syg[L~) could 
be. We also provide a minor generalization which 

can help reduce effectively the size of a problem 
instance. The long-standing question as to whether 
liST[ Lmax is strongly NP-hard for an arbitrary D, 
however, remains open. 

2. Preliminaries 

We start out by stating the known complexity 
results for lls~,l Lmax and liST[ Lma x. 

Theorem 1. l[sfgl Lmax is strongly NP-hard even for 
a single due date, one job per family, and two distinct 
setup times; it is, however, polynomially solvable for 
a fixed F. 

Monma and Potts [6] and Bruno and Downey 
[2] point out that the proof of NP-hardness is 
trivial. One approach is to use a reduction from the 
Hamiltonian Path problem; see [4]. The polynomial 
solvability for a fixed F follows directly from the 
complexity of the Monma Potts dynamic program 
[6]. 

Theorem 2. l [ s f lLma  x is NP-hard even for either 
two distinct due dates, two jobs per family, and arbit- 
rary setup times or three distinct due dates, three jobs 
per family, and equal setup times; in general, it is, 
however, pseudo-polynomially solvable for a fixed 
D and polynomially solvable for a fixed F. 

The NP-hardness proofs, based on the Partition 
problem [4], are given in [2], as is the pseudo-poly- 
nomial algorithm for a fixed D. The M o n m ~ P o t t s  
dynamic program [6] provides the polynomial 
solution for a fixed F. 

We now state two useful structural properties, 
including a generalization, for an optimal solution 
to lIsfg ] Lma x. 

Theorem 3. There is an optimal schedule for l[STo I 
Lmax in which all jobs from a given family are pro- 
cessed in the earliest-due-date-first (EDD) order. 

The proof appears in [6]. The theorem signifi- 
cantly cuts down the enumerative burden. For 
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notational convenience, we assume, from this point 
on, that the jobs are indexed such that d:~ >1 df2 
• .. >~d:N~:) for all f, 1 ~f<~F. 

Theorem 4. I f  there are two consecutively indexed 
jobs i a n d j  within family f such that i <j and dfi <~ 
dfj +Pyi, then there is an optimal schedule for 
llsfg I Lma x in which job j is processed immediately 
before job i. 

The theorem is a generalization of a result for 
llszlL . . . .  given in [t0] and also in [11]. It is 
proved straightforwardly by moving job j imme- 
diately before job i and showing, through the use of 
the triangle inequality, that doing this does not 
increase  Lma x. 

Theorem 4 can be applied repeatedly, moving 
from the smallest index to the highest, to combine 
all jobs from the same family that will be processed 
together in some optimal schedule. The combined 
jobs can actually be considered as a single job. For 
example, if consecutively indexed jobs i and j  (i <j)  
from family f can be combined, the result will be 
a single fictitious job whose processing time and 
due date are given by pfj q-Pfi and dfi , respectively. 
Notice that job j will be processed before job i in 
a real schedule. 

From this point on, we will assume that all jobs 
within family f, 1 ~ f ~ F ,  have been combined as 
above and thus that d:~ >d:~ +p:~ whenever i < j  for 
all (i,j) pairs of consecutively indexed family f jobs. 

3. New algorithm 

The Monma-Pot ts  dynamic program [6] 
solves lls:al Lmax in O(F2N F2+2F) and l[s:l Lmax in 
O(F2N 2F) time. These are the best worst-case com- 
plexities reported to date. However, for F =2, an 
adaptation of the algorithm for 11s:o I Y w:j C:~ given 
in [7] yields a n  O ( N  3) time solution for llsfol L . . . .  

This is somewhat vexing since most similar 
single-machine batch scheduling problems, such as 
llsso [ ~Wsj CS~, can be solved in O(F2N e) or com- 
parable time. It is all the more so because the 
threshold version of llsso [ L . . . .  where one is inte- 
rested in finding out if there exists a schedule such 
that L .... ~<Lo, can also be solved in the same 

time order through a slight modification of the 
algorithm for lls:91 •U:j given in [6]. 

One possible approach to solving lls:olLm, x is 
through the repeated solution of the threshold 
problem in a binary search scheme where the Lo is 
picked from the interval [L  . . . .  Lr, ax], Lmax and 
Lmax being known lower and upper bounds, respec- 
tively, on the optimal value of Lma x. In each case, 
a new problem instance I' is created from the 
original instance I by choosing d~rj = d:j + Lo, and 
I' is solved by using the modification of the 
Monma-Pot ts  dynamic program for llsfgl~Ufj 
[6] to see if 2:,j Uyj =0. Assuming that all data 
are integral, this approach solves llsyolLma x in 
O(F2Nelog(Lmax-Lm,x + 1)) time. This, however, 
is not entirely satisfactory as the time complexity 
falls short of our target of O(F2N r) and also is not 
strongly polynomial for a fixed F. 

We now propose a new dynamic program which 
schedules the jobs from the back to the front (i.e., in 
the increasing order of their indices within the 
families) and achieves the desired complexity. It is 
motivated by the success of such schemes in solving 
liST01Zwfj Cfj; [3, 5]. 

The key is the partitioning of Lm~x of a schedule 
between the jobs in the front and the back. Let 
cp(t) and p(t) denote, respectively, the family and 
the index of the job processed in the tth last 
position in a schedule. Also, let the total number of 
jobs be N ' = F ( N - 1 ) ,  and define the family 
of a fictitious (N' + 1)th last job as q~(N' + 1) --0. 
Finally, let A be the ordered set of the last r jobs 
in the schedule whose maximum lateness would be 

a 
Lmax if they started at time 0, and, similarly, let B 
be the ordered set of the first N ' - r  jobs whose 
maximum lateness is n Lmax and whose makespan is 
given by 

MS ~ = ~ [s~,+l)~.) +P~").I')]" 
r < t ~ N '  

One can easily verify that, after some algebra, it is 
possible to write Lmax of the given schedule as 
follows: 

B Lmax = m a x  {Lmax, A Lma x + MS B +s~.+ ~),t~) --So~(,i}- 

We can now state a result about the viability of 
expanding a r-job partial schedule. Assume that 
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there are two r - job par t ia l  schedules, call them 
A and A', consis t ing of the same set of j obs  and  with 
the same first job.  

L e m m a  5. l f L Aax A' ~< L . . . .  then the completion of A' 
cannot yield a smaller Lma x value than what can be 
obtained from the completion of A. 

P r o o f  The  p roo f  is simple. Imagine  that  bo th  
A and  A' have been comple ted  identically,  by 
schedul ing the N ' - r  j obs  in B before them, to 
ob ta in  the full schedules S and S', respectively. It is 
easy to show, using the pa r t i t ioned  expression for 
Lma x given above,  that  A A' Lma x ~<Lma x necessari ly 
implies s .< s' L . . . .  Lma x. This comple tes  the proof.  [] 

The  l emma essential ly suggests that  only  A needs 
to be re ta ined  for further expansion.  We are now in 
a pos i t ion  to develop  the new dynamic  p r o g r a m  
which will rely heavi ly on the l emma and which we 
will call A lgo r i t hm DP.  

Let A(n(1) . . . . .  n(F);g) be the m i n i m u m  maxi-  
m u m  lateness when only the first n(f)jobs of each 
family f, 1 <.~_.f < F, have been scheduled such that  
j o b  n(g) from family g is first and  has a s tar t  t ime of 
0. This A(n(1) . . . . .  n(F);g) can be ob ta ined  from 
A(n'(1) . . . . .  n'(F);g'), where n'(f) = n ( f )  for 1 ~<f~< 
F and  f # g ,  and  n ' ( f ) - - n ( f ) - i  for f=g ,  and 
where 1 ~ g '  ~<F and  n'(g') >0 .  The dynamic  pro-  
g r amming  recurs ion is expressed as follows: 

A(n(1) . . . . .  n(F);g) = minl¢:,xo,)> o ' t _< 0' ,<v,, 

{max {Sos + Ps.~o) -do,~y,, 

A(n ' ( l )  . . . . .  n'(F);g') +Soy 

+ Po,~y) + soy' - Sos,} }. 

The recursion is first initialized with A(n( l )  . . . . .  n(F); 
g) :Soy +Pgncy) -dy,<o) for all g, 1 ~<g ~<F, such that  
n(f) = 0  i f f # g  and 1 i f f = g  for all J; 1 <~f<~F. It 
is then carr ied  out  over  all n(f), 0 <<,n(f) <~N(f) 
and 1 <~f<~F, and all g, 1 ~<g ~<F, whenever  
n(g) >0 .  The  op t ima l  solut ion is finally ob ta ined  by 
comput ing:  

A * ( N ( 1 )  . . . . .  N(F)) = min ,1  ~< s -< v,, 

{A(N(1) . . . . .  N(F);  g)}. 

Clearly,  D P  enumera tes  only over  those 
schedules that  are po ten t ia l ly  op t imal  (el Theo-  

rem 3 and L e m m a  5). It is, therefore,  correct ,  Next,  
there  are 2F  c ompu ta t i ons  needed for a single 
A(n(1) . . . . .  n(F);g), and  the size of the state space is 
bounde d  above  by FN F. This t ranslates  into a com- 
plexity of O(FZNP),  bo th  in terms of t ime and 
space. We summar ize  this in the form of a theorem.  

T h e o r e m 6 .  Algorithm DP solves lls:olLm, x in 
O(FaN e) time and space. 
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