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Improving the accuracy of a time lens
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A method for improving the accuracy of temporal imaging with an imperfect time lens is proposed. Signal
distortion arising from complicated dispersion of the delay lines can be reduced considerably by appropriate
choice of the phase-modulation function including the second harmonic of the basic modulation frequency and
a specific phase shift of the modulation with respect to the main signal. The method is of particular interest
for picosecond and femtosecond optical pulse generation. © 1997 Optical Society of America
[S0740-3224(97)05211-9]
1. INTRODUCTION
Recently there has been considerable interest in temporal
imaging with a time lens.1–3 A time lens can stretch and
compress signals in time by varying phase relations
among various components of their spectra.1 The idea of
transforming signal spectra to resolve and compress sig-
nals was introduced in radiophysics4 and later developed
in optics with the purpose of generating ultrashort laser
pulses.5–8

The action of the time lens has been thoroughly treated
by Kolner and Nazarathy1 and by Kolner.2,3 It is based
on the analogy between the propagation of a wave packet
in a dispersive medium and the diffraction of a beam in
free space. Spatial imaging with a glass lens involves
diffraction from object to lens, a spatially dependent
phase shift provided by the lens, and diffraction from the
lens to an image. Similarly, temporal imaging with a
time lens requires dispersion from an object pulse to the
lens, a time varying phase shift that is due to the lens,
and dispersion from the lens to an image pulse. Hence
the entire time lens system consists of two dispersive el-
ements (delay lines) and a phase modulator between
them (the time lens itself ). In the research reported in
Refs. 7 and 8, dispersive elements were realized by grat-
ing pairs, and the optical phase modulator was composed
of a LiNbO3 crystal placed in a waveguide with the phase
velocity of the driving microwave mode matched to that of
the optical wave in the crystal. Similarly to its spatial
counterpart, the time lens can rescale temporal signals,
preserving their shape, when some special tuning condi-
tions are satisfied (see below).

The time lens is perfect when the phase shift that
arises in the dispersive lines is quadratic in frequency
and the phase modulation is quadratic in time. In this
case, the initial signal is scaled in time, with no distortion
if the parameters of the functions b (v) and w(t), where b
is the propagation constant, v is the frequency, w is the
phase modulation, and t is the time, are matched accord-
ing to the equation of a lens.1,2 This is the case that was
carefully studied in previous papers.1–3

In practice, the time lens is not perfect because the
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phase modulation is normally sinusoidal7,8 and the dis-
persion law is not exactly quadratic. Therefore some sig-
nal distortion is inevitable and is often more significant
than the regular nonparaxial effects in the spatial lens.
In the time lens, however, there is a possibility of control-
ling not only the phase modulation w(t) but both func-
tions w(t) and b (v) simultaneously. In this way one can
try to adjust the functions properly to decrease signal dis-
tortion to a minimum even when both of them are not
quadratic.

We propose a method for improving the accuracy of
temporal imaging with an imperfect time lens by opti-
mum choice of phase modulation adjusted to the given
nonquadratic dispersion of the delay lines used in the sys-
tem.

2. FORMULATION
In the dispersive medium the wave equation for the elec-
tric field E(t, z) is of the form

]2E~t, z !

]z2 2
1

c2

]2

]t2 E
0

`

«r~t!E~t 2 t, z !dt 5 0, (1)

where «r(t) is the relative dielectric function of the me-
dium and c is the speed of light in free space. One can
find an analytical solution to Eq. (1) by using the Laplace
transform, which is the most suitable method for the
given problem.9 In terms of the envelope of the wave
packet E(t, z) 5 U(t, z)exp$i@v0t 2 b (v0)z#% at the car-
rier frequency v0 , the solution is

U1~u, z ! 5 E
2`

`

U0~t !G~u 2 t, z !dt, (2)

where U0(t) 5 U(t, 0) is the input signal, U1(u, z) is the
signal at a distance z, u 5 t1 2 z/vg , vg is the group ve-
locity at frequency v0 , G(u 2 t, z) is the Green’s func-
tion given by the integral

G 5
1

2p E
2`

`

exp$i@~u 2 t !~v 2 v0! 2 G~v!z#%dv,

(3)
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G(v) 5 b(v) 2 b0 2 b1(v 2 v0), b2(v) 5 «r(v)v2/c2,
«r(v) is the Fourier transform of the dielectric function
«r(t), b0 5 b(v0), and b1 5 1/vg 5 ]b(v)/]vuv5v0

.
In the third-order approximation, when

b~v! 5 b0 1 b1~v 2 v0! 1 1/2b2~v 2 v0!2

1 1/6b3~v 2 v0!3, (4)

one has

G 5 G3~u 2 t, z ! 5
1

2p E
2`

`

exp$i@~u 2 t !v 2 1/2b2zv2

2 1/6b3zv3#%dv. (5)

In the second order, when b3 5 0, G(u 2 t, z) is simpli-
fied to

G 5 G2~u 2 t, z ! 5 ~2pib2z !21/2 exp@i~u 2 t !2/2b2z#,
(6)

providing an exactly quadratic phase shift in the fre-
quency domain.

Consider now the action of the time lens. Suppose
that the dispersive lines are of lengths L1 and L2 , and
that the phase modulator transforms the signal
U1(u, L1) as

U2~u, L1! 5 U1~u, L1!exp@iw~u!#, (7)

where w(u) 5 w0 1 w1u 1 w2u 2 1 w3u 3 in the third-
order approximation. Then the output signal U3(t) at
the end of the system is given by the relation

U3~t! 5 E
2`

`

dtU0~t !E
2`

`

duG~t 2 u, L2!

3 exp@iw~u!#G~u 2 t, L1!, (8)

where t 5 u 2 (z 2 L1)/vg .
When G 5 G2 and the phase modulation is quadratic,

w(u) 5 w2u 2, one obtains

U3~t! 5
2 i
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where
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In this case, under the condition that

1/~2b2L2! 1 1/~2b2L1! 1 w2 5 0, (11)

which is the regular equation of a lens,1 one has I(t, t)
5 b2L1d(t 1 tL1 /L2) and obtains the well-known
result10 that the output signal U3(t) is of the same form
as the input signal but of a different time scale, i.e.,

U3~t! 5 2iS L1

L2
D 1/2

exp S it 2
L1 1 L2

2b2L2
2 DU0S 2

L1

L2
t D ,

(12)
where the scaling factor is K (0) 5 2L1 /L2 (the phase fac-
tor is not essential).

When the dispersion law b (v) and the phase modula-
tion w (u) are not quadratic, the inner integral in the gen-
eral formula [Eq. (8)] is not simplified to the d function.
Therefore, in this case, the output signal U3(t) is no
longer similar to U0(t). The exact analysis of the trans-
form is rather complicated, even in the third-order ap-
proximation, when G 5 G3 according to Eq. (5). How-
ever, if one takes G3 as

G3 5 G3~u 2 t, z ! 5 A~u 2 t, z !exp@iF~u 2 t, z !#,
(13)

and makes a notion that, in the given phenomenon, varia-
tion of the phase factor F(u 2 t, z) compared with A(u
2 t, z) is more essential, an approximate analysis is pos-
sible.

Equation (13) arises naturally if the stationary-phase
asymptotic evaluation of integral (5) is performed. If a
few points of the stationary phase exist (e.g., two, as for
the function G3), one can for simplicity take into account
only one of them, which relates to the minimum oscilla-
tions in function (13) to yield the main contribution to in-
tegral (8).

Let us expand phase function Fi (i 5 1, 2 refers to the
first or the second dispersion line, respectively) in the
power series in u 2 t (or t 2 u) with descending coeffi-
cients fik . When i 5 1, one has, for example, F1(u
2 t, L1) 5 f10 1 f11(u 2 t) 1 f12(u 2 t)2 1 f13(u 2 t)3,
where the third-order approximation is used. Then Eq.
(8) takes the form

U3~t! 5 E
2`

`

dtU0~t !E
2`

`

duC~u, t, t!exp@iS~u, t, t!#,

(14)

where

S~u, t, t! 5 u@~ f11 2 f21 1 w1! 2 2~ f12t 1 f22t!

1 3~ f13t
2 2 f23t

2!# 1 u2@~ f12 1 f22 1 w2!

2 3~ f13t 2 f23t!# 1 u3@ f13 2 f23 1 w3#.

(15)

If the stationary-phase method that accounts for one
stationary point is applied to Eq. (5), the coefficients fik
are found approximately as fi1 5 0, fi2 5 1/(2b2Li), and
fi3 5 b3 /(6b2

2Li
2). Analysis shows, however, that for

accurate signal scaling more careful evaluation is re-
quired, and the phase F(u 2 t, z) in Eq. (13) should be
taken as a mean-value function that smooths the actual
oscillating phase of the original Green’s function G3(u
2 t, z) given by Eq. (5); see the numerical example and
Figs. 1 and 2 below.

Now, by applying the stationary-phase method to the
inner integral in Eq. (14), one obtains the output signal
U3(t) as

U3~t! 5 E
2`

`

dtU0~t !$C1~u1!exp@iS~u1!#

1 C2~u2!exp@iS~u2!#%, (16)
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where u1 5 u1(t, t) and u2 5 u2(t, t) are two different
points of the stationary phase given by the equation

]S~u, t, t!/]u 5 0. (17)

As one can see, the output signal U3(t) is not similar to
the input signal, which means a certain distortion of the
signal by the time lens [when f13 5 f23 5 w3 5 0, the in-
ner integral in Eq. (14) is a d function, which reduces Eq.
(14) to Eq. (12)].

However, noting the small values of the coefficients fi3
and taking them into account in the first power only, one
can considerably simplify Eqs. (16) and (17). In this case,
when the following three conditions are satisfied:

f11 2 f21 1 w1 5 0, (18)

f12 1 f22 1 w2 5 0, (19)

f13 2 f23 1 w3 5 0, (20)

the phase function S(u, t, t) has only one stationary
point, integral equation (16) can be further analyzed in a
similar way, and finally, when some small additional am-
plitude variations are neglected, the output signal can be
written, approximately, in the form

U3~t! 5 U0@t0~t!#exp$iT@t0~t!#%. (21)

A remarkable thing about Eq. (21) is that the function
t0(t) is linear:

t0~t! 5 2~ f22 /f12!t, (22)

and is exactly of the same form that provides zero argu-
ment to the d function that reduces Eq. (9) to Eq. (12).
As a result, the output signal U3(t) is again similar to the
input signal, U0(t).

3. DISCUSSION
Equations (18), (19), and (20) can be interpreted as the
first-, the second-, and the third-order equations of a lens,
respectively, with the coefficient K 5 2f22 /f12 being the
scaling factor of temporal imaging (the signal is com-
pressed when uKu . 1). Although the requirements of
Eqs. (18)–(20) are approximate (as is the signal scaling
that is performed), the equations work fairly well for
phase-modulation tuning, as confirmed by the computer
simulations described below.

When either f13 5 f23 Þ 0 (symmetrical imperfect lens)
or f13 5 f23 5 0 (perfect lens), Eq. (20) yields w3 5 0; i.e.,
quadratic phase modulation is optimal. In general, how-
ever, the third-order term w3 5 f23 2 f13 is needed; i.e.,
one requires nonsymmetrical nonquadratic phase modu-
lation to optimize signal imaging.

Equation (19) is equivalent to the regular lens law [Eq.
(11)] that is used to adjust the focal length and to esti-
mate the scaling factor K. In the second-order approxi-
mation one has f12 5 f12

(0) 5 1/(2b2L1), f22 5 f22
(0)

5 1/(2b2L2), and K 5 K (0) 5 2L1 /L2 . In general,
however, K Þ K (0) because of the effect of the higher-
order dispersion, which alters the values of f12 and f22
compared with those of f12

(0) and f22
(0) because the former

values depend on the parameter b3 in the dispersion law.
The more essential fact is that the frequency of the

phase modulation1,2 that is related to the coefficient w2
has to be adjusted according to the accurate value w2
5 2( f12 1 f22) given by the more general equation of a
lens, Eq. (19), than by that of the regular law, Eq. (11).
The latter is especially important for achieving the low-
distortion imaging consistent with Eqs. (18)–(20).

The analytical results obtained are confirmed by accu-
rate numerical modeling. Figure 1 shows the results of
the computer simulation that illustrates the effect. The
curves in Fig. 1 were scaled when plotted to enable them
to be compared easily. As one can see, the regular signal
distortion is considerable, but accurate choice of the
phase modulation helps to decrease the distortion greatly.
The parameters w1 , w2 , and w3 of the cubic phase modu-

Fig. 1. Output signals U3 computed with third-order phase-
matching (solid curve) and with typical quadratic phase modula-
tion (longer-dashed curve), compared with the input signal U0(t)
(shorter-dashed curve). The output signals scale back with the
coefficients K and K (0), respectively. The relevant parameters
in relative units are L1 5 5, L2 5 1, b0 5 1, b1 5 1, b2 5 0.2,
b3 5 0.005, which lead to w2

(0) 5 23 and K (0) 5 5 for quadratic
phase modulation, and w1 5 0.03, w2 5 23.08, w3 5 20.12, and
K 5 5.19 for the third-order phase matching.

Fig. 2. Phase F(t) of the Green’s function G(t, L2) according to
the stationary-phase method accounting for two stationary
points (solid, jagged curve) and the third-order approximation of
F(t) (dashed, smooth curve) used to evaluate w(t).
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lation w (u) were determined by Eqs. (18)–(20) with the co-
efficients fik obtained by approximating the phases of the
Green’s functions G(u 2 t, L1) and G(t 2 u, L2) com-
puted accurately according to Eq. (5) (Fig. 2).

In practice, the accurate phase modulation required by
Eqs. (18)–(20) can be introduced into the system when (a)
the modulation running at some basic frequency vm is
shifted in phase with respect to the main signal and (b)
the second harmonic of the basic frequency vm is also
used, so that the net modulation function is

w~u! 5 ~2w2 /vm
2!@1 2 d cos~vmu 1 a! 2 g sin~2vmu!#,

(23)

where d 5 A1 1 «, tan(a) 5 «, « 5 (2/3vmw1 1 w3 /vm)/
w2 , and g 5 0.5(« 2 0.5vmw1 /w2). For the case shown
in Fig. 1, this means that, at the maximum modulation
frequency vm 5 0.1 consistent with the signal duration,
the relevant parameters are « 5 0.32, d 5 1.05, and g
5 0.16, so the phase shift of the modulation with respect
to the signal is ;a 5 18° and the relative amplitude of
the second harmonic is nearly 16%.

4. CONCLUSION
In conclusion, the results of this study have shown the
possibility of increasing the accuracy of time imaging
with an imperfect time lens by the proper choice of the
phase-modulation function, depending on the dispersion
law of the delay lines used in the lens.
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