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tion. The solutions are represented in convergent series form, and
numerical computations are performed to show the charge–density
distribution through the slit.

REFERENCES

[1] L. K. Warne and K. C. Chen, “Relation between equivalent antenna
radius and transverse line dipole moments of a narrow slit aperture
having depth,”IEEE Trans. Electromagn. Compat., vol. 30, pp. 364–370,
Aug. 1988.

[2] Y. S. Kim and H. J. Eom, “Fourier-transform analysis of electrostatic
potential distribution through a thick slit,”IEEE Trans. Electromagn.
Compat., vol. 38, pp. 77–79, Feb. 1996.

[3] D. W. Trim, Applied Partial Differential Equations. Boston, MA:
PWS, 1990, pp. 115–117.

A Numerically Efficient Technique for the
Analysis of Slots in Multilayer Media

Noyan Kınayman, G̈ulbin Dural, and M. I. Aksun

Abstract—A numerically efficient technique for the analysis of slot
geometries in multilayer media is presented using closed-form Green’s
functions in spatial domain in conjunction with the method of moments
(MoM). The slot is represented by an equivalent magnetic-current distri-
bution, which is then used to determine the total power crossing through
the slot and the input impedance. In order to calculate power and current
distribution, spatial-domain closed-form Green’s functions are expanded
as power series of the radial distance�, which makes the analytical
evaluation of the spatial-domain integrals possible, saving a considerable
amount of computation time.

Index Terms—Green’s function, moment methods, multilayers.

I. INTRODUCTION

Slot geometries have a broad spectrum of applications either as
transmission lines or radiating elements, and have been examined ex-
tensively in the literature [1]–[4]. The most commonly used numerical
technique for analyzing the slot geometries is the method of moments
(MoM), which can be applied in either the spatial or spectral domains.
Although the MoM is preferred over the differential equation methods
because it is relatively efficient in terms of the computation time,
it is still time consuming because of the slow convergence and
the oscillatory nature of the integrals involved. One approach to
overcome these difficulties is to employ the closed-form Green’s
functions in the spatial domain, which can speed up the computation
of the MoM matrix elements by several orders of magnitude as
compared to the numerical evaluation of the Sommerfeld integral
[5]–[8].

In this paper, the Galerkin’s MoM analysis of the slot geometries
in multilayer media has been developed by employing the closed-
form Green’s functions for the vector and scalar potentials of a
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Fig. 1. A slot structure on a multilayer medium. The region above the slot
is free space.

horizontal magnetic dipole (HMD) in the spatial domain [9]. The
formulation is presented for narrow slot geometries excited with
coaxial-line feed; however, it can be applied to slot geometries of
any kind of excitation without any major modification. The equivalent
magnetic-current distribution of the slot is computed and used for the
computation of power crossing the slot and the input impedance.
Numerical calculation of power crossing the slot and the equivalent
magnetic slot current is computationally a very demanding procedure
because the numerical evaluation of the integrals involved is very time
consuming in either the spatial or spectral domains. Here, the spatial-
domain Green’s functions are approximated as a power series of radial
distance�, and integrals involving the Green’s functions are carried
out analytically, saving a considerable amount of computational time
both in current and power calculations [10].

II. FORMULATION

An example of a narrow slot placed in a multilayer medium is
shown in Fig. 1. It is assumed that the layers extend to infinity in
the transverse direction and the slot is excited with a coaxial line
of currentIin amperes at the feeding point. It is also assumed that
there is no conducting or dielectric losses. Therefore, the only loss
mechanism is the radiation.

The tangential component of the magnetic field on the slot can
be expressed in terms of an equivalent magnetic-current density~Jm

using the mixed-potential integral equation (MPIE) formulation [11]
as follows:
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whereJmx is the longitudinal component of the current density~Jm,
andGFxx andGqx are the spatial-domain Green’s functions for the
vector and scalar magnetic potentials for an HMD, respectively. To
solve for the equivalent magnetic current densityJmx using the MoM,
the current density is expressed as a linear combination of suitable
subdomain basis functions in the following form:

J
m
x =

N

n=1

IxnBxn(x; y) (2)

whereBxn’s are the basis functions which are chosen in this paper
to be rooftops. Since a narrow slot is assumed, the current variation
in y-direction is considered to be constant. Enforcing the boundary
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conditions for the tangential fields, the following equation is obtained:
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where Txm denotes the testing functions expressed by subdomain
basis functions,h, i designates the inner product, and� designates the
convolution integral. Note that the Green’s functions appearing in (3)
are the spatial-domain closed-form Green’s functions which can be
obtained from the closed-form spectral-domain Green’s functions [6],
[12]. The spatial-domain closed-form Green’s functions are expressed
in the following form:
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whererm = �2 � b2m; andk2i = k2z + k2�. Here,am’s and bm’s
are complex constants, in general. Consequently, for a slot geometry
given in Fig. 1, the spatial-domain Green’s functions encountered in
(3) can be written as follows:
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After having obtained the closed-form Green’s functions, the remain-
ing integrals need to be evaluated. In this paper, each exponential
term in the above Green’s functions is expanded as a power series
of � which makes the analytical evaluation of the inner products
in (3) possible, saving considerable amount of computational time
[10]. Also note that since the spatial-domain Green’s functions have
a surface integrable singularity at the origin, analytical evaluation of
these integrals does not need the extraction of singularity.

A. Calculation of the Total Power and Input Impedance

Once the equivalent magnetic-current density on the slot is ob-
tained, then the power crossing through the slot can be calculated by
using the following integral:

�Pc =

slot
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Here,Hx and Jmx are given by (1) and (2), respectively, and( )�

denotes the complex conjugate. It should be noted that since the
geometry is physically separated into two half-spaces by replacing
the slot with a perfect electric conductor and equivalent densities,
the power should be computed for each region separately, and then
should be combined to get the total power. Hence,

P
total

c = Pcjz>0 + Pcjz<0: (11)

Note thatPcjz>0 and Pcjz<0 are evaluated on the slot surface at
z = 0+ and z = 0�, but with different sets of Green’s functions,
as given in (5) and (6). By substituting (1), (9), and (10) into (7),

Fig. 2. Input impedance versus normalized length(l=�0) for the slot given
in Fig. 1 (w=l = 0:02 cm, h1 = h2 = 0:0 cm, "r3 = 2:55, andd = 5:0
cm).

and taking the complex conjugate of both sides, one can obtain the
following expression:
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and expanding the convolution integrals, the following expression is
obtained:
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Note that (13) contains quadruple integrals in spatial domain, there-
fore, numerical methods to evaluate (13) would be very inefficient.
On the other hand, it is also possible to carry the convolution in (12)
to the spectral domain, thus eliminating one of the double integrals.
In that case, although the spectral-domain Green’s functions are in
closed form, they are still oscillatory functions and the limits of
the integrals extend to infinity yielding computationally expensive
numerical integrals. To overcome these difficulties, (13) can be
written in matrix form as follows:
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Fig. 3. Input impedance versus normalized length(l=�0) for the slot given
in Fig. 1 (w=l = 0:02 cm, h1 = h2 = 0:0 cm, "r3 = 12:8, andd = 5:0
cm).

Fig. 4. Input impedance versus normalized length(l=�0) for the slot given
in Fig. 1 (w=l = 0:02 cm, h1 = 0:2 cm, h2 = 0:05 cm, "r1 = 2:55,
"r2 = 12:8, "r3 = 1:0).

Now, one can notice that the matrix entry which appears in (15) is
similar to the MoM impedance matrix entries. Hence, the Green’s
functions in (15) can also be approximated by power series of�,
making analytical integration possible. Finally, the input impedance
seen from the feed point is obtained by

Zin =
P total

c

I2
in

: (16)

III. RESULTS AND CONCLUSIONS

The first investigated geometry consists of an infinitely large
ground plane with a narrow rectangular center-fed slot, which sepa-

rates the geometry into two infinite half-spaces. This can be achieved
by settingh2 = h1 = 0 in the geometry shown in Fig. 1. The input
impedance of the slot is calculated and is compared with the results
presented in [2] and, as can be seen in Figs. 2 and 3, there is a good
agreement between the results. The difference between the results
near resonance could be due to the fact that Kominamiet al. uses a
different set of basis functions which forces the edge singularity, and
they obtained the results for a lossy dielectric, whereas in our case, the
dielectric is assumed to be lossless. As a second example, a multilayer
geometry is selected by settingh1 = 0:2 cm andh2 = 0:05 cm, and
both center-fed and offset-fed configurations are analyzed. The input
impedances of the slot for both cases are given in Fig. 4. It should
be noted that offset-feeding has not changed the resonance frequency
of the structure.

In conclusion, it can be stated that the use of closed-form spatial-
domain Green’s functions increases the computational efficiency in
the analysis of slot geometries in multilayer media. Although the
formulation is presented for narrow slot geometries with coaxial
feeding, it can be applied to general slot geometries placed in a
multilayer geometry, such as slot-coupled microstrip patch antennas.
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