View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Bilkent University Institutional Repository
950 |IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 7, JULY 1997

Adaptive Methods for Dithering Color Images
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Abstract—Most color image printing and display devices do not are preset. In contrast, some more recent algorithms aim at
have the capability of reproducing true color images. A common finding the optimum coefficents for the given image [7]-[9]
remedy is the use of dithering techniques that take advantage of - 1, change the coefficients adaptively [9]-[11]. Most of
the lower sensitivity of the eye to spatial resolution and exchange . . . - .
higher color resolution with lower spatial resolution. In this the work on error diffusion deals with the dithering of gray-
paper, an adaptive error diffusion method for color images is scale images. In order to extend these results to color images,
presented. The error diffusion filter coefficients are updated by the most straightforward approach is to consider each color
a normalized least mean square-type (LMS-type) algorithm to component as an individual gray scale image [6], [7], [9],

prevent textural contours, color impulses, and color shifts, which . . .
are among the most common side effects of the standard dithering [12]. This scalar approach ignores the correlation between the

algorithms. Another novelty of the new method is its vector COlOr components. o
character: Previous applications of error diffusion have treated Common problems that are addressed by dithering are color

the individual color components of an image separately. Here, shift and the appearance of false textural contours. When an
we develop a general vector approach and demonstrate through jmage is quantized into a limited number of colors that form
simulation studies that superior results are achieved. L P
a palette, the color of a region is classified into one of the
colors in the palette, resulting in a shift that is visible to the
[. INTRODUCTION eye. A worse-looking defect, however, is the formation of false
HE EYE can distinguish between thousands of distm@plge.s_in areas of the image where th-ere ?s originally a smooth
colors, whereas only a few dozen gray levels are enoufjnsition between two colors. Error diffusion solves these two
to represent all gray scales. The high sensitivity of the efoblems in most of the cases: By balancing the quantization
to color has increased the demand for sophisticated cof§fors, it produces an average color shade that is closer to
dithering algorithms that create the illusion of a “true colorthe original color of the region and breaks up the false edges.
image with a limited palette. However, if the given color is close to the boundary of a color
Color digital images that represent each color componefister and the filter coefficients are not adequately selected,
with one byte are calledrue color images Such a color the quantization errors accumulate and eventually, a palette
image can contaiz?* colors. Most color image printing and color from a different cluster is produced. This manifests itself
displaying devices do not have the capability of reproducirégs @ color impulse that is very disturbing. Another adverse
true color images [1], [2]. Consequently, the number of cologffect of dithering manifests itself around edges: Colors from
has to be reduced drastically to produce a color image wito sides of the edge are smeared to each other and sharp
a limited palette. This results in highly visible degradatiogdges are converted to jagged edges.
in image quality. A common remedy is the use of dithering In this paper, a new adaptive vector error diffusion tech-
techniques that exploit the lower sensitivity of the eye toique is proposed to correct these adverse effects. The term
spatial resolution and exchange higher color resolution witkector error diffusiorhas been used to distinguish the present
lower spatial resolution. The eye averages the colors inapproach from previous approaches that have applied scalar
neighborhood of the point of interest and creates the ill@rror diffusion to the individual color components. The error
sion of more colors. Error diffusion achieves this effect bgiffusion filter coefficients are obtained by minimizing the
distributing the error encountered in quantizing a pixel tmean square error between the average color of the original
neighboring pixels, ensuring in effect, that the neighboringhage and the dithered image. Considering the fact that there
pixels are biased in the reverse direction. Some well-knownmay be significant differences in the statistics of different
error diffusion filters are Floyd—Steinberg, Stucki, Jarviceegions in a typical image, a least mean square-type (LMS-
Judice, and Ninke [3]-[6]. These error diffusion filters usg/pe) adaptive algorithm is used to solve the minimization
a fixed kernel: The coefficients of the error diffusion filteproblem. This adaptive technique not only produces dithered
_ _ o ~images in which the average color shade is closest to the
Wa'\gi”u“psgg'r‘t)égegi'%?Bﬂfﬁhuﬁ’;%)fénrte‘é'éfz‘igﬁg%ﬁg 'blygfhgg‘;; Wafiginal and the occurance of color impulses is greatly reduced,
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Fig. 1. Block diagram of the error diffusion method. - 9
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diffusion to color images. In Section IV, we present our 002 loo 004
simulation examples and discuss the effects of scaling the error N N
diffusion filter coefficients. Finally, in Section V, we outline ()
our future research plans and conclude. Fig. 2. Filter mask of the error diffusion method and the Floyd—Steinberg

filter coefficients N = 4). (a) Scalar representation. (b) Vector representation.

II. ADAPTIVE VECTOR ERROR DIFFUSION
error diffusion filter coefficients the quantity

: . L Efllxs — Qs)II*} 3)
Fig. 1 shows the block diagram of the error diffusion
technique. A color image is represented byx31 vectors is to be minimized with respect tHl;. This is equivalent to
x, for s = 0,1,2,---,(M; x Mz) — 1. To simplify the minimizing
equations, double indices denoting the location of the pixels
have been replaced by the single indexFor an image of
size My x My the (m1,m2)nd pixel corresponds to the index
s = my + moM;. Given the imagex, and a quantizer),
error diffusion works as follows: The quantization erisy is with respect to the filter coefficient matrices. Differentiating

diffused to neighboring pixels to create a dithered image (‘? with respect toH, and setting the results to zero, the

Then, the dithered image is quantized instead of the origir}g lowing set of linear equations are obtained:
image, as follows: '

A. Vector Error Diffusion

2
E

ng — Z H,_;ng

k<s

(4)

T _ T
Xs = X5 + Z H,_rny 1) E{non,_} = Z Ho—B{nn,_;§ ®)
k<s hes
n, = X, — Q(X;) (2) wherei = 1,2,---, N, andn, is the quantization error at

e location s. By solving the system of equations in (5), the
where k < corre_sponds to a causal error dlffus_|0n masK or diffusion filter coefficient matrisl — H,|H|... Hn]
and the filter coefficientd;, ¢ = 1,--- NV are matrices. If .2 pe optained. The covariance matfiXn;n? ;} is not
error diffusion is applied separately to the color componentg,,ijap|e in practice but can be estimated from the quantization
these matrices are chosen to be diagonal (as in [12]); 8o statistics of the original image. However, this approach
error in a given color component is _dlffused to only that_COIO(ﬁoes not yield good results because a typical image cannot be
component. In the present formulation, we do not require the< ;med to be a stationary random field

error diffusion matrices to be diagonal in order to take full cqngjgering the fact that there may be significant differences
advantage of the correlation between the color componahts, the statistics of different regions of a typical image, we

is the size of t_he cau;al filter mask. Fig..2 shows the masklgge an LMS-type adaptive algorithm to determine the error
the Floyd—Steinberg filter, wher® = 4. Fig. 2(a) shows the qigtsion filter coefficients. The key step is to replace the

Fond—_Steinberg filter for the s_calar representation, Whe_re tBRsemble average with the index average and to compute the
coefficients are scalars, and Fig. 2(b) shows the same filtergyy - astic gradient vector. We minimize

the vector representation, where the coefficients are diagonal

matrices. T
A(s) = <n5 - Z Hs_knk> <n5 - Z Hs_knk>.
B. Adaptive Error Diffusion Algorithm k<s k<s ©)
In our algorithm, the error diffusion filter matriH = At the index s, the filter coefficient vector is updated using

[Hy[Hz|- - - [Hn] is obtained by minimizing the mean squargne following equation:
error (MSE) between the average color value of the original
image and the dithered image. In order to obtain the optimum H(s+1) = H(s) — pVe*(s) (7
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wherey, is the step size. The gradient is given by This scalar formulation is simpler in terms of computa-
tional complexity. However, the correlation between the color
Vel (s) = _2<n5 _ZHs—knk) n’_, (8) components is not taken into account. In red-green-blue
ke (RGB) color space, the correlation between the red, green,
= —2e(s)n’_,. (9) and plue components is rat_her h!gh. One lalter.natwe is to
s work in a color space in which this correlation is reduced.
In our simulation studies we employed the so-called normathe Karhunen—Loeve color coordinate system, a pseudo-
ized LMS update equation [13] Karhunen—-Loeve transformation (KLT) color coordinate sys-
H(s+1) = H(s)+ pe(s) [n;f_1|...|n;f_N] (10) tem, and the YIQ color coordinate system are possible can-

didates:
where the step size parameteis chosen in the intervD, 2)
as in the case of the normalized LMS algorithm, agd) can A. KL Color Coordinate System

be calculated as In a common image, the color components in the RGB
e(s) = (%, — Q(%,)) — Z H, ny. (11) coordinate system are highly _correlated with ea(_:h_ other._lf the
o second-order statistics of the image are known, it is possible to

, . ) derive an orthogonal color coordinate system by a KLT [14].
Since the convergence is quite fast, we have used the coefiia k| color transform is defined as

cients found in the first iteration of the algorithm. The rows

of H are normalized following the update: This corresponds I mu My Mg | |1
to the weights summing to one. Iy | = |mar ma mos| |G
T3 ms1 m32 mzs | | B

lll. ADAPTIVE SCALAR ERROR DIFFUSION where the transformation matrixI composed of termsn;;

When the error diffusion filter coefficient matrices ar&Onsists of the eigenvectors of the covariance matrix of the
chosen as diagonal, the error in a given color componentR@B vectors. LetU represent the_Covarlan_ce mgtr_lx with
diffused to only that color component. The resulting filters rédeneral termsu;;. The transformation matrix satisfies the
duce to the formulation given in [9], where the error diffusioff€lationship
filter coefficientsh; are scalars. In this formulation, the error MUMT = A
diffusion equations now become

whereA is a diagonal matrix with the eigenvalues@falong

X =Xa+ Y hsini (12) jts diagonal.
k<s
ng = X3 — Q(X,). (13) B. Pseudo-KL Coordinate System

This error diffusion procedure is actually separable as men-Considering the difficulty of estimating the color covariance
tioned above. The vectdr = (h; --- hx)? represents the filter for each individual image, a compromise is to estimate the
coefficients in the support regioh.is obtained by minimizing covariance of a general image and to find the KL transforma-
the sum of MSE's in each color component. Analogous to (3)Jon for that image. Such a transformation is given in [15],
the following quantity is minimized to obtain the optimumas follows:

error diffusion filter coefficients: T 0.33  0.33 0.337 TR
e = o2 T,|=] 05 0 =05 ||G
E{llxs - Q&)Y = (2 - Q(&)) (14) T 025 05 -025||B

=1

where/ denotes a specific color component such as red, greén,YIQ Color Coordinate System

or blue. Proceeding as in (4)-(11), the update equations‘for  v|Q is the color coordinate system of the National Televi-
the filter coefficient vector for color componehtare obtained sjon Systems Committee (NTSC) television standard defined

as [14] as
4
h'(s) = h'(s) + @f(j)is (15) Y 0299 0587 01147 [R
12| I| =059 —0274 —0322]||G
where the vectog’ contains the past quantization errors Q 0211 -0.523 0312 [B
zl=[n_,...nl_y]" (16) IV. SIMULATION RESULTS

and the step size parameferis chosen in the interva(0, 2) We have _implemented both the ve_ctor adapt_ive error dif-
as in the case of the normalized LMS algorithm, ands) fusion algorithm and the scalar adaptive error diffusion algo-

can be calculated as follows: rithm. For scalar adaptive error diffusion, we use different
color coordinate systems as described in Section Ill. We
ce(s) = (X, — QX)) = Y hl k. (17) compare the results of the adaptive algorithms with that of the

k<s Floyd—Steinberg filter. For the adaptive filters, we use the same
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support size, that isiV = 4, as in Fig. 2. The color images
corresponding to the results are given in Figs. 3 and 4. The
original images of Figs. 3(a) and 4(a) have been quantized to
16 colors with the median-cut algorithm [16] in Figs. 3(b) and
4(b). It is observed that quantization to 16 colors results in the)
appearance of false edges. Figs. 3(c) and 4(c) are the result
of error diffusion with the Floyd—Steinberg algorithm. It is
observed that the application of the Floyd—Steinberg algorithm
causes the creation of color impulses and false textures. Those
color impulses are most disturbing as isolated yellow pixels on
a dark green background and dark green pixels on the tip of the
leaf in Fig. 3(c), and as red pixels on the yellow pepper in the
lower left side in Fig. 4(c). Disturbing textures appear on the
tip of the leaf in Fig. 3(c) and on the green pepper in the middi&)
in Fig. 4(c). It is also noted that some false contours remain
in these images. Fig. 3(d)—(g) and 4(d)-(g) are the results of
scalar error diffusion using the RGB, YIQ, pseudo-KL, and
KLT color coordinate systems, respectively. Finally, Figs. 3(h)
and 4(h) show the results of the vector adaptive error diffusion
algorithm. It is observed that all the adaptive algorithms show
enhanced performance when compared to the Floyd—Steinberg
algorithm. The vector adaptive error diffusion shows the best
results, as expected: The appearance of disturbing colored
impulses and false textures is minimized, while the fals
contours are completely eliminated. When the scalar adaptive
error diffusion algorithm is used, utilization of the RGB color
coordinate system yields the worst performance, while use of
the YIQ, pseudo-KL, and KLT color coordinate systems bring
comparable improvements. It should be noted, however, that
the KLT coordinate system is image-dependent, and brings an
additional computational burden. The pseudo-KL coordinate
system gives the overall best result among the three when the
presence of false textures is also taken into account. Tabldg]
summarizes these subjective comparisons.

In terms of computational complexity, both the adaptive
algorithms and doing vector error diffusion bring additional
burden. In vector error diffusion, the error from three color
components is diffused; therefore, the number of operations
is increased threefold. Computing the filter coefficients adapy. 3. (a) Original image. (b) Quantized to 16 colors with the median-cut
tively as opposed to using fixed coefficients also meaflorithm. (c) Floyd—Steinberg dithering. (d)—(g) are results of the scalar
additional computation, as seen in (10). However, it should B ag;t"zg)e{(rl‘g; d('ff)f“sgoe”ug('fﬂtt;hg)'w}f;fe(ﬁ”kggm g‘f’oc;g;]”e?}ﬁgsﬁztiﬁ;”sthéd)
noted that quantization and dithering are performed togethesctor adaptive error diffusion algorithm.
with quantization taking several orders of magnitude longer

than dithering. Therefore, the additional increase in compu:

. . L 0
tational complexity due to the adaptive dithering algorithm%f color lmpqlsizs. I th? sclallpg colefflc!em IS arOl:jnc! gqf@, thtle
would not be significant. appearance in terms of color impulses is improved significantly

The areas that are most difficult to handle by color ditherin\'g\;/Ith no visible increase in false contours.

are areas of smooth change, like those found in Fig. 3: While

error diffusion reduces the false contours that show in such V. CONCLUSION

areas, it also leads to the appearance of color impulses, isolatelh this paper, we have developed a novel vector-based
pixels of opposite color on a smooth background. In margpproach for color error diffusion. We have derived an adaptive
standard algorithms, the error diffusion filter coefficients amgorithm for obtaining the optimum error diffusion filter
defined to sum to one. That corresponds to diffusing all of tmeatrices. The adaptation criterion is based on the quantization
error encountered in quantizing a pixel to neighboring pixelsrror statistics obtained from the dithered image. We have
If the coefficients are scaled by a figure that is smaller thamplified the vector error diffusion equations for the scalar
one, the effect is a cross between error diffusion ditherirmase and suggested the use of color coordinate systems that
and doing no dithering at all: The result is a compromideave less correlation between the color components. In stan-
between the reduction of false contours and the appearadeed error diffusion methods, the filter has a unity gain. We

(b)

S

(d)

®

(h)

g tle

=



954 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 7, JULY 1997

TABLE |
SuBJECTIVE COMPARISON OF DITHERING ALGORITHMS

Flower (Figure 3)

(b) Algorithm Texture | Impulses | False Edges
b) No dithering nonce none heavy
c) K-S [] medium | heavy medium

d) Scalar AED: RGB | some medium | none

(
(
(
(
(
(
(

¢) Scalar AED:YIQ | low low none

{) Scalar AED:p-KI, | low low none

g) Scalar AED:KLT | low low none
@ h) Vector AED low none none

Peppers (Figure 1)

Algorithm Texture | Impulses | False Edges

(b) No dithering none none heavy

(c) F-S [4] medium | heavy medium

(d) Scalar AED: RGB | medium | low none

(e) Scalar AED:YIQ medium | low none

(f) Scalar AED:p-KL | low low none

(g) Scalar AED:KLT | medium | low none

(h) Vector AED low none none

an image to achieve different goals. Our further work aims
to include the control of this coefficient in the adaptation
algorithm.
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