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Fast Algorithm for Scattering from
Planar Arrays of Conducting Patches

Levent G̈urel, Senior Member, IEEE, and Weng Cho Chew,Fellow, IEEE

Abstract—A direct (noniterative) algorithm for the solution
of the electromagnetic scattering from three-dimensional planar
arrays of conducting patches is developed. For anN -unknown
problem, the computational complexity of this new solution tech-
nique is shown to beO(N2 log2N), which is considerably lower
than the O(N3) computational complexity of the conventional
direct solution techniques. The advantages of the reduction in
the computational complexity is pronounced in the solution of
large electromagnetics problems, such as scattering from large
and finite arrays of patches, synthesis and analysis of finite-sized
frequency selective surfaces (FSS’s), and radiation and scattering
from large phased-array antennas, to name a few.

Index Terms—Algorithms, antenna arrays, frequency selective
surface, scattering.

I. INTRODUCTION

SOLUTIONS of electromagnetic scattering problems in-
volving three-dimensional (3-D) planar (Fig. 1) and quasi-

planar geometries in homogeneous and layered media are of
great interest due to the existence of a multitude of useful
applications, such as frequency selective surfaces (FSS’s),
printed circuit boards (PCB’s), microstrip structures, mono-
lithic microwave integrated circuits (MMIC’s), phased-array
antennas, and rough surfaces.

Although several different techniques [1]–[3] existed for the
solution of these problems, the need to solve larger problems
with limited computational resources recently sparked the
successful development of numerous new fast solvers [4]–[13].
However, no method can be expected to solve all classes of
problems. For instance, the iterative solvers [4]–[9], which
are perfectly suited for large problems, perform poorly for
near-resonant structures. Some techniques are limited to two-
dimensional (2-D) geometries [10], [11], whereas some others
are limited to homogeneous-medium problems [12], [13].
Development of a new noniterative method and its application
to 3-D planar geometries in homogeneous media will be
outlined in this letter. The method can be extended to the cases
of quasi-planar structures and/or layered-media problems. This
method can also be used as a block-diagonal preconditioner
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Fig. 1. Geometry of a planar array of conducting patches.

and to obtain an initial guess in the framework of an iterative
technique.

II. FAST DIRECT ALGORITHM BASED ON

THE STEEPESTDESCENT PATH (FDA/SDP)

Assuming that the planar geometry of Fig. 1 is placed on
the – plane, tangential components of the electric field on
the same plane are given by

(1)

where and are arbitrary position vectors on
the – plane, , and . In the
above, is the 3-D scalar Green’s function confined to
the in-plane interactions and can be expressed in terms of the
2-D Green’s function using the identity [14]

(2)

(3)

(4)

Equation (4) is obtained by deforming the path of integration
in (3) to the steepest descent path (SDP), where the integrand
is rapidly decaying. The SDP integral in (4) can be numerically
evaluated by sampling the integrand at a set of appropriately
chosen points with associated weights

(5)

Thus, the 3-D Green’s function for this problem can be
expressed as a sum of several 2-D Green’s functions. This
representation of the Green’s function essentially converts the
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3-D problem to a “quasi-2-D” problem. At this point, the
problem can be solved using any 2-D solver that has less
than computational complexity such as the recursive
T-matrix algorithm (RTMA) [12], the recursive aggregate-T-
matrix algorithm (RATMA) [13], or the nested equivalence
principle algorithm (NEPAL) [15]. In this work, the quasi-2-D
problem will be solved using RATMA, which is a direct
(noniterative) solution technique. Thus, the resulting method
will be called the fast direct algorithm based on the SDP or
the FDA/SDP.

The FDA/SDP takes advantage of the fact that the induced
currents (i.e., basis and testing functions) on planar and quasi-
planar geometries interact with each other within a very limited
solid angle. Thus, all the degrees of freedom that are required
to solve a “truly 3-D” geometry are not required for a planar
or a quasi-planar geometry, and this situation can be exploited
to develop efficient solution algorithms.

A. Numerical Integration

Let and denote the smallest and the largest
distances, respectively, separating the patches in the quasi-2-D
problem such that the two may be different by several orders
of magnitude. In order to solve the quasi-2-D problem using
RATMA, the integrals

(6)

have to be evaluated by sampling their integrands at the same
set of points to obtain the same accuracy for all of the
integrals. Although the decay rates of the integrands can be
very different, an integration rule can be developed such that
all of the above integrals can be computed using the same set
of sampling points [16]. Devising an integration rule that em-
ploys logarithmically spaced sampling points, the number of
sampling points can be bounded by .
Noting that for the 2-D clustered planar
arrays of patches, we have . Further
details of the numerical integration will be given elsewhere
[17].

B. Computational Complexity

It was shown earlier that the RATMA has com-
putational complexity and memory requirement [13],
where is the number of harmonics used in the translation
formulas. In the FDA/SDP, , where
is the number of 2-D harmonics required for the quasi-2-
D problem, and is the number of sampling
points to compute the SDP integrals for the dense quasi-2-
D problems considered in this work. Thus, the FDA/SDP has

computational complexity and
memory requirement.

Fig. 2. A generic two-patch geometry with the separation between the
patches (d) varying as a parameter.

The FDA/SDP can also be used to obtain an accurate
solution for a portion of a larger geometry and this partial
solution can be employed in block-diagonal preconditioning
or as an initial guess in the framework of a faster iterative
technique. For instance, in a single-level implementation of
the fast multipole method (FMM) [4], [5], [8] where
unknowns are partitioned into clusters each containing

unknowns, the FDA/SDP will require
operations for the block-diagonal preconditioning or to obtain
an initial guess. In a multilevel implementation of the FMM
[6], [7], the efficiency of the FDA/SDP as a block-diagonal
preconditioner will allow using larger block sizes, which will
result in better preconditioning and consequently reduce the
number of iterations.

III. RESULTS

In order to demonstrate the accuracy of the FDA/SDP, radar
cross sections (RCS’s) of a number of two-patch geometries
are computed and compared to the corresponding solutions
obtained with the method of moments (MoM). The generic
two-patch geometry is shown in Fig. 2, where and
is varied as a parameter. Fig. 3(a)–(c) shows the RCS’s of the
two-patch geometries of Fig. 2 when the separation between
the patches () is equal to , , and , respectively. In
each case, the excitation is a plane wave with a-polarized
electric field and incident on the patches at and

. Both the FDA/SDP results (solid curves) and the MoM
results (dots) are plotted in Fig. 3(a)–(c) to exhibit the good
agreement between the two, which testifies to the accuracy of
the FDA/SDP.

Separating the solution and filling times, we have compared
the solution times of the FDA/SDP, the MoM, and the RATMA
as shown in Fig. 4. FDA/SDP solution times are seen to
increase with a smaller slope than those of the MoM and the
RATMA, confirming the reduced computational complexity
of the FDA/SDP. The solution times presented in Fig. 4 are
obtained by solving the scattering problems of increasingly
larger planar arrays of patches, as shown in Fig. 1. The
RATMA was predicted and demonstrated to have
complexity for such 2-D clustering of 3-D scatterers [13]. On
the other hand, the FDA/SDP employs the RATMA to solve
2-D problems to take advantage of the RATMA’s reduced
computational complexity for 2-D clustering of 2-D scatterers
[13].

IV. CONCLUSIONS

Development of the FDA/SDP, a new fast noniterative
solution technique, and its application to planar arrays of
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Fig. 3. RCS of the two� � � conducting patches (as shown in Fig. 2) on
the x–y plane for various patch separations: (a)d = �=2, (b) d = �, and
(c) d = 2�. Plane waves withy-polarized electric fields are incident on the
patches at� = 45

� and � = 0
�.

Fig. 4. Comparison of the CPU times required for various noniterative
solution algorithms.

conducting patches have been presented in this letter. The
FDA/SDP achieves its efficiency by essentially converting

a 3-D planar geometry to a quasi-2-D geometry and then
employing a fast 2-D solver to efficiently solve this resulting
quasi-2-D problem.

The FDA/SDP can be extended from planar to quasiplanar
structures, where the geometry is not strictly planar, however,
the size of the geometry in one dimension is much smaller
than the other two dimensions. Furthermore, extension from
homogeneous-media problems to layered-media problems is
also straightforward since the spectral-domain representation
of the Green’s function in (3) exists for layered media. These
extensions and other issues will be reported elsewhere [17].
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[16] L. Gürel and W. C. Chew, “Fast direct solution algorithm for elec-
tromagnetic scattering from 3D planar and quasiplanar geometries,” in
1997 IEEE Antennas and Propagation Society Int. Symp. Dig.,Montréal,
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