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Abstract

w Ž . xThe approach which has been proposed by one of us Optics Comm. 136 1997 219 is developed. The quantum phase
properties of radiation are determined via the conservation of the angular momentum in the interaction with a source. It is
shown that the use of two dual representations of the angular momentum of the dipole transition leads to the definition of
five operators similar in some sense to the Stokes operators of the radiation. The approach is compared with that by Pegg

w xand Barnett 20 . q 1998 Elsevier Science B.V.

This paper reports some new results relating to the
quantum phase of an electric dipole radiation. It builds

w xupon an earlier investigation by one of us 1 . We begin
with a brief discussion of the approach determining the
quantum phase via the angular momentum.

Since the vacuum state of the electromagnetic field has
a uniform phase distribution, we might imagine that the
phase properties of radiation are obtained in the process of
generation. Then, the phase properties of radiation are
determined by the corresponding properties of a source
Ž . w xatom, molecule, etc. . The hypothesis made in Ref. 1 is
that the conservation of the total angular momentum is
responsible for the transmission of the quantum phase
‘‘information’’ from the source to the radiation. In the case
of a source, the angular momentum J corresponding to the

Ž .radiative transition is well defined in terms of the SU 2
algebra, the enveloping algebra of which contains the
uniquely determined Casimir operator. Therefore, the phase
of J is simply determined by the polar decomposition of

Ž . Ž w x.the SU 2 algebra see, e.g. Ref. 2 .
Ž .Unlike the case of the source, the SU 2 sub-algebra in

the Weyl-Heisenberg algebra, describing the angular mo-
mentum of radiation M, has no well-defined Casimir
operator in the whole Hilbert space of photons. Therefore,
the polar decomposition of M cannot be determined in a

w xunique way. To avoid this difficulty, in Ref. 1 , we

defined the quantum phase operators of radiation as the
complements of the corresponding operators of the polar
decomposition of J with respect to the integrals of mo-
tion, describing the conservation of the total angular mo-
mentum JqM. Following this idea, we have determined
the Hermitian sine S and cosine C of the phase opera-R R

w x w xtors of the radiation such that S ,C s0 and S ,n sˆR R R
w x qC ,n s0 where n'Ý a a is the total photon num-ˆ ˆR m m m

ber. In accordance with the construction, these operators
S , C should correspond to the azimuthal phase of theR R

angular momentum of radiation.
Before we begin to discuss the properties of the opera-

w xtors S , C we note that the above approach 1 is inR R

logical agreement with the approaches, treating the quan-
tum phase in terms of measuring phase properties which

w xcan be determined either via the phase distributions 3–7
w x Žor in the operational way 8,9 see, for a review Refs.

w x.10,11 . Naturally, any measurement follows the process
of generation. Therefore the measured phase properties are
obtained by radiation in the process of generation although
they can be modified by interaction with the macroscopic
detecting device. This measured phase should correspond
to some intrinsic quantum variable responsible for the

w xphase of radiation 12 . Considering a photon as a quantum
Žparticle, we have the energy, momentum and spin total

.angular momentum as the possible dynamical variables.
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Among them, we have to choose just the angular momen-
tum because the other two variables do not contain non-
trivial angular dependence.

It should be noted that our treatment of the phase in
terms of the angular momentum has a quite simple physi-
cal meaning. In fact, within the framework of quantum
optics, the polarization of light is described in terms of the
spin state of photons, forming a given beam. In the
classical domain, the polarization of light is specified by
the Stokes parameters, determining the phase difference

w xbetween components with different polarization 13 . The
quantum properties of this phase difference can be exam-

w xined in the operational way 14 . They have also been
considered with the aid of polar decomposition of the
Stokes operators in a finite sub-space of the Hilbert space
w x15 . Below we show that the radiation phase determined

w xin Ref. 1 is directly connected to the Stokes operators
which also can be determined via the conservation of the
angular momentum in the process of radiation.

ŽLet us consider the Jaynes-Cummings model hereafter
.JCM describing the electric dipole transition. The model

Hamiltonian has the form

q1
q qHs v a a q v R q ig R a y a R ,w xŽ .Ý m m 0 m m mG m m G m

msy1

4 2c v0
g s D . 1Ž .(

"Vv3

< < : ² < <Here the atomic operators R ' a b , the statesab

< < : < :m ' js1;m , ms0,"1, correspond to the triple de-
< < : < X :generated excited state, G ' j s0;0 describes the

atomic ground state, the operators aq, a describe them m

electric dipole photons, v is the radiation frequency, v is0

the transition frequency, g is the coupling constant de-
pending on the effective dipole factor D and the volume of
quantization V. Let us note that similar Hamiltonians have
been considered in many problems of quantum optics and

Ž w xsolid state physics see Refs. 16,17 and references
.therein .

< < :In the basis of the atomic states m , the representation
Ž .of the generators of the SU 2 algebra describing the

angular momentum J, has the form

'J sR yR , J s 2 R qR ,Ž .z qq yy q q0 0y

'J s 2 R qR , 2Ž .Ž .y 0q y0

with the standard commutation relations

w x w xJ , J s"J , J , J s2 J , 3Ž .z " " q y z

and the Casimir operator

2J s2 R '2=1,Ž . Ý mm
m

where 1 is the unit operator. Then, the polar decomposition
Ž .of 2 is provided by the exponential of the phase operator

w x2

EsR qR qe icR , EEqs1,q0 0y yq

E3 se ic 1, 4Ž .
' Ž .and the radial operator J s 2 1yR such that J sr yy q

J E. Here c is an arbitrary real parameter. Clearly E isr
w xsimilar to the Coxeter operator 18 . Then, the Hermitian

sine and cosine of the atomic phase operators are

EyEq EqEq

Ss , Cs . 5Ž .
2 i 2

w x 2 2One can see that S,C s0 and S qC s1. Using the
transformation

q1 y2 i m npe 2mpyc
< < : < < :w s m , w s ,Ým m' 33nsy1

< < :one can introduce a new basis w , ms0,"1, such thatm
< < : iw m < < :E f se w . Then, the Hermitian atomic phasem m

operator f clearly is

q1

< < : ² < <fs w w wÝ m m m
ms y1

c 2 ip
yic r3 ic r3 qsy 1y e Eye E . 6Ž . Ž .'3 3 3

It describes the azimuthal phase of the angular momentum
Ž .J. One can see that in Eqs. 5 Sssinf and Cscosf.
Ž . < < :The representation of the SU 2 algebra in the basis wm

is of the form

q1 c c
< < : ² < <F s m w w sy2 S cos qC sin ,Ýz m m ž /3 3ms y1

q1

< < : ² < <'F s 2ym mq1 w w ,Ž .Ýq mq1 m
ms y1

q
F s F , 7Ž .Ž .y q

Ž .where the operators F obey the commutation relations 3 .
Ž . Ž . w xClearly the representation 7 is dual to 2 2 . It follows

Ž . Ž .from 7 that F sy2 sin fq1cr3 . The polar decom-z
Ž .position in the dual representation of SU 2 is determined

by the corresponding unitary exponential operator

< < : ² < < < < : ² < < ix < < : ² < <es w w q w w qe w w ,q 0 0 y y q

eeqs1, e 3 se ix 1 8Ž .
and the radial operator

< < : ² < <'F s 2ym mq1 w w .Ž .Ýr mq1 mq1
m

Here x is an additional real parameter. Since we are
primary interested in the qualitative results, we may as-



¨ ( )A.S. ShumoÕsky, O.E. MustecaplıoglurOptics Communications 146 1998 124–129¨ ˘126

sume that xs0. It enables us to fairly simplify the
analysis with no loss of generality. Then

ese2 ip r3R qR qey2 ip r3R .qq 00 yy

Ž . Ž .Thus, in addition to 5 and 6 , one can introduce the dual
sine, cosine and the phase operators as follows,

q 'eye 3
S s s R yR ,Ž .F qq yy2 i 2

eqeq
1C s sR y R qR ,Ž .F 00 qq yy22

2p 4p
f s R yR s S . 9Ž .Ž .F qq yy F'3 3 3

Thus, the quantum phase properties of the atomic angular
momentum J are completely determined by the set of nine
Hermitian operators 1, J , S, C, f, F , S , C , f .z z F F F

Among them, only five are independent at any real c .
Therefore, below we assume cs0 for simplicity and turn
our attention to the operators 1, S, C, S , C . AccordingF F

w xto the basis idea of the approach 1 , let us determine the
following Hermitian operators for the radiation field,

q1
qS s a a 'n ,ˆÝ0 m m

ms y1

1 q q qS s a a qa a qa a qh.c. ,Ž .1 q 0 0 y y q2

1
q q qS s a a qa a qa a yh.c. ,Ž .2 q 0 0 y y q2 i

q1'3
qS s ma a ,Ý3 m m2 ms y1

1q q qS sa a y a a qa a , 10Ž .Ž .4 0 0 q q y y2

such that the combinations S q1, S qC, S qS, S q0 1 2 3

S , and S qC are the integrals of motion for the modelF 4 F

Ž .Hamiltonian 1 . It can be seen that

w x w x w x w x w xS ,S s S ,S s S ,S s S ,S s S ,S s00 1 0 2 0 3 0 4 1 2

although

w xS ,S /0.1,2 3,4

Thus, S , S , S can be measured at once as well as S ,0 1 2 0

S , S while S and S , S cannot be measured at once.3 4 1,2 3 4

To clarify the notations and physical meaning of the
Ž .operators 10 , let us consider the radiation generated by

< : < X X :the transitions js1;ms"1 l j s0;m s0 while
the mode with ms0 is chosen to be in the vacuum state.
Then, the radiation field consists of two circularly polar-
ized modes with opposite helicities. It is clear that the

Ž .expectation values of the operators 10 formally coincide
Ž .up to constant factors in this case with the Stokes param-

Žeters s determined in the circularly polarized basis see,i

w x.for the notations Ref. 13 . Therefore, one can choose to
Ž .interpret the operators 10 as the generalized Stokes oper-

ators of the electric dipole radiation.
To argue this assumption, let us stress that the general

picture of the electric dipole radiation both classical and
quantum should take into account all three types of polar-

Žization in the near zone as well as in the far zone see, e.g.
w x .Ref. 19 , chapter 16 . In this case, the standard polariza-

tion tensor consists of nine components. Only five among
them are independent because the natural parameters are
the intensities of three components and three phase differ-
ences d X , m/mX such that Ý d X s0. It is not hard tomm m m,m

Ž .see that the operators S , S , S in 10 determine three0 3 4

photon numbers, corresponding to the components with
different polarizations. At the same time, the operators S ,1

S determine the phase difference between the compo-2
Ž .nents. Thus, the above interpretation of the operators 10

as the generalized Stokes operators is valid.
It should be emphasized that the set of the operators

Ž .10 is determined here via the integrals of motion corre-
sponding to the conservation of the angular momentum in
the process of radiation according to what has been pro-

w xposed in Ref. 1 . At the same time, the operators S , S in1 2
Ž .10 can be interpreted, in accordance with their construc-
tion, as the cosine and sine of the azimuthal phase of the

Ž .angular momentum spin of the electric dipole radiation
w x1 which we will call below the radiation phase.

Of course, the above consideration within the frame-
work of JCM has lead to the result for a single-photon
case. In order to generalize it to the multi-photon case of
common interest, it is necessary to examine the set of
atoms, interacting with the electric dipole radiation. The
Dicke model could be used for this aim. At the same time,
the analogy with the Stokes operators permits us to find

Ž .some interesting results immediately, using Eqs. 10 . As
w xin classical optics 13,19 , to give the operators S , S the1 2

meaning of the cosine and sine respectively, one can
multiply them by a normalization factor, depending on the
intensity and providing the natural limits for the averages.
Following this way, we introduce the radiation cosine and
sine as follows,

C sKS , S sKS . 11Ž .R 1 R 2

Ž .It follows from the definitions 10 that the Hermitian
Ž .operators 11 commute with each other and with the total

Ž .photon number n. In the JCM 1 , the constant K isˆ
clearly equal to 1 due to the integrals of motion. In a more
general case of multi-photon radiation, a convenient form
of K is afforded by requiring that

² 2 2:C qS s1. 12Ž .R R

It is clear that the definition of the radiation cosine and
Ž .sine 11 is quite similar to that done within the opera-

w xtional approach 9 for a simple homodine detection
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scheme. However, unlike the operational approach, there is
no necessity of introducing two different constants here.
Actually, one can consider the ‘‘exponential of the phase
operator’’ E sC q iS which is supposed to be a uni-R R R

² q:tary one in aÕerage E E s1. This natural require-R R
Ž .ment is equivalent to 12 if we use one and the same

Ž .constant K for both C and S in Eq. 11 . Then itR R
Ž . Ž .follows from 12 and 10 that

² :Ks n 1qn qn 1qn qn 1qnŽ . Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆq 0 0 y y q

y1r2q2 q2 q2² :q a a a qa a a qa a a qh.c. .q 0 y 0 q y y q 0

13Ž .

It can be seen that if any one of the modes obey the
² : Ž .condition a s0, the second average in 13 vanishes.m

In the simplest case of only two circularly polarized modes
² :when a s0, we get0

y1r2w xKs I q I q I I , 14Ž .q y q y

² :where I ' n . As a justification test for the choice ofˆm m
Ž .the normalization constant K 13 , let us consider all three

Ž . Ž .modes in the number state. Employing Eqs. 10 – 14 then
² : ² : Ž . Ž .gives C s S s0 and V C sV S s1r2 whereR R R R

Ž . Ž . Ž .V denotes the variance. Thus, the definition 11 , 12 is
consistent with the standard idea of a uniform phase

w xdistribution in the number state 10,11 . The same result is
clearly valid in the case of the vacuum state. Moreover, if
any two modes are in the number or vacuum state, the

Ž .radiation phase described by the operators 11 has uni-
form distribution. Therefore, consideration of the radiation
phase in a single-mode case has no meaning.

As an additional example of some considerable interest,
< :we now investigate the field in the state Ł a providedm m

by the coherent states of three possible components of the
electric dipole radiation. This case permits us to examine
the classical limit of strong coherent fields. It is a straight-

Ž .forward matter to arrive at the conclusion that V C ,R
Ž .V S ™0 when the intensities of all three modes tend toR

Ž .infinity. Thus, the radiation phase determined by Eqs. 11 ,
Ž .12 shows the right behavior in the classical limit.

Since in the far zone the intensity of the linearly
polarized component of the electric dipole radiation is
quite small it is reasonable to choose a s0 which en-0

ables us to fairly simplify the analysis. Carrying out aver-
aging, we get

² :s ' S s I q I ,0 0 q y

² :s ' S s I I cosd ,'1 1 q y qy

² :s ' S s I I sind ,'2 2 q y qy

'3
² :s ' S s I y I ,Ž .3 3 q y2

1 1² :s ' S sy I q I sy s , 15Ž .Ž .4 4 q y 02 2

< < 2where d 'arg a yarg a and I ' a . In this spe-qy q y m m
Ž .cial case s ;s . Thus, averaging 10 with respect to the4 0

< : < : :state a 0 a determines the standard set of fourq 0 y
Stokes parameters determined in the circularly polarized

w xbasis 13 . In this case, the parameters s , s determine the1 2

cosine and sine of the phase difference between two
components with opposite helicities. At first sight, this

Ž .correspondence leads to the choice of the constant in 11
Ž .y1r2 Ž .as Ks I I instead of 13 . Actually, this choiceq y

² : ² :leads to unphysical behavior of the averages C , SR R
Ž . Ž .and variances V C , V S at I , I ™0. Employing theR R q y

Ž . Ž .conditions 11 – 14 then gives

cosd sindqy qy² : ² :C s , S s .R Ry1 y1 y1 y1( (1q I q I 1q I q Iq y q y

16Ž .

Then, in the classical limit of high intensities we get
² : ² : Ž . Ž .C ™cosd , S ™sind and V C , V S ™R qy R qy R R

Ž .0. Consider now the variance V C as a function of I atR q
fixed I . Sincey

I q I q I I cosd'q y q y qy
V C s 17Ž .Ž .R

2 I q I q I I'Ž .q y q y

Ž .we get V C ™1r2 at I ™0. Under the conditionR q
1Gcosd ) I I which can be realized in the strong'qy q y
quantum case of low intensities, the value of the variance

Ž .can exceed 1r2 at some I . The maximum of 17 isq
achieved at

2
2(I q 1q I cosd y IŽ .y y qy y

I s I .q y 1q I cosdŽ .y qy

Ž .At the same point, the variance V S has a minimum.R

The qualitative explanation of this effect is based on the
consideration of the probability to have a given phase
difference. At I s0, there is a uniform probability distri-q
bution in the system. Creation of very few photons of the
mode msq1 leads to the formation of some domains
with almost equal probabilities having phase difference
d and d qp . So, it looks like a ‘‘phase bunching’’.qy qy
Further increase of I leads to formation of a more or lessq
sharp probability distribution which cannot reach the d-

Ž .function because the variance 17 achieves the saturation
point

1
lim s .

2 1q IŽ .I ™`q y
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The saturation as well as the ‘‘phase banching’’ cannot
occur at I s I ' I. In this case, we get the formal limitq y

2qcosdqy
lim s .

4I™0

To avoid the illusory contradiction with the above result
for the vacuum state, one has to average this expression

w xover d g 0,2p .qy
Let us compare our results with those obtained within

Ž . w xthe Pegg-Barnett approach PBA 20 which has received
Ža lot of attention during the last ten years see, for a recent

w x.review Refs. 10,21 and has led to many important
results. We use here the form of PBA considered recently

w xin Ref. 22 . Then, the phase distribution over the phases
of two circularly polarized modes is determined as follows,

<² < : < 2P s f ,f c ,c q y

< :where f ,f is the Susskind-Glogower phase state andq y
< :c is the state of the radiation field. To establish the
connection with the results already obtained in this paper,

< : < : < : < :suppose that c s a 0 a . Since our formalism isq 0 y
focused on the phase difference rather that individual
phase we need to use the distribution function for the
relative phase fsf yf . Referring the procedure sug-q y

w xgested in Refs. 22,23 to cast the range of f into 2p

range from 4p range, we take

`
2Žn.<² < : <P s f c ,Ý2p

ns0

n1
Žn. if nq< : < :f s e n ,0,nyn .Ý q q'2p n s0q

Using this distribution function, one can calculate the
Ž .mean value of any function F f of the relative phase as

follows,

p

² :F f s df P f F f .Ž . Ž . Ž .H 2p
yp

Then

` n nq yI Iq yyŽ I qI .q yˆ² :cosf se ÝPB n !n !q yn s0"

=
Re a a )Ž .q y

,
n q1 n q1(Ž .Ž .q y

yŽ I qI . ` n nq y q y1 e I Iq y2 ˆ² :cos f s q ÝPB 2 2 n !n !q yn s0"

=
Re a a )Ž .q y

.
n q2 n q1 n q2 n q1(Ž .Ž .Ž .Ž .q q y y

18Ž .

To clarify the difference between the two approaches let us
Ž . Ž .represent our results 16 , 17 as follows

) yŽ I qI . ` n nq y q yRe a a e I IŽ .q y q y² :C s ,ÝR n !n !I q I q I I' q yq y q y n s0"

² :1 CR2² :C s qR 2 2 I q I q I I' q y q y

2
) n n` q yRe a a I IŽ .q y q y

q . 19Ž .Ý
2 I q I q I I n !n !Ž .q y q y q yn s0"

Ž .One can see that each term in the sums in Eqs. 18 has
Ž .different normalization while in Eqs. 19 , all the terms

have one and the same normalization factor related to our
Ž .choice of the constant K 12 . In addition, the expression

² 2: ² :for C contains an extra term proportional to C .R R

This term comes from the vacuum fluctuations related to
the mode ms0. This causes a striking difference when
one of the modes ms"1 is in the quantum domain.
Exactly, the existence of the ‘‘phase banching’’ is stipu-

Ž .lated just by this term see Fig. 1 . At the same time, both
approaches show the saturation of the variance when one
of the intensities tends to infinity while the second is kept
constant. We should note as well the same qualitative
difference from the results obtained by the polar decompo-
sition of the standard Stokes operators in a finite-dimen-

w xsional Hilbert space in the Ref. 22 .
Let us briefly discuss the results. The approach based

on the definition of the radiation phase via the conserva-
tion of the angular momentum in the process of radiation
w x1 leads to the definition of five operators, forming the set
of the generalized Stokes operators in the case of electric
dipole radiation. According to the construction, two of
them can be interpreted as the Hermitian cosine and sine
of the azimuthal phase operators of the angular momentum

Ž .of radiation at the corresponding normalization . These
operators manifest a quite reasonable behavior in the clas-

Fig. 1. Variance of cosine. Lower curve is for the Pegg-Barnett
cosine, the upper curve is the C operator. Both curves are drawnR

for d s0 and I s0.275.q
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sical limit as well as in the quantum domain. In the
simplest case of only two circularly polarized modes, the
radiation phase formally coincides with the phase differ-
ence between these two modes, although, in the general
case of all three modes, it depends on the phase differences
between all pairs of modes. It should be stressed that the
contribution of the linearly polarized component ms0 is
important even if this component is in the vacuum state
because it influences the vacuum fluctuations. This influ-
ence can lead to qualitative effects such as ‘‘phase bunch-
ing’’. The role of the third component in the quantum
fluctuations is a distinctive feature of our approach in
comparison with the approaches based on the cutoff of the

w xHilbert space 20,22 . In reality, the cutoff of the Fock
basis leads to the definition of the unit operator which can
be considered as some approximation of the Casimir oper-

Ž .ator of the SU 2 sub-algebra, describing the angular mo-
mentum of radiation, but only in a particular sub-space of
the Hilbert space. Existence of the unit operator makes it
possible to perform polar decomposition and determine the
corresponding quantum phase properties. At the same time,
the cutoff procedure reduces the algebraic properties which
are responsible for the quantum fluctuations, first of all.
The limit taken after the calculation of all expectation
values cannot completely restore these properties which
are especially important in the quantum domain.

In connection with the measurement of the cosine and
Ž . Ž .sine 11 or the Stokes operators S , S in 10 , we should1 2

w xnote that the standard operational eight-port scheme 8,9
can be used for this aim. Actually, since the total photon
number and S , S commute, the different inputs should1 2

consist of a mixture of the linearly polarized component
with different circularly polarized components such that
each output includes all three components. It is a straight-
forward matter to check that the standard operational

w xrelations 9 determine in this case just the operators S , S1 2

and S modified by the parameters of the beamsplitters.0

Let us also note that the phase distribution for the
radiation phase under consideration can be found using a
sub-space of the Hilbert space which is provided by the

Ž .2eigenfunctions of the operator M with given eigenval-
ues.

Let us stress at the conclusion that there are different
w x Žphases related to different schemes of detection 9 the

.geometrical phase, etc. . The above considered radiation
phase is related to the angular momentum, has a simple

physical meaning in terms of the polarization properties of
radiation and can be measured in the eight-port homodine
detection.
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