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Abstract

We consider the absolute p-center problem on a general network and propose a spanning

tree approach which is motivated by the fact that the problem is NP-hard on general networks

but solvable in polynomial time on trees. We ®rst prove that every connected network possesses

a spanning tree whose p-center solution is also a solution for the network under consideration.

Then we propose two classes of spanning trees that are shortest path trees rooted at certain

points of the network. We give an experimental study, based on 1440 instances, to test how

often these classes of trees include an optimizing tree. We report our computational results on

the performance of both types of trees. Ó 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The absolute p-center problem is a model for locating p identical facilities any-
where on a network to minimize the maximum (weighted) distance between each
vertex (demand) and its closest facility. The model ®nds applications in the location
of emergency service facilities such as hospitals, ambulance and ®re stations, etc. The
problem is NP-hard on general networks, but solvable in polynomial time on tree
networks; (Kariv and Hakimi, 1979).

For p� 1, Dearing and Francis (1974) have shown that the union of shortest
paths connecting the optimal 1-center of a network to the vertices forms a spanning
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tree whose optimal 1-center coincides with that of the network. A natural question to
ask is whether this result extends to the case with p > 1. That is, does every con-
nected network have a spanning tree whose optimal p-center solution is the same as
that of the network, and if it does, what search strategies can be devised to ®nd an
optimal tree (a spanning tree that supplies an optimal solution to the network)? We
explore this question by ®rst proving the existence of an optimal tree (Theorem 1),
and then proposing two classes of spanning trees that are suspected of containing an
optimal one. It is important to note here that the identi®cation of an optimal tree in
polynomial time would mean P�NP. Hence, con®ning the search for an optimal
tree to a polynomial-sized subset of all spanning trees is as hard as the p-center
problem itself. We implement a computational study and report our results on the
success rates of the two proposed classes of trees.

For a brief literature review of the problem, Hakimi (1964) de®ned and solved the
absolute 1-center problem by examining the piecewise linear objective function on
each edge and ®nding the edge-restricted minimum at one of the breakpoints. The
smallest among the edge-restricted minima is the absolute 1-center of the network.
Hakimi et al. (1978) further reduced the computational e�ort in HakimiÕs algorithm.
Hakimi (1965) de®ned the absolute p-center problem and developed a solution
procedure based on solving a sequence of set covering problems. Christo®des and
Viola (1971) also employed the idea of using the set-covering problem in their al-
gorithm. Minieka (1970), for the unweighted case, and Kariv and Hakimi (1979), for
the weighted case, showed that the optimal solution of the problem is restricted to a
®nite set of points on the network. Hooker et al. (1991) provided later a uni®ed
framework for establishing ®nite dominating sets for rather general classes of net-
work location problems. Hooker et al.Õs results include as special cases the domi-
nating set properties of Minieka (1970), and of Kariv and Hakimi (1979). Since the
®rst appearance of this problem, researchers have studied many di�erent versions of
the problem, such as the ``conditional'' 1-center (Minieka, 1980), 2-center (Handler,
1978), unweighted p-center (Handler, 1973; Hedetniemi et al., 1981; Minieka, 1981),
vertex-restricted p-center (Toregas et al., 1971; Hooker, 1989), p-center with con-
tinuous demand points (Chandrasekaran and Tamir, 1980; Chandrasekaran and
Daughety, 1981; Megiddo et al., 1981; Tamir, 1985) and p-center problems in which
the weighted distances are replaced by non-linear functions of distances (Tansel et
al., 1982; Hooker, 1986, 1989).

The rest of this paper is organized as follows. In Section 2, we de®ne the problem
and prove the main theorem. In Section 3, we describe the two classes of spanning
trees that are suspected of containing an optimal tree. Section 4 describes the
computational study and analyzes the results of assessing the success rates of the
proposed classes of trees. The paper ends with concluding remarks in Section 5.

2. Problem and main theorem

Let N � �V ;E� be an embedding of a connected network in some space S (e.g. the
plane), as de®ned in Dearing and Francis (1974), where V � fv1; . . . ; vng � S is the
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vertex set consisting of n distinct points in S, and E is the edge set consisting of
embedded edges �vi; vj� � S. Each embedded edge �vi; vj� is the image, Hij��0; 1��, of
the unit interval under a one-to-one continuous mapping Hij : �0; 1� ! S where
Hij�0� � vi; Hij�1� � vj, and Hij�a� is some point in the interior of �vi; vj� for
0 < a < 1. We take N as the union of its embedded edges and omit the term Ôem-
beddedÕ in the rest of the paper. A point x 2 N is either a vertex or a point in the
interior of some edge �vi; vj� in which case x subdivides the edge into two subedges
�vi; x� and �x; vj� where �vi; x� [ �x; vj� � �vi; vj� and �vi; x� \ �x; vj� � fxg. The edges are
assigned positive lengths. If the length of edge �vi; vj� is Lij and if x is a point in this
edge with x � Hij�a� for some a 2 �0; 1�, then the lengths of subedges �vi; x� and �x; vj�
are aLij and �1ÿ a�Lij, respectively. Let X � fx1; . . . ; xpg � N be any set of p points
at which p facilities (servers) will be located and let Sp�N� be the set of all point sets X
with X � N and jX j � p. Note that Sp�N� is an in®nite set. Let d�x; y� be the shortest
path distance between any two points x; y 2 N and denote the distance of vertex vi

to its closest facility by D�vi;X � � minfd�vi; xj� : xj 2 Xg. The absolute p-center
problem is:

min
X2Sp�N�

f �X � where f �X � � max
16 i6 n

wi � D�vi;X �: �1�

Here, the wi are non-negative weights that may re¯ect the relative importance of each
vertex. If X � solves Eq. (1), we call X � a p-center and call zp�N� � f �X �� the p-radius
of N. If X 2 Sp�N�, we call X a feasible solution or a candidate p-center. Each xj in X
will be referred to as a facility or a server. Tansel et al. (1983) and Mirchandani and
Francis (1990) provide extensive information on various algorithmic and theoretical
aspects of this problem.

A spanning tree of N is any subgraph of N that is connected, has no cycles, and
contains all vertices of N. Let T be any spanning tree of N and de®ne
dT �x; y�;DT �vi;X �; fT �X �, and Sp�T � in exactly the same way as d�x; y�;D�vi;X �; f �X �,
and Sp�N�, respectively, except that everything is relative to T rather than N. The p-
center problem restricted to T is

min
X2Sp�T �

fT �X �: �2�

Denote by zp�T � the minimum objective function value in Eq. (2), i.e. the p-radius of
T. If ST �N� is the set of all spanning trees of N, it is clear that

zp�N�6 zp�T � 8T 2 ST �N�: �3�
The inequality is a consequence of the fact that any p-center for the tree T is a
feasible solution for the problem on N.

The next theorem shows that equality is achieved in Eq. (3) by at least one
spanning tree.

Theorem 1. Let N be any connected network. There exists a spanning tree T of N such
that zp�T � � zp�N�. Consequently, if X 2 Sp�T � is a p-center of T then X is also a p-
center of N.
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Proof. Let X � � fx�1; . . . ; x�pg be a p-center of N. Construct an optimal tree T from X �

as follows. Partition V into disjoint subsets V1; . . . ; Vp where Vj consists of the vertices
vi 2 V such that D�vi;X �� � d�vi; x�j � and D�vi;X �� < d�vi; x�j0 � for all j0 < j. That is,
each vertex vi 2 V is assigned to the closest facility where ties are broken by selecting
the smallest-indexed facility among tied ones, so vertices in Vj are served by x�j . We
may also assume without loss of generality that each Vj in this partition is non-
empty. Otherwise, if Vj � /, then we may replace x�j with an arbitrary vertex, say vk,
so that a re-partitioning of V with respect to the new p-center so obtained ensures
that vk is assigned to the new j th facility.

With Vj 6� / �j � 1; . . . ; p�, let Tj be a shortest path tree which is rooted at x�j and
which spans the vertices in Vj. Note that Tj is de®ned by the union of shortest paths
between each vi 2 Tj and x�j , and its existence is guaranteed (Busacker and Saaty,
1965). Note also that any tip vertex of Tj is necessarily in Vj. However, it is not
obvious that a non-tip vertex v0 of Tj is in Vj. But, in what immediately follows,
we show that non-tip vertices of Tj are necessarily in Vj which also ensures that
T1; . . . ; Tp are disjoint subtrees. Once this is shown, it is direct to add (pÿ1) edges
from N n [p

j�1Tj to the forest fT1; . . . ; Tpg to complete it and form a spanning tree
T .

To prove the claim, let v0 be a non-tip vertex of Tj and suppose that v0 were on the
shortest path connecting x�j and a tip vertex v00 2 Tj (see Fig. 1). Then we have
d�v0; x�j �6 d�v0; x�i � for i 6� j, i.e., the path from v0 to x�j must be a shortest path from v0

to its nearest facility(s). (For if not, we could reduce the length of the path from v00 to
its nearest facility by serving v00 from the same facility that v0 is served from, a
contradiction of the de®nition of Tj.) Now suppose v0 62 Vj. Then there must be some
facility with an index i < j such that d�v0; x�j � � d�v0; x�i �. However, all v 2 Tj that are
``successors'' of v0 (see circled part of Fig. 1) would also be served by the facility with

Fig. 1. A non-tip vertex, v0, of Tj must be in Vj
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the index i since i < j and thus must be in Vi , a contradiction. Therefore any non-tip
vertex of Tj must be in Vj, and it follows that the subtrees are disjoint.

At this point, we have p disjoint trees TjÕs, each of which spans the vertices (and
only those vertices) in the associated Vj. The next step is to combine these trees into
a spanning tree by adding (pÿ1) edges appropriately. Note that, since N is con-
nected, there always exists an edge e � �vs; vt� such that vs 2 Tk and vt 2 Tl for some
k 6� l, and e 62 Tj; 8j � 1; . . . ; p. Hence, e can be used to combine Tk and Tl. The
TjÕs are combined into a spanning tree of N in this way and the tree T that we are
looking for is constructed. Now we prove that T has the same p-radius as that
of N.

To show zp�T � � zp�N�, suppose we solve a 1-center problem on each Tj and let
X � fx1; . . . ; xpg be the set of the corresponding 1-centers. Observe that X is feasible
on both T and N. We have

zp�T �6 fT �X �: �4�

For each Tj, we have

z1�Tj� � max
vi2Vj
fwi � dTj�vi;�xj�g6 max

vi2Vj
fwi � dTj�vi; x�j �g

� max
vi2Vj
fwi � d�vi; x�j �g6 zp�N�

which gives

zp�T �6 fT �X �6 max
j�1;...;p

z1�Tj�6 zp�N�:

From Eq. (3), we also have zp�T �P zp�N�, since any spanning tree of N is a
subgraph, hence a restriction, of N with the same weights and edge lengths. This
implies

zp�T � � zp�N�

which completes the proof of Theorem 1.

Although Theorem 1 shows the existence of an optimal tree, the proof requires
knowledge of a p-center of N to construct such a tree. Thus, the question of how to
search for an optimal tree without having knowledge of a p-center of N remains an
open question. In the next section, we propose two classes of trees that provide the
basis of a search strategy that performs well in many instances.

We remark in passing that the proof of Theorem 1 can be adapted to the p-median
problem where the objective function is de®ned by the sum of weighted distances
rather than the maximum weighted distance. Tansel et al. (1983) give extensive in-
formation on the p-median problem. Hakimi (1964, 1965) proved that there exists an
optimal solution to the p-median problem on the vertices of the network. Hence, we
may focus on the vertex-restricted problem without loss of optimality. Let Sp�V � be
the set of subsets of V consisting of p distinct vertices.
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Theorem 2. Let N be a connected network and lp � minX2Sp�V �
Pn

i�1 wi D�X ; vi�. De-
®ne lp�T � similarly relative to any spanning tree T of N. There exists a spanning tree T
of N such that lp�T � � lp�N� and every optimal solution for the p-median problem on T
is also an optimal solution for the p-median problem on N.

3. Rooted shortest path trees

In general, the number of spanning trees of a network can be excessively large. A
complete network of n vertices has nnÿ2 distinct spanning trees (Moon, 1967), and
this provides an upper bound for any network even though more complicated for-
mulas for the exact count are available for general networks (Riordan, 1958). One
such formula is given by Thulasiraman and Swamy (1992), with reference to Kircho�
(1847), which computes the exact count as the value of any cofactor of DÿA where
D is the diagonal degree matrix and A is the adjacency matrix of the network.

One can e�ciently solve the p-center problem on a cyclic network if the number of
spanning trees is polynomial. This is usually the case if the network is sparse or has a
simple structure, e.g., a network with few cycles, as is the case with many highway
networks. For the general case, we introduce two types of trees that are suspected of
containing an optimal tree. Both types of trees will be referred to as rooted shortest
path trees (RSPTs) as they are constructed by picking certain points of the network
as ``roots'' and forming the union of shortest paths that connect the roots to the
vertices. Our motivation for choosing these sets of trees is given in the corresponding
section. Later, we give an experimental search for the optimal tree (i.e., a spanning
tree that supplies an optimal solution to the network) in these two types of spanning
trees.

3.1. Trees rooted at segments (S-RSPTs)

The ®rst class of spanning trees used in the search for an optimal tree includes the
trees rooted at edge segments of the network (the detailed description of S-RSPTs is
given below). In our early experiments, the S-RSPTs included an optimizing tree in
essentially all small-scale examples that we worked out by hand. For this reason, we
found it worthwhile to test their performance in large-scale instances. Our test results
with this class of trees are given in Section 4.1.

For any vertex vk and edge e � �vp; vq�, it is well known that d�vk; x� as a function
of x restricted to e is piecewise linear concave with one or two pieces (Fig. 2). If
d�vk; �� has two pieces on e, then there is a unique point, say vk, at which d�vk; ��
attains its maximum value. We call vk an antipodal of vk (Fig. 3). Let A be the set of
all antipodals of all vertices on all edges. Since a vertex can have at most one an-
tipodal on a given edge, the cardinality of A is O�njEj�. Let U � V [ A. We call U the
extended vertex set and refer to each u in U as a pseudo vertex with the understanding
that u is either a vertex or an antipodal. Two pseudo vertices u, u0 2 U are de®ned to
be adjacent if they lie on the same edge and the edge segment that connects u and u0

does not contain any other point of U.
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Consider two adjacent pseudo vertices a, b and let �a, b� be the edge segment that
connects them. Observe that every distance function d�vk; �� is linear on �a, b�; oth-
erwise, �a, b� contains an antipodal in its interior which means that a, b are not

Fig. 3. vk : The antipodal of vk on edge e � �vp; vq�:

Fig. 2. Plot of d�vk ; �� on edge e � �vp; vq�:
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adjacent. As a consequence, �a, b� partitions the vertex set V into two non-empty
subsets Va; Vb as follows:

Va � fvk 2 V : d�vk; a� < d�vk; b�g;
Vb � fvk 2 V : d�vk; b� < d�vk; a�g:

To construct a spanning tree rooted at �a, b�, we ®rst take a as a root vertex and ®nd
a set of shortest paths that connect a to every vertex in Va. Let Ta be any such rooted
shortest path tree that is constructed via DijkstraÕs shortest path algorithm. We note
that there may be alternate shortest paths between the root and any vk 2 Va but we
take the ®rst such path encountered during the path construction phase of DijkstraÕs
algorithm. Let Tb be constructed similarly. Observe that Ta and Tb are disjoint, as
otherwise the existence of a vertex v which is in both Ta and Tb would imply that
d�v; a� � d�v; b�, which is contradictory. Hence Ta spans Va while Tb spans Vb with
Ta \ Tb � /.

De®ne T �a; b� � Ta [ Tb [ �a; b� and call T �a; b� the tree rooted at segment [a, b]. In
the computational experiments, we refer to such trees as S-RSPTs (``S'' for segment).
The Dijkstra-based procedure constructs one such tree per segment. Since there are
O�njEj� segments and each requires O�n2� time for DijkstraÕs method, the total e�ort
for the construction of S-RSPTs is O�n3jEj�. We note that the actual number of S-
RSPTs may be signi®cantly larger than O�njEj� since the existence of alternate
shortest paths may lead to many distinct rooted shortest path trees.

3.2. Trees rooted at intersection points (I-RSPTs)

The second class of spanning trees in which an optimizing tree can be searched for
is the set of shortest path trees rooted at intersection points. The consideration of
this set is motivated by the fact that a p-center of a network induces a partitioning of
V and the network itself, which is closely related to the intersection points used as
facility locations. To clarify this concept further, let fk�t� � wkd�vk; t� be the weighted
distance between vk and a point t on edge e. An intersection point on e de®ned by two
distinct vertices vk and vl is a point x 2 e, if it exists, such that fk��� and fl��� intersect
at x, one with a positive, the other with a negative slope (Fig. 4). Kariv and Hakimi
(1979) show that the optimal locations of facilities can be restricted to the union of
the set of all intersection points and the vertices of N. In fact, given an absolute p-
center X � � fx�1; . . . ; x�pg, there is a natural partitioning of V into subsets V1; . . . ; Vp (as
in the proof of Theorem 1) such that each x�j serves the vertices in Vj and that x�j can
be moved without loss of optimality to some intersection point de®ned by a pair of
vertices in Vj.

We use DijkstraÕs method to construct a single shortest path tree (referred to as an
I-RSPT) by taking each intersection point to be the root and constructing a shortest
path tree that connects the root to all vertices in V. This generates O�n2jEj� I-RSPTs
with a total e�ort of O�n4jEj�. Computational results on the performance of these
trees are reported in Section 4.1.
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4. Computational experiments

In this section, we implement an experiment to test whether an optimal tree is
included in the set of S-RSPTs or I-RSPTs. An instance of the problem is de®ned by
the following factors. n is the number of vertices; d is edge density, the ratio (in
percent) jEj= n

2

ÿ �
; w is vertex weights; l is edge lengths; p is number of facilities. These

factors are assigned the levels of values in Table 1.

For each combination of the factors (n, d, w, l, p), 10 random instances are
generated, for a total of 720 instances. The unweighted instances are generated by
simply making the corresponding weighted instance unweighted. They were included

Table 1

Factors and their levels

Factor Number of levels Levels

n 4 10, 20, 30, 40

d 3 25%, 50%, 75%

w 2 W or U �

l 1 Uniform from {1, 2, 3, 4, 5}

p 3 bn=4c; n=2; d3n=4e

Total 72

* W: weighted (uniform from {1,2,3}), U: unweighted �wi � 1;8i�.

Fig. 4. An example of an intersection point x on e � �vp; vq� de®ned by two distinct vertices vk and vl.
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for the purpose of testing whether or not the case of equal weights improves the
results of weighted instances. The experiment is carried out in two stages that are
described below:

Stage 1: First, for an instance N (generated by the NETGEN module coded by the
authors, which randomly adds and then deletes edges until the connectivity and
density requirements are met), the absolute p-center problem is solved on N. The
algorithm used for solving the problem is based on the results of Kariv and Hakimi
(1979) and Minieka (1970). This exact algorithm ®rst identi®es all the intersection
points of the network together with the associated candidate p-radii. It then solves a
sequence of set-covering problems using the intersection points found as candidate
facility locations that ``cover'' the demand points within the p-radius used.

After the problem is solved on N, all the S-RSPTs (I-RSPTs) of N are constructed
and the problem is solved on each (using the results of Tansel et al., 1982 and Tansel
et al. 1990). The algorithm used for this purpose again solves a sequence of set-
covering problems. Each set-covering problem is solved by starting at the tip vertices
of the tree, and then locating facilities as needed while moving towards the ``interior''
of the tree. The best p-radius obtained from the S-RSPTs (I-RSPTs) is then com-
pared with the p-radius of N and the gap between the two is recorded. In this stage,
during the construction of the S-RSPTs (I-RSPTs), only one S-RSPT (I-RSPT) is
constructed for each segment (intersection point). That is, ties between alternate
shortest paths are broken arbitrarily. Note that this may cause the experimenter to
miss an optimal tree which is an S-RSPT (I-RSPT) (if all the ties are broken inap-
propriately). This potential problem is addressed in Stage 2.

Stage 2: This stage is performed only on those instances for which an optimal tree
could not be found in Stage 1. Given such an instance of N, the RSPTs are con-
structed exhaustively, i.e., all the alternative shortest paths are enumerated. The best
p-radius among the RSPTs is again compared with the p-radius of N and the gap is
recorded. This stage runs in exponential time since the trees so constructed involve
all possible combinations of the individual alternative shortest paths. Because of this
and also because solving the problem on N runs in exponential time, the maximum
problem size in both stages was limited to 40 vertices due to system resource re-
strictions. We were also unable to ®nd larger problem instances of the absolute p-
center problem with known optimal solutions from the OR library (Beasley, 1990) or
from other prominent researchers who have done computational work on this
problem. Larger solved instances of the vertex-restricted problem are available but
do not help with the absolute version of the problem.

The values of edge lengths and weights were initially designed to come uniformly
from sets f1; 2; 3; 4; 5g and f1; 2; 3g, respectively. However, these values might re-
strict the networks that are tested in this study to a narrow subset of the entire
population of networks. This may result in ignoring some instances that do not
conform to the results regarding the instances actually tested. To avoid this, the edge
lengths and weights were allowed to take values, again uniformly, from a wider set of
values, namely the set f1; 2; . . . ; 20g. Again, 720 instances of the problem were solved
as with the previous choice of weights and edge lengths. We refer to the ®rst set of
720 instances (with the restricted set of values for edge lengths and weights) as
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P1 instances and refer to the second set of 720 instances (with the wider set of values)
as the P2 instances. For the P2 instances, the exhaustive stage (Stage 2) was NOT
performed. In fact, the ®rst stage applied to the P2 instances resulted in a higher
percentage of ®nding an optimal tree and lower values of maximum and average p-
radii gaps. There were no instances that resulted in gaps larger than 100% (the largest
gap in the initial set) and the overall percentage of ®nding an optimal tree was better
than that of the initial set. Therefore, Stage 2 was not performed on this set of in-
stances.

We have also experimented with weights and edge lengths coming from expo-
nential and triangular distributions. In the exponential case, the mean of the edge
length (weight) distribution was set equal to 3 (2) which is the same as the mean of
the corresponding discrete uniform distribution. In the triangular case, the mini-
mum, the most likely and the maximum values of the edge length (weight) distri-
bution were set equal to 1, 3 and 5 (1, 2 and 3), respectively, which are the same as
the corresponding values for the discrete uniform case. In both cases, we have
performed Stage 1 and Stage 2 experiments for n � 10 and n � 20. The compu-
tational results based on these values of n indicated no signi®cant deviations from
the results that we have obtained for the discrete uniform distribution. For this
reason, we report our complete results for the discrete uniform distribution case
only.

Table 2 below displays the number of network spanning trees (computed using the
formula given in Thulasiraman and Swamy, 1992) vs. the number of S- and I-RSPTs
constructed and tested (both in the absolute and the relative sense) for P1 instances.
The ®gures are the average counts for the 10 instances generated for each pair of n
and d. It is clear from this table that the number of the spanning trees of the net-
works as well as the number of S- and I-RSPTs constructed in Stage 2 grow very
quickly as n and d are increased. One striking observation in this table is the ratio of
the number of S- and I-RSPTs in both stages to the number of network spanning
trees. This ratio is very small (practically zero) except for the n � 10, d � 25% in-
stance group, for which S- and I-RSPTs included practically all spanning trees of the
network in both stages. In other words, our approach relies on a very small number
of S- and I-RSPTs for ®nding an optimal tree.

4.1. Results

All the instances tested in the experiment are grouped in the following four major
categories so that the results can be analyzed with respect to four di�erent criteria.
1. Weighted vs. unweighted,
2. Sparse vs. dense,
3. The value of p relative to n,
4. The problem size, n.

The summary tables (Tables 3±5) display the results with respect to these four
groups. All the groups except the ®rst one are further split into two subgroups as
weighted (W) and unweighted (U). The results are reported for three tree classes (S-
RSPTs, I-RSPTs, and BOTH) for all instances in both stages, and for a fourth class
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(RANDOM) for P1 instances in Stage 1 only. The ®rst two of these are S-RSPTs and
I-RSPTs alone. The third one corresponds to S-RSPTs and I-RSPTs combined (i.e.,
an optimal tree being either an S-RSPT or an I-RSPT or both). The last one
(RANDOM) is the class of randomly generated trees, which we use as a basis for
comparison. For this class, we generated as many trees as the number of S-RSPTs
constructed in Stage 1 with the corresponding weight and edge length distributions.
The random trees are constructed by starting with a complete network, and then
randomly deleting one edge at a time, without violating connectivity, until the net-
work reduces to a tree. Finally, each table contains two types of results under each
group and subgroup (except for the tree class BOTH) in a particular stage (listed
under SUCCESS and GAPS, respectively):
1. the percentage of instances for which an optimal tree is found in the set of trees

tested.
2. the maximum and average gap for the instances in a particular (sub)group be-

tween the p-radius of the network and that of the best S-RSPT (I-RSPT).
To de®ne the notation used in the summary tables, ®rst let the term success refer

to ®nding an optimal tree in the set of trees tested for a particular instance. The
notation used in the summary tables is then de®ned as follows:

4.1.1. Results for Stage 1
The experimental results for Stage 1 are given in Tables 3 and 4 . These tables

correspond to the two sets of parameters for weights and edge lengths, P1 and P2, as
described above.

G Group number,
DESCR Symbolic description of a particular group,
SG Subgroups of a particular group (All, Weighted and Unweighted),
# Total number of instances in a particular (sub)group,
SRi Success ratio after Stage i �i � 1; 2�, i.e., the cumulative percentage

of the instances in a particular (sub)group for which an optimal
tree was found in the set of trees tested,

MGi Maximum gap in a (sub)group of instances in Stage i. Let I
denote a (sub)group of instances and Gi�I� denote the Stage i gap
(for some I 2 I) between the p-radius of the best S-RSPT (I-
RSPT) of I and the p-radius of I itself. Then, MGi of the
(sub)group I is de®ned as

MGi � max
I2I

Gi�I�;

AGi Average gap in a (sub)group of instances in Stage i. Let I and
Gi�I� be de®ned similarly. Further, let jIj be the number of
instances in the (sub)group I. Then AGi of I is de®ned as

AGi �
P

I2I Gi�I�
jIj :
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In this stage, the S-RSPTs do not necessarily contain an optimal tree in all instances.
We observed instances for which the best S-RSPT did not give the p-radius of the
corresponding network. However, the computational evidence suggests that the S-
RSPTs include an optimal tree in a majority of the cases. With P1 (Table 3), we
observe that the success ratio in Stage 1 is 83.75%. We also observe that, for all of the
subgroups, unweighted instances give better ®gures of SR1, compared to weighted
instances. With P2 (Table 4), Stage 1 success ratio is 87.78% and unweighted in-
stances perform roughly the same as weighted instances. In terms of the maximum
gaps, no gap higher than 100% (50%) of the network p-radius is observed for set
P1�P2�. The AG ®gures suggest that the instances coming from set P2 give better
results in terms of the performance measures. Contrary to the success ratios, the U
instances have worse (higher) maximum and average gaps compared to the W in-
stances with both P1 and P2.

The results for S-RSPTs with respect to groups 2, 3 and 4 are summarized as
follows:

(2) A general pattern is that the success ratios decrease as the density increases.
With P1, the success ratios are consistently higher for the U subgroups, but with P2,
neither U nor W subgroup outperforms the other. The MG does not change with
density at all, but AG apparently increases as the density increases, especially for the
U subgroups. The S-RSPTs seem to perform better on relatively sparse and un-
weighted instances.

(3) The success ratios increase as p gets nearer to n. Again, success ratios are
generally higher for the U instances, however, with p � bn=4c, SR1 is well below the
overall SR1. The least improvements in maximum and average gap occur again with
this case, which implies that S-RSPTs show relatively poor performance for small
values of p=n.

(4) As n increases, all the success ratios decrease and the amount of maximum and
average gaps increases with few exceptions. Although the S-RSPTs again perform
better for the U instances in terms of success ratios, the distinction is not very clear
with P2.

The Stage 1 experimental results for I-RSPTs are also in Tables 3 and 4. Again, we
observe that an optimal tree is not always included in the set of I-RSPTs. However,
similar to the S-RSPTs, the observed results suggest that the I-RSPTs include an
optimal tree most of the time.

The I-RSPTs give results similar to those of S-RSPTs in the other performance
measures. All the major patterns observed with S-RSPTs are also valid for I-RSPTs.
However, the performance of I-RSPTs is somewhat worse than that of S-RSPTs in
terms of success ratios, and maximum and average gaps. The only apparent per-
formance di�erence between the two classes of RSPTs is in the fourth group with P2.
In this case, W instances perform better, on the average, than the U instances with I-
RSPTs.

When S-RSPTs and I-RSPTs are considered together, i.e., when we search for the
optimal trees either in the set of S-RSPTs or the set of I-RSPTs, the success ratios
improve slightly. In this case, the increase in success ratios is up to 3% in some
subgroups. Over all, the success ratio increases from 83.75% to 85.28% with P1, and
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from 87.78% to 88.89% with P2. While there is a slight improvement, we ®nd these
®gures to be an indicator of the fact that S-RSPTs and I-RSPTs succeed or fail on
essentially the same instances most of the time.

The last class of trees tested is the class of randomly generated trees (results re-
ported for P1 instances only). In our experimental study, we observe that S-RSPTs
and I-RSPTs signi®cantly outperform randomly generated trees in all performance
measures. An interesting observation with these trees, however, is that the pattern of
their performance within each group and subgroup is very similar to that of the S-
and I-RSPTs.

4.1.2. Results for Stage 2
The experimental results for Stage 2 are provided in Table 5. As we mentioned

earlier, this stage is performed for instances with P1 set of parameters only. We
observe that the second stage increases the overall success ratio from 83.75% to
96.11% for S-RSPTs, from 81.94% to 93.89% for I-RSPTs, and from 85.28% to
96.67% for S- and I-RSPTs combined. In other words, only 3.33% of the P1 instances
have an optimal tree which is neither an S- nor an I-RSPT. The increase in the
success ratio results from an exhaustive enumeration of all alternate shortest paths,
which runs in exponential time. To achieve higher success ratios in Stage 1, one must
develop a better way to break ties between alternate shortest paths.

The second stage decreases the gaps considerably within each group and subgroup
for both S- and I-RSPTs. The overall maximum gap is still 100%, but in many
subgroups, maximum gap is reduced if not completely eliminated. The overall av-
erage gap is also decreased drastically in Stage 2 from 42.7% to 7.8% for S-RSPTs
and from 43.4% to 9.7% for I-RSPTs. This re¯ects a reduction in average gaps within
all of the subgroups as well.

The observations from Stage 1 regarding the performance of S- and I-RSPTs
within each subgroup are mostly valid in the second stage, too. In general, the
performance of the RSPTs decreases as the edge density increases, as p gets closer
to n, and as the problem size increases. The U instances give better success ratios,
but higher maximum and average gaps compared to the W instances. The S-RSPTs
are again slightly better in performance compared to I-RSPTs. When considered
together, the two classes of RSPTs have slightly better success ratios than each of
them alone, but the positive e�ect of combining the two classes is less compared to
that in Stage 1. We have also experimented with random trees for P1 instances with
n � 10 and n � 20 using as many random trees as the number of RSPTs in
Stage 2. Even though this causes a substantial increase in the tested number of
random trees as compared to Stage 1, we observed that the increased number of
tests does not at all improve the success ratios for random trees (with a few ex-
ceptions).

Note that the set of S- and I-RSPTs tested in both stages is a very small subset of
all spanning trees of the associated network instances. Because of this, we ®nd S- and
I-RSPTs to be very successful in determining optimal trees, even without the ex-
haustive Stage 2. Even though Stage 2 runs in exponential time, it is still preferable to
implement this stage rather than enumerating all spanning trees of a network.
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One major observation we have made so far is that, for either of the sets P1 and P2

in both stages, U instances give larger maximum and average gaps than the corre-
sponding W instances. This is possibly due to the following: for U instances, a
candidate p-radius value associated with an intersection point either has a fractional
part of 0.5 or is integer. This follows from the fact that the edge lengths in the tested
instances are integers and each candidate p-radius value, generated by a pair of
vertices vi; vj, is just half the distance between vi and vj. Because of this, whenever a
gap occurs between a network p-radius and a tree p-radius, it is a positive integer
multiple of 0.5 and this may cause the gap to be high when the network p-radius is
small (e.g., if the network p-radius is 0.5 and tree p-radius is the possible smallest
value with a gap, which is 1, then the gap is 100% in terms of network p-radius). In
short, the candidate p-radius values for the U instances come from a more restricted
set of discrete values than those for the W instances. A similar argument may be used
to explain why the maximum and average gaps decrease as we move from P1 to P2.
Since the weights and edge lengths come from a larger set of values, we speculate that
the candidate p-radius values associated with intersection points may have more
variety in their decimal parts, which would possibly imply smaller di�erence, on the
average, between any two consecutive candidate p-radius values.

The following is a summary of the experimental results:
· The set of optimal trees need not have an intersection with S- or I-RSPTs.
· Both types of RSPTs provide an optimal tree in a majority of the cases, but in gen-

eral S-RSPTs supply an optimal tree in more cases than I-RSPTs. Taking the un-
ion of the two improves the results slightly.

· Overall, the S- and I-RSPTs constitute an extremely small subset of all the span-
ning trees of a network, but supply an optimal tree in about 85% of the cases if ties
for shortest paths are arbitrarily broken and in about 96% of the cases if all short-
est paths are individually taken into account. This is indicative of a very high suc-
cess rate for the RSPTs.

· The trees perform better on relatively sparse networks.
· The trees perform better as p=n approaches 1.
· The success ratio decreases as the problem size increases.
· Unweighted instances give better results than weighted instances with respect to

success ratios, but they have higher maximum and average gaps.
· Making a weighted instance unweighted does not always help to ®nd an optimal

tree. There were some unweighted instances that failed to ®nd an optimal tree
whereas the corresponding weighted instance had a success. Note that this may
hold regardless of whether or not U instances have lower maximum and average
gaps than W instances.

5. Conclusion

In this paper, we have discussed the spanning tree approach to solving the ab-
solute p-center problem on cyclic networks. The problem is known to be NP-hard on
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cyclic networks (Kariv and Hakimi, 1979) but polynomial-time solvable on tree
networks. The new approach is to identify a spanning tree of a particular network
whose p-center and p-radius are also optimal for the cyclic network.

First, for an arbitrary network N, we prove the existence of an optimal tree. This
implies that the instances which have a polynomial number of spanning trees can be
solved e�ciently by constructing all the spanning trees. For arbitrary networks,
enumeration is too costly, and it is advisable to search for an optimal tree in a
polynomial-size subset of the spanning trees since the entire set is of exponential size.
Note that the identi®cation of a subset, in polynomial time, which will always
contain an optimal tree would imply P�NP and hence is likely impossible. In this
paper, we introduced two types of spanning trees that are suspected of containing an
optimal tree. Both types of trees are shortest path trees rooted at some point(s) of the
network. The ®rst type, S-RSPTs, are trees rooted at segments de®ned by adjacent
elements of the extended vertex set that includes vertices and antipodals of vertices.
The second type, I-RSPTs, are rooted at intersection points of pairs of weighted
distance functions whenever these functions have slopes of opposite sign. The total
number of S-RSPTs and I-RSPTs that are constructed are O�njEj� and O�n2jEj�,
respectively. However, alternate shortest paths may be encountered in the con-
struction phase which may increase the number of trees exponentially. We keep the
number of trees polynomial by picking only one path from alternative shortest paths.
Overall, the number of S- and I-RSPTs is very small compared to the number of all
spanning trees of a network.

In the last section of the paper, we presented an experimental search for the
optimal tree in the two sets of spanning trees, S- and I-RSPTs. A total of 1440 in-
stances of the problem were generated and tested. The results indicate that, even
though the S-RSPTs and I-RSPTs do not always include an optimal tree, they do
most of the time. Furthermore, we observed that the maximum gap between the p-
radius of the network and the p-radii of the trees do not exceed 100% of the p-radius
of the network. This ®nding suggests that the worst case deviation of the proposed
classes of trees from optimality may be theoretically bounded above by 100%. The
100% bound has already been reported in the literature for other heuristics, e.g.,
Hochbaum and Shmoys' (1985) heuristic for the vertex-restricted p-center problem
which is later extended by Plesnik (1987) to the absolute p-center problem, and the
approximation algorithms of Hochbaum and Pathria (1997) for vertex-restricted
versions of the ``set'' p-center problem. Our approach has nothing in common with
these heuristics, but the existence of worst case bounds for these heuristics suggests
that the same bound may be valid for the spanning tree approach that we propose in
this paper. Also, the S-RSPTs and I-RSPTs are observed to perform better (a) on
sparse instances of networks, (b) with larger values of p and (c) on smaller-sized
instances of networks. We have also compared our results with those of randomly
generated trees, and found that the RSPTs signi®cantly outperform the random
trees. Since the sets of S-RSPTs and I-RSPTs do not always provide an optimal tree,
the problem of ®nding a polynomial subset of spanning trees that include an optimal
tree remains as an unsolved problem.
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