
Theory and Methodology

Job shop scheduling with beam search

I. Sabuncuoglu *, M. Bayiz

Department of Industrial Engineering, Bilkent University, 06533 Ankara, Turkey

Received 1 July 1997; accepted 1 August 1998

Abstract

Beam Search is a heuristic method for solving optimization problems. It is an adaptation of the branch and bound

method in which only some nodes are evaluated in the search tree. At any level, only the promising nodes are kept for

further branching and remaining nodes are pruned o� permanently. In this paper, we develop a beam search based

scheduling algorithm for the job shop problem. Both the makespan and mean tardiness are used as the performance

measures. The proposed algorithm is also compared with other well known search methods and dispatching rules for a

wide variety of problems. The results indicate that the beam search technique is a very competitive and promising tool

which deserves further research in the scheduling literature. Ó 1999 Elsevier Science B.V. All rights reserved.

Keywords: Scheduling; Beam search; Job shop

1. Introduction

Beam search is a heuristic method for solving
optimization problems. It is an adaptation of the
branch and bound method in which only some
nodes are evaluated. In this search method, at any
level only the promising nodes are kept for further
branching and the remaining nodes are pruned o�
permanently. Since a large part of the search tree is
pruned o� aggressively to obtain a solution, its
running time is polynomial in the size of the
problems.

This search technique was ®rst used in arti®cial
intelligence for the speech recognition problem

(Lowerre, 1976). There have been a number of
applications reported in the literature since then.
Fox (1983) used beam search for solving complex
scheduling problems by a system called ISIS. La-
ter, Ow and Morton (1988) studied the e�ects of
using di�erent evaluation functions to guide the
search and compare the performance of beam
search with other heuristics for the single machine
early/tardy problem and the ¯ow shop problem.
They also proposed a variation of this technique
called the ®ltered beam search and found optimal
settings of the search parameters.

In another study, Chang et al. (1989) used beam
search as a part of their FMS scheduling algorithm
called bottleneck-based beam search (BBBS). Re-
sults indicate that BBBS outperforms widely used
dispatching rules for the makespan criterion.

European Journal of Operational Research 118 (1999) 390±412
www.elsevier.com/locate/orms

* Corresponding author. Tel.: 90 312 266 4126; fax: 90 312

266 4126; e-mail: sabun@bilkent.edu.tr

0377-2217/99/$ ± see front matter Ó 1999 Elsevier Science B.V. All rights reserved.

PII: S 0 3 7 7 - 2 2 1 7 (9 8) 0 0 3 1 9 - 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52921859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Another beam search application to FMSs is re-
ported by De and Lee (1990) who showed that the
solution quality of ®ltered beam search algorithm
is better than depth-®rst type heuristics in terms of
the average maximum lateness and average ¯ow-
time measures. The authors also showed that beam
search was better than breadth ®rst type heuristics
in terms of number of nodes created during the
search. In another study, Hatzikonstantis and
Besant (1992) proposed a heuristic called A* for
the job shop problem with the makespan criterion.
A* algorithm is very similar to the beam search
method. The only di�erence is that A* algorithm is
a best-®rst search based heuristic and aims to ®nd
minimum-cost paths in search trees. Computa-
tional tests indicate that this heuristic search al-
gorithm performs better than dispatching rules.
Finally, Sabuncuoglu and Karabuk (1998) pro-
posed a ®ltered beam search algorithm for more
complex FMS environment in which AGVs are
explicitly modeled in addition to the routing and
sequence ¯exibilities. Their computational experi-
ments show that the beam search performs better
than the machine and AGV scheduling rules under
all experimental conditions for the makespan,
mean ¯ow time and mean tardiness criteria. Their
results also indicate that the beam search based
scheduling algorithm exploits ¯exibilities inherent
in FMS more e�ectively than other methods. An
overview of the beam search and its applications to
optimization problems can be found in Morton
and Pentico (1993).

Even though beam search has been used to
solve a wide variety of optimization problems, its
performance is not generally known for scheduling
problems. Because, in the existing research work,
beam search is primarily applied to the FMS
scheduling problem with additional considerations
on MHS ®nite bu�er capacities and ¯exibilities
and compared with only some dispatching rules.
Hence, its relative performances with respect to the
known optimum solution and other recently de-
veloped heuristics are not known. Besides, it has
not been thoroughly studied as a problem solving
strategy with certain evaluation functions and
search parameters.

This paper attempts to achieve some of these
objectives. First of all, we measure the perfor-

mance of beam search (with respect to optimum
solutions) and compare it with other well-known
algorithms. In addition, we investigate the e�ec-
tiveness of various rules as local and global func-
tions of the beam search applications. The
previous research indicates that the values of ®lter
and beam width a�ect the performance of the
beam search. Hence, we also examine the perfor-
mance of beam search for various values of ®lter
and beam width and ®nd their proper values.
Furthermore, we test two well-known schedule
generation schemes (active and nondelay schedule
generation schemes) in the context of the beam
search applications to the job shop problems.

The rest of the paper is organized as follows.
Section 2 gives de®nitions of the job shop prob-
lem. Then a beam search based algorithm is de-
veloped for the problem. This is followed by a
discussion on test problems and computational
experience with the proposed algorithm. The paper
ends with concluding remarks and suggestions for
further research.

2. Problem de®nition

The job shop problem is to determine the start
and completion time of operations of a set of jobs
on a set of machines, subject to the constraint that
each machine can handle at most one job at a time
(capacity constraints) and each job has a speci®ed
processing order through the machines (prece-
dence constraints). Explaining the problem more
speci®cally, there are a ®nite set J of jobs and a
®nite set M of machines. For each job j 2 J , a
permutation (rj

1; . . . ; rj
m) of the machines (where

m � jM j) represents the processing order of job j
through the machines. Thus, j must be processed
®rst on rj

1, then on rj
2, etc. Also, for each job j and

the machine i, there is a nonnegative integer pji, the
processing time of job j on machine i.

Since, this problem is NP-Hard (Garey and
Johnson, 1979) and very di�cult to solve, early
studies on this problem were directed at develop-
ment of e�ective priority dispatching rules. But
later, due to the general de®ciencies exhibited by
priority dispatching rules, researchers concentrat-
ed on more complex techniques. Tabu search

I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412 391

(Glover, 1989, 1990), large step optimization
(Martin et al., 1989), simulated annealing (Matsua
et al., 1988; Aarts et al., 1991), neural networks
(Sabuncuoglu and Gurgun, 1996) and genetic al-
gorithms (Nakano and Yamada, 1991) are exam-
ples of the formalized applications of such
scheduling techniques to the job shop problem. A
comprehensive bibliography of these studies for
the job shop problem is given by Jain and Meeran
(1996). In this paper, we measure the performance
of beam search for the makespan and mean tar-
diness criteria. Makespan, Cmax is the duration in
which all operations for all jobs are completed.
Tardiness is the positive di�erence between the
completion time and due date of a job. The ob-
jective is to determine starting times for each op-
eration in order to minimize the makespan or
mean tardiness while satisfying all the capacity and
precedence constraints:

C�max � min�Cmax�
� min

feasible schedules
�max�Ci� : 8i 2 J�;

T � � �1=jJ j� min
feasible schedules

X
i2J

max�0;Ci

ÿdi�

!
;

where Ci and di are the completion time and due
date of job i, respectively.

3. Beam search

Beam search is like breadth-®rst search since it
progresses level by level without backtracking. But
unlike breadth-®rst search, beam search only
moves downward from the best b promising nodes
(instead of all nodes) at each level and b is called
the beam width. The other nodes are simply ig-
nored. In order to select the best b nodes, promise
of each node is determined. This value can be de-
termined in various ways. One way is to employ an
evaluation function which estimates the minimum
total costs of the best solution that can be obtained
from the partial schedule represented by the node.
Such an evaluation function may require as little
e�ort as computing some priority rating or as
much as completing the partial schedule by some

method. The former method is called one-step
priority evaluation function, and the latter case is
called total cost evaluation function. The one-step
priority evaluation function has a local view,
whereas, the total cost evaluation employs a pro-
jecting mechanism to estimate costs from the cur-
rent partial solution. Therefore, evaluation is
based on a global view of the solution. Unfortu-
nately, there is a trade-o� between these two ap-
proaches: one-step (local) evaluation is quick but
may discard good solutions. On the other hand,
more thorough evaluation by the global function is
more accurate but computationally more expen-
sive.

A ®ltering mechanism is also proposed in the
literature to reduce the computational burden of
beam search. During ®ltering some nodes are dis-
carded permanently based on their local evalua-
tion function values. Only the remaining nodes are
subject to global evaluation. The number of nodes
retained for further evaluation is called the ®lter
width (a).

As shown in Fig. 1, we determine the promising
nodes (beam nodes) by performing local and
global evaluations and proceed with the search
through these selected nodes. After determining
the ®rst beam nodes at level 1, we apply the al-
gorithm to these nodes independently and generate
one partial tree from each of them. We refer to
these partial trees as beams. For each beam after
®ltering based on the outcome of the global eval-
uation, one node (beam node for the next level) is
selected among the descendants of each node.
Since we have beam width number of nodes in the
former level while keeping one descendant, we
again have beam width number of nodes in the
next level and therefore the search progresses
through b parallel beams. In the application of
beam search, one can have as many beams as
possible. On the other hand, ®lter width is de®ned
for each beam independently. Thus, the number of
beams (which is de®ned by the beam width pa-
rameter) can be feasibly greater than the ®lter
width value.

Instead of performing the beam search inde-
pendently through the di�erent beams, we could
pool at one level all the descendants nodes gener-
ated from all the beam nodes and perform local

392 I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412

evaluation for all of them. Then we could apply
global evaluation for the ®ltered nodes and select
beam nodes for the next level. However we would
not rather use this approach because di�erent
nodes at the same level represent di�erent partial
schedule. If the local evaluation is a function of the
partial schedule (as in the case of the lower bound
based local evaluation function to minimize
makespan), values of the local evaluation function
obtained for expanding one beam node cannot be
compared legitimately with the values of the local
evaluation functions obtained for expanding an-
other beam node at the same level. Therefore,
nodes in each of the parallel beams are evaluated
separately and only one node is selected for each.

3.1. The proposed beam search based algorithm

In an algorithm like beam search, there are two
important issues: (1) search tree representation

and (2) application of a search methodology. As
mentioned earlier, each node in the search tree,
corresponds to a partial schedule. A line between
two nodes represents the decision to add a job to
the existing partial schedule. Consequently, leaf
nodes at the end of the tree correspond to com-
plete schedules. Baker (1974) describes two search
tree generation procedures (active and nondelay)
schedules for the job shop systems. In the pro-
posed algorithm, these procedures are used to
generate branches from a given node.

The second issue in beam search is the deter-
mination of search methodology. In the proposed
algorithm, the ®ltered beam search method is used
to perform a search in the tree. All the nodes at
level 1 are globally evaluated to determine the best
b number of promising nodes. The selected nodes
become the ®rst nodes of the b number of parallel
beams. In the subsequent levels, descendants of the
beam nodes are ®rst locally evaluated to ®nd
number of promising nodes and then these nodes

Fig. 1. Representation of beam search tree.

I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412 393

are further globally evaluated to select the next
beam node. If the number of nodes expanded in
the ®rst level are less than the speci®ed beam
width, then all the nodes are expanded until the
number of nodes are greater than the beam width
in the next level.

Since the quality of the ®ltered beam search
depends on the quality of local and global eval-
uation functions as well as the beam and ®lter
width parameters, a thorough analysis must be
carried out to determine the nature of these
functions and parameters. In this study, local
evaluation is performed by using simple dis-
patching (or priority) rules. Global evaluation of
a node is determined as the estimation of the
upper bound value for the solutions that can be
generated if that node is added to the partial
schedule. This is performed by generating a
complete schedule from a given partial schedule
by applying dispatching rules and reading the
value of the objective function. Priority rules in
local and global evaluation functions are not
necessarily the same. In this study, we test several
rules for this purpose.

In the proposed algorithm, all the nodes at level
1 are globally evaluated to determine the best b
number of promising nodes. The selected nodes
become the ®rst nodes of the b number of parallel
beams. In the subsequent levels, descendants of the
beam nodes are ®rst locally evaluated to ®nd a
number of promising nodes and then these nodes
are further globally evaluated to select the next
beam node. If the number of nodes expanded in
the ®rst level are less than speci®ed beam width,
then all the nodes are expanded until the number
of nodes are greater than beam width in the next
level.

To be more speci®c, procedural form of the
beam search based algorithm is given as follows.

Procedure (BEAM SEARCH): In the ®ltered
beam search algorithm, we use active and nonde-
lay schedule generation methods discussed in Ba-
ker (1974, pp. 189), in order to generate a search
tree. At each level of the tree, operations with as-
signed starting times form a partial schedule.
Hence, given a partial schedule for any job shop
problem, a set of schedulable operations is ®rst
constructed.

Let PSt be a partial schedule containing t
scheduled operations, St be the set of schedulable
operations at stage t, corresponding to a given PSt,
rt the earliest time at which operation j 2 St could
be started, and /t the earliest time at which oper-
ation j 2 St could be completed.

Active schedule generation subroutine (AC-
TIVE):

Step 1: Determine /� � minj2Stf/jg and the
machine m* on which /* could be realized

Step 2: For each operation j 2 St that requires
machine m* and for which rj < /�, generate a new
node which corresponds to the partial schedule in
which operation j is added to PSt and started at
time rj.

Nondelay schedule generation subroutine
(NONDELAY):

Step 1: Determine r� � minj2Stfrjg and the
machine m* on which r* could be realized

Step 2: For each operation j 2 St that requires
machine m� and for which rj � r�, generate a new
node which corresponds to the partial schedule in
which operation j is added to PSt and started at
time rj.

We now give the steps of our beam search
based algorithm.

Beam Search:
Step 0 (Node generation). Generate nodes from

the parent node by using the procedure ACTIVE
(or NONDELAY) with PSt as the null partial
schedule.

Step 1 (Checking the number of nodes). If the
total number of nodes generated is less than
beamwidth, then move down to one more level,
generate new nodes by using the procedure AC-
TIVE (or NONDELAY) with PSt as the partial
schedule represented by the node, and go to Step 1.
Else, go to Step 2.

Step 2 (Computing global evaluation functions).
Compute the global evaluation function values for
all the nodes and select the best beamwidth (b)
number of nodes (initial beam nodes).

For each initial beam node:
Step 3 (Determining beam nodes). While the

number of levels is less than the number of oper-
ations (denoted as n).

Step 3.1 (Node generation). In the next level,
generate new nodes from the beam node according

394 I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412

to the procedure ACTIVE (or NONDELAY) with
PSt as the partial schedule represented by the beam
node. Let k is the number of nodes generated.

Step 3.2 (Computing local evaluation functions).
Compute local evaluation function values for each
node.

Step 3.3 (Filtering). Choose the best f 0 number
of nodes according to local evaluation function
values (f is the ®lterwidth and f 0 �min(k, f)).

Step 3.4 (Computing global evaluation func-
tions). Compute global evaluation values of each
f 0 number of selected nodes.

Step 3.5 (Selecting the beam nodes). Select the
node with the lowest global evaluation value
(i.e., beam node). For the partial schedule rep-
resented by the beam node update the data set
as follows:

(a) Remove operation j from St

(b) Form St�1 by adding the direct successor of
operation j to St

(c) Increment t by one
Step 4 (Selecting the solution schedule). Among

the beamwidth number of schedules, select the one
with the best objective function value.

As given Sabuncuoglu and Karabuk (1998), the
complexity of the beam search is O�n3�, where n is
the number of operations to be scheduled in the
job shop problem. Next we give an illustrative
example that shows the basic steps of the algo-
rithm.

Numeric example: Consider the following job
shop system with two machines and four jobs and
each job has two operations. The processing time
and routing information of the jobs is given in
Table 1 below. The performance measure is
makespan. Suppose that both the beamwidth and
the ®lterwidth are equal to 2. Nondelay branching
scheme is used to generate a search tree. The
``most work remaining'' (MWR) rule is used as the
local evaluation function and the global evaluation
function is represented by the MWR dispatching
rule.

The beam search tree of the problem is shown
in Fig. 2 in which GF and LF refer to global and
local evaluation function values, respectively. The
shaded nodes are the beam nodes and the nodes
with crosses are the ones that are pruned o� as a
result of the global or local evaluation.

In the beam search algorithm the ®rst stage is to
determine the initial beam nodes. We determine
three nodes (i.e., J1-01, J2-02 and J4-01) by using
the nondelay branching scheme. The node J1-01
corresponds to the ®rst operation of the ®rst job.
Since the number of nodes generated (3 in this
case) are greater than the beam size of 2, we per-
form global evaluation and select 2 of them. For
this step of the beam search algorithm we calcu-
lated global evaluation function values (makespan
measure of the complete schedule generated by the
MWR rule from the partial schedule represented
by the node) and selected the best two nodes on
the basis of their global evaluation values. These
nodes are J1-01 and J4-01. If the number of nodes
were smaller than the beam size in this ®rst level,
we would continue to expand until the number of
nodes are greater than the beam size at the next
level.

After determining the initial beam nodes, we
apply the beam search algorithm for each of the
beam nodes independently. At each level, we
generate the new nodes, perform ®ltering, compute
the global evaluation function values for the ®l-
tered nodes and ®nally select the node which cor-
responds to the operation added to the current
partial schedule. At the end of the search tree we
obtain the Gantt chart of the resulting schedule
displayed in Fig. 3(b). Note that at the end of the
algorithm, we have two schedules. In the last step
of the beam search algorithm we compute the
makespan of the schedules and select the one with
the minimum value. It turns out that, in Fig. 2, the
beam on the left-hand side gives the better sched-
ule.

Table 1

Job information

Operation 1 Operation 2

Job Processing

time

Machine Processing

time

Machine

1 13 1 53 2

2 54 1 42 2

3 1 2 9 1

4 78 1 50 2

I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412 395

Fig. 2. Beam search tree for the numerical example.

396 I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412

4. Makespan case

The performance of the scheduling algorithm is
®rst measured for the makespan criterion. E�ects
of di�erent local and global functions and various
beam and ®lter width levels are also evaluated in
the experiments. Since the optimal results of some
the test problems are known in the literature for
the makespan criterion, the performance of the
algorithm is tested in terms of the percent devia-
tion from optimality. Some of these problems are
given in Applegate and Cook (1990). These prob-
lems are generated according to format described
in the previous section. Each of the test problems
used in this study have 10 machines and 10 jobs.
The problems ABZ5 and ABZ6 are from Adams et
al. (1988); the problems LA16 through LA20 are

from Lawrence (1984); the problems ORB3, ORB4
and ORB5 are given in Applegate and Cook
(1990).

Since the proposed algorithm is a heuristic, it is
also compared with well-known dispatching rules,
such as MWR, MTWR and LPT. These rules are
implemented via the nondelay scheduling scheme
proposed by Baker (1984).

Based on pilot runs, MWR is also used as the
nondelay dispatching rule in the global evaluation
function to complete the partial schedule from the
nodes. For the local evaluation function, however,
both MWR and a lower bound proposed by Baker
(1974) are considered in the algorithm. The com-
plete de®nition of these rules and the lower bound
are given in Table 2 where St is the set of un-
scheduled operations at level t; rj is the earliest

Fig. 3. Schedules generated by the beam search algorithm.

I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412 397

time at which operation j could be started; Rj is the
unscheduled processing for the job corresponding
to operation j; fk is the latest completion of an
operation on machine k; Mk is the unscheduled
processing that will require machine k.

In addition, two di�erent schedule generation
(or search tree representation) schemes are tested
in this study. As discussed in Baker (1974), the
search trees are expanded by either the active or
nondelay schedule generation procedures. In an
active schedule, no operation is started earlier
without delaying some other operation whereas in
a nondelay schedule, no machine remains idle
when there exists a schedulable operation. A
combination of two evaluation functions and two
schedule generation schemes results in four ver-
sions of the proposed beam search algorithm (see
Table 3).

The results of the experiments are depicted in
Fig. 4 for di�erent beam and ®lter width values.
The vertical axis shows the average (over 10
problems) deviation from optimality. Each curve
represents the results of a particular beam width
(i.e., BS1, BS2, etc). The horizontal axis measures
the ®lter width. The horizontal lines in the graphs
are the performances of the nondelay MWR dis-
patching heuristic.

In general, the performance of the algorithm
changes for di�erent search tree representation

schemes, local evaluation functions and beam and
®lter width values (Fig. 4). Therefore, each of
these factors is tested separately in order to use the
best version of the ®ltered beam search method in
the later stages of the research. In the L-shaped
graphs, one can observe some erratic behaviors.
These behaviors are mainly due to the imperfect-
ness of the local and global evaluation functions.
In general, local evaluations are cheaper but also
less accurate. Thus, too small a ®lter width makes
it more likely that errors in the local estimate
prevents good nodes from being passed to global
evaluation. Therefore, if we increase the ®lter
width, more nodes enter the second stage, and
nodes erroneously valued by the local estimate will
have a second chance. If the global estimate hap-
pens to be more accurate, then the node will be
saved as appropriate in the second stage. However,
both estimates could be imperfect. Hence, the
larger ®lter width in this case forces a poor node,
according to the local evaluation function, to pass
to the second stage of the evaluation. The global
method may then erroneously save these bad
nodes. When this happens, the performance of the
search may deteriorate as the ®lter width increases
while keeping the beam width constant. Since ei-
ther estimate is not very accurate the above be-
havior is observed.

We also note that, if there are fewer nodes ex-
panded than the size of the beam width at the level
1, all the nodes are further expanded in the next
level until the number of nodes are greater than the
beam width. Then all the nodes are globally eval-
uated to select beam nodes. If we increase the
beam width, we may have more such nodes to
evaluate by the global function. Similarly, if the
global estimate is imperfect, global function may
then mistakenly select inferior nodes as the beam
nodes. In this case, the performance of the search

Table 3

Searching methods used in the makespan Case

Search tree representation Local evaluation rule Global evaluation function

Active MWR Nondelay schedule generation using MWR

Nondelay MWR Nondelay schedule generation using MWR

Active LB Nondelay schedule generation using MWR

Nondelay LB Nondelay schedule generation using MWR

Table 2

Descriptions of priority rules used in makespan analysis

Rule Description

MWR (Most Work Remaining) MWRij �
Pmi

q�j piq

MTWR (Most Total Work) MWRij �
Pmi

q�1 piq

LPT (Longest Processing Time) LPTij � pij

LB (Lower Bound)

LBij � max�maxj2St �rj � Rj�; max16 k6m�fk �Mk��.

398 I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412

Fig. 4. Percent deviation from optimal solution vs ®lterwidth.

I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412 399

heuristics may deteriorate as the beam width in-
creases if the ®lter width is kept constant. We
observe such a behavior in the nondelay schedule
generation scheme. But the amount of deteriora-
tion on the schedule is negligible.

Active vs. nondelay schedules: In the analysis,
both active and nondelay branching methods are
used to generate search trees. Our computational
experiments indicate that overall performance of
the nondelay branching scheme is better than the
active branching approach for small ®lter widths.
However, as the ®lter width increases beyond a
certain limit, the active scheme starts performing
slightly better than the nondelay scheme. We also
observe that the best result found by the active
scheme is worse than the one found by the
nondelay scheme. Even though this ®nding may
seem to be counter intuitive, it is consistent with
the generally held view that the nondelay sched-
uling scheme produces better results than the
active scheduling scheme when used with dis-
patching rules for the makespan criterion (Baker,
1974).

Local evaluation functions: We measure the
performances of two local evaluation functions:
the lower bound discussed in Baker (1974) and the
MWR rule. A lower bound value of a partial
schedule is computed as the maximum of a job
based bound value and machine based bound
value. The job based bound value is equal to
MWR plus earliest possible start time (Table 2).
This is generally greater than a machine based
value. Since evaluation function based on the
lower bound resembles the MWR rule, and the
results of MWR and lower bound are not expected
to di�er too much. However, as depicted in Fig. 4,
the MWR local function yields better results than
the lower bound estimate. The details of these re-
sults are given in Appendix A, Table 10.

Filter and beam width: In the classical job shop
problem, there is not as much ¯exibility as in the
case of FMS. Hence, relatively fewer number of
nodes are expanded in the search tree. If the ®lter
width is set very high, the algorithm locally eval-
uates all the nodes expanded from a beam node.
For instance if there are three nodes expanded
from a beam node, it does not matter whether ®lter
width is greater than three. Consequently, the

performance of the algorithm does not change
signi®cantly as the ®lter width increases beyond a
certain limit. From our experiments, it appears
that after ®lter width of ®ve, performance of the
algorithm almost remains the same. Thus, we de-
cide to set the ®lter width value to ®ve for the later
stages of the algorithm.

According to experiments, increasing the beam
width improves the solution quality. This result is
consistent with our expectations. Recall that there
are beam width number of parallel beams in the
search tree. Thus, if we perform an algorithm
through the higher number of beams, we have the
larger pool of nodes to evaluate and consequently
have better solution possibilities. However in order
to have a real-time scheduling capability in the
algorithm, the computational aspect should also
be taken into account. As seen from Fig. 5, the
higher the beam width, the higher the CPU time
needed to execute the algorithm. In the experi-
ments, it is observed that the relative improvement
on solution quality gets smaller when the values of
the beam width parameter increases. It appears
that the best beam width is ®ve when considering
both the CPU times and the solution quality.
Thus, this setting is used in the later applications
of the algorithm.

4.1. Computational results

In order to measure the makespan performance
of beam search algorithm in the job shop envi-
ronment, we used well-known benchmark prob-
lems reported in the literature. These are: 40
problems generated by Lawrence (1984), 2 prob-
lems used by Adams et al. (1988), and 5 problems
mentioned in Applegate and Cook (1990). The
famous FT10 problem is also included in the ex-
periments. Both the proposed algorithm and the
rules are run on Sparc Station with one 60 MHz
micro SPARC 8-CPU and 1 GB memory. The
codes are written in the C language.

The computational results are given in Table 4.
Each cell in that table represents the average de-
viation from optimality and the computation times
in CPU seconds for the corresponding problem
instance. Since solution times of the dispatching

400 I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412

rules are very small (e.g. less than 10ÿ2 s), the CPU
times of the rules are no included in this table.

As expected, the performance of the algorithm
in terms of the average percent deviation from
optimality is much better than the rules. The av-
erage deviation of the algorithm is 4.26% for all
the test problems, while it is 16%, 29%, and 13%
for SPT, LPT, MWR, respectively. These rules
solve only three problem instances to optimality,

but the proposed algorithm solves 16 out of 48
instances, including the most di�cult problems
FT10, LA36,...,LA40. For the instances which we
do not know optimal solutions, the percent devi-
ations from optimality cannot be calculated and
thus these cell are ®lled by `*'.

Even though beam search is a branch and
bound based algorithm, the CPU times is not very
high. It appears that the number of jobs (rather

Fig. 5. CPU time vs. ®lterwidth.

I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412 401

Table 4

Results of test problems for the makespan analysis

Algorithm b� 5, f� 5 SPT LPT MWR

Problem Optimum Solution % Dev. CPU Solution % Dev. Solution % Dev. Solution % Dev.

10�5
LA01 666 666 0 2.5 751 12.8 933 40.01 735 10.4

LA02 655 704 7.84 2.9 821 25.3 830 26.7 817 24.7

LA03 597 650 8.88 3 672 12.6 822 37.7 696 16.6

LA04 590 620 5.09 2.8 711 20.5 833 41.2 758 28.5

LA05 593 593 0 3.2 610 2.9 766 29.2 593 0

Averages 4.29 14.82 34.98 16.04

15�5
LA06 926 926 0 13.6 1200 29.6 1067 15.2 926 0

LA07 890 890 0 12.2 1034 16.2 1136 27.6 970 9

LA08 836 863 0 14.7 942 9.2 1176 36.3 957 10.9

LA09 951 951 0 12.1 1045 9.9 1334 40.3 1015 6.7

LA10 958 958 0 14.2 1049 9.5 1312 37 966 0.8

Averages 0 14.88 31.28 5.48

20�5
LA11 1222 1222 0 45.4 1473 20.5 1525 24.8 1268 3.8

LA12 1039 1039 0 39.8 1203 15.8 1305 25.6 1137 9.4

LA13 1150 1150 0 44.9 1275 10.9 1354 17.7 1166 1.4

LA14 1292 1292 0 43.3 1427 10.4 1725 33.5 1292 0

LA15 1207 1207 0 41.6 1339 10.9 1648 36.5 1343 11.3

Averages 0 13.7 27.62 5.18

10�10

LA16 945 988 4.55 10.7 1156 22.3 1347 42.5 1054 11.5

LA17 784 827 5.49 9.6 924 17.9 1203 53.4 846 7.9

LA18 848 881 3.89 10.2 981 15.7 1154 36.1 970 14.4

LA19 842 882 4.75 8 940 11.6 986 17.1 1013 20.3

LA20 902 948 5.1 8.8 1000 10.9 1232 36.6 964 6.9

FT10 930 1016 9.2 74 1074 15.5 1324 42.4 1108 19.1

ABZ5 1234 1288 4.4 10.8 1352 9.6 1735 40.6 1369 10.9

ABZ6 943 980 3.9 14.6 1097 16.3 1110 17 987 4.7

ORB1 1059 1174 10.85 14.5 1478 39.6 1398 32 1359 28.3

ORB2 888 926 4.27 10.9 1175 32.3 1170 31.8 1047 17.9

ORB3 1005 1087 7.54 12.9 1179 17.3 1389 38.2 1247 24

ORB4 1005 1036 3.09 11.9 1236 23 1432 42.5 1172 16.6

ORB5 887 968 9.13 11.2 1152 29.9 1175 32.5 1173 32.2

Averages 5.86 20.14 35.58 16.53

15�10

LA21 1040±

1053

1154 * 44 1324 * 1518 * 1264 *

LA22 927 985 6.26 44.3 1180 27.3 1589 71.4 1079 16.4

LA23 1032 1051 1.84 39.8 1162 12.6 1347 33.1 1185 14.8

LA24 935 992 6.1 39.3 1203 28.7 1214 29.8 1101 17.8

LA25 977 1073 9.83 43.1 1449 48.3 1487 52.2 1166 19.3

Averages 6.01 29.23 46.63 17.08

20�10

LA26 1218 1269 4.19 136.1 1498 23 1606 31.9 1435 17.8

LA27 1235±

1269

1316 * 129.8 1784 * 1728 * 1442 *

LA28 1216 1373 12.91 137.2 1610 32.4 1750 43.9 1487 22.3

402 I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412

Table 4 (Continued)

Algorithm b� 5, f� 5 SPT LPT MWR

Problem Optimum Solution % Dev. CPU Solution % Dev. Solution % Dev. Solution % Dev.

LA29 1120±

1195

1252 * 140.7 1556 * 1665 * 1337 *

LA30 1355 1435 5.9 144.6 1792 32.3 2067 52.5 1534 13.2

Averages 7.67 29.23 42.77 17.77

30�10

LA31 1784 1784 0 810.3 1951 9.4 2322 30.2 1931 8.2

LA32 1850 1850 0 806 2165 17 2341 26.5 1875 1.4

LA33 1719 1719 0 818.9 1901 10.6 2125 23.6 1875 9.1

LA34 1721 1780 3.42 823.5 2070 20.3 2223 29.2 1935 12.4

LA35 1888 1888 0 684.2 2118 12.2 2316 22.7 2118 12.2

Averages 0.68 13.89 26.43 8.66

15�15

LA36 1268 1401 10.47 98.7 1681 32.6 1908 50.5 1521 20

LA37 1397 1503 7.59 99.2 1693 21.2 1884 34.9 1643 17.6

LA38 1171±

1184

1297 * 93.7 1509 * 1686 * 1477 *

LA39 1233 1369 11.03 95.8 1447 17.4 1894 53.6 1443 17

LA40 1222 1347 10.23 100 1495 22.3 1661 35.9 1475 20.7

Averages 9.83 23.36 43.72 18.82

Average of means 4.26 15.99 28.62 12.16

Table 5

Comparison of scheduling algorithms

MSII1 MSII2 TA1 SA1 SA2 GLS1 GLS2 BS

Avr. % dev. 11.73 8.96 3.73 1.52 1.51 2.22 1.92 4.47

Max. % dev. 32.61 27.36 12.98 10.13 9.45 15.20 12.50 11.79

of optimum 4 7 15 19 18 16 16 16

Table 6

Description of priority used in tardiness analysis

Rule Description

SPT (Shortest Processing Time) SPTij � pij

LWR (Least Work Remaining) LWRij �
Pmi

q�j piq

EDD (Earliest Due Date) EDDij � duedatei

MOD (Modi®ed Operational Due Date) MODDij � �duedatei=
Pmi

q�1 piq�
Pj

q�1 piq

MD (Modi®ed Due Date) MDDij � max�duedatei; t �
Pmi

q�j pij�

Table 7

Search methods used in the ®rst part of the experiments

Search tree representation Local evaluation rule Global evaluation function

Active SPT Nondelay SPT dispatch heuristic

Nondelay SPT Nondelay SPT dispatch heuristic

Active EDD Nondelay EDD dispatch heuristic

Nondelay EDD Nondelay EDD dispatch heuristic

Active MDD Nondelay MDD dispatch heuristic

I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412 403

Fig. 6. Mean tardiness vs. ®lterwidth analysis.

404 I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412

than machines) is the most determining factor for
its computational time requirement.

We also note that the performance of the al-
gorithm changes for di�erent problem types. It
seems that the algorithm performs very well if the
number of jobs is greater than the number of
machines which we call rectangular instances. It
also appears that the square type instances (number
of machines equals to number of jobs) are hard
instances for the beam search algorithm.

We also compare the beam search algorithm
with other heuristic methods whose performances
are reported for some selected problems. In a re-
cent study, Aarts et al. (1994) propose multi-start
iterative improvement (MSII), threshold accepting
(TA), simulated annealing (SA) and genetic local
search (GLS) algorithms for the job shop prob-
lems. The authors use two neighborhood struc-
tures in their algorithms and apply them to 43
problem instances, among which 40 of them are
also common in our test set. The performances of
their algorithms and our beam search based al-
gorithm (referred to as BS) are given in Table 5.

In terms of average % deviation from opti-
mality, the solution quality of BS is better than the
multi-start iterative improvement methods
(MSII1, MSII2) and close to threshold accepting
method (TA1). In terms of the maximum % devi-
ation and number of optimally solved instances,
the performance of the beam search based algo-
rithm is still better than MSII1, MSII2 and TA1
and competes with the well-known searching
schemes (simulating annealing and genetic local
search methods).

Bear in mind that BS is a constructive algo-
rithm whereas others are iterative procedures
whose computation times can be indeed very long.
In Aarts et al. (1994) the average of running times
reported for each problem are much larger than

the CPU time requirements of BS. Even for small-
sized problems, the di�erences between CPU times
are signi®cant, (i.e., the beam search method is
approximately 10 and 6 times faster than the other
methods for 10 jobs 10 machines and 15 jobs 15
machines problems, respectively).

5. Mean tardiness case

The performance of the beam search based al-
gorithm is also measured in terms of the mean
tardiness. Again, we ®rst examine evaluation
functions and ®nd proper settings of the beam
search parameters. Since optimum solutions of the
job shop problems are not generally known in the
tardiness case, we only compare the performance
of the algorithm with dispatching rules.

During computational experiments, we use the
modi®ed version of the problem data used in the
makespan case. Speci®cally, we append the due-
date information to the data sets using the TWK
due date assignment method (Baker, 1984). Based
on pilot runs, the proportionality constant (tardi-
ness factor) of TWK is set to 1.5 for the tight due
date case (corresponds to 50% tardy jobs) and 2
for the loose due date case (corresponds to 6%
tardy jobs). These two tardiness levels are very
close to each other because the due dates are as-
signed in proportion to total processing time, in-
stead of average processing time. We also know
that in low utilization rates (such as the case in our
model with 62% utilization), the closeness of tar-
diness factors is expected as indicated by Baker
(1984, pp. 1099). In this analysis we use the tar-
diness factor of 1.5 to determine the due dates of
the jobs.

After determining the due date settings for the
jobs, the performances of non-delay dispatching

Table 8

Search methods used in the second part of the experiments

Search tree representation Local evaluation rule Global evaluation function

Active MDD Nondelay SPT dispatch heuristic

Active EDD Nondelay SPT dispatch heuristic

Active MODD Nondelay SPT dispatch heuristic

I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412 405

Fig. 7. Mean tardiness vs. ®lterwidth analysis.

406 I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412

Table 9

Results of test problems for the mean tardiness analysis

Algor. b� 5, f� 5 EDD LWR MDD MODD SPT EDD LWR MDD MODD SPT

Prob. Sol. CPU Sol. Sol. Sol. Sol. Sol. % Dev. % Dev. % Dev. % Dev. % Dev.

10�5
LA01 97.0 3.4 118.2 118.2 118.2 147.9 135.6 21.8 21.8 21.8 52.4 39.7

LA02 62.5 3.9 103.9 105.8 107.5 132.4 89.0 66.2 69.2 72.0 111.8 42.4

LA03 70.0 3.4 98.7 97.0 97.0 132.4 85.9 41.0 38.5 38.5 89.1 22.7

LA04 86.8 8.7 133.3 133.8 135.8 151.4 130.8 53.5 54.1 56.4 74.4 50.7

LA05 95.8 3.6 106.9 112.2 106.1 144.5 118.0 11.60 17.1 10.7 50.8 23.1

Averages 38.9 40.2 39.9 75.7 35.7

15�5
LA06 207.8 12.9 233.7 227.2 217.9 350.5 255.6 12.4 9.3 4.8 68.6 23.0

LA07 195.6 15.7 238.9 241.0 238.5 297.6 214.5 22.1 23.2 21.9 52.1 9.6

LA08 197.3 13.8 220.3 240.3 240.3 310.8 242.9 11.6 21.7 21.7 57.5 23.1

LA09 227.0 14.5 284.0 265.0 232.2 341.3 284.6 25.1 16.7 2.1 50.3 25.4

LA10 218.2 13.1 237.9 228.8 225.2 374.2 251.1 8.9 4.8 3.1 71.4 15.0

Averages 16.0 15.2 10.7 60.0 19.2

20�5
LA11 343.7 36.2 365.5 353.6 341.0 564.4 389.8 6.3 2.8 ÿ0.7 64.2 13.4

LA12 302.3 38.5 305.7 286.7 295.7 466.3 334.3 1.1 5.1 ÿ2.1 54.2 10.6

LA13 329.8 39.3 352.9 335.7 340.5 515.1 371.0 7.0 1.8 3.2 56.1 12.5

LA14 398.6 38.5 403.3 370.4 377.5 566.0 411.0 1.1 ÿ7.1 ÿ5.3 41.9 3.1

LA15 386.1 37.2 396.6 419.7 412.9 566.6 429.1 2.7 8.7 6.9 46.7 11.1

Averages 3.6 0.2 0.4 52.7 10.2

10�10

LA16 25.5 13.3 64.0 73.0 64.0 30.5 48.4 150.9 186.2 150.9 19.6 89.8

LA17 20.5 13.2 39.3 80.4 39.0 76.1 54.0 91.7 292.2 91.7 271.2 163.4

LA18 6.6 13.0 50.3 55.0 44.2 47.0 18.2 662.1 733.3 569.7 612.1 175.7

LA19 11.3 12.4 27.2 39.8 34.7 50.9 51.7 140.7 252.2 207.1 350.4 357.5

LA20 9.5 12.6 40.0 74.0 40.0 28.1 38.2 321.0 678.9 321.0 195.7 302.1

FT10 56.7 14.2 106.0 117.0 106.0 148.0 95.5 86.9 106.3 86.9 161.0 68.4

ABZ5 18.4 13.5 57.2 171.6 57.2 31.9 41.5 210.9 832.6 210.8 73.3 125.5

ABZ6 0.0 12.3 11.0 17.9 11.0 10.2 4.7 * * * * *

ORB1 113.2 15.6 194.7 157.1 205.4 199.8 241.0 72.0 38.8 81.4 76.5 112.9

ORB2 23.2 13.7 76.0 61.1 80.5 77.8 50.1 227.6 163.3 246.9 235.3 115.9

ORB3 105.8 15.5 135.1 156.3 136.2 298.9 184.6 27.7 47.7 28.7 182.5 74.5

ORB4 39.6 14.9 74.2 175.9 91.7 155.6 91.3 87.4 344.2 131.6 292.9 130.5

ORB5 40.3 13.6 78.7 97.4 78.7 96.5 87.5 95.3 141.7 95.3 139.4 117.1

Averages 181.2 318.1 185.2 217.5 152.8

15�10

LA21 90.8 55.4 150.0 175.1 156.7 207.5 175.7 65.0 92.6 72.4 128.3 93.3

LA22 114.5 54.7 241.5 235.2 210.7 225.6 172.3 111.0 105.5 84.1 97.1 50.5

LA23 96.2 52.7 130.3 159.9 147.9 177.4 143.1 35.4 66.0 53.6 84.3 48.7

LA24 95.6 53.9 129.8 131.1 121.7 173.0 131.0 35.8 37.2 27.3 80.9 37.0

LA25 106.7 53.6 176.9 151.7 163.2 187.5 162.9 65.8 42.1 52.9 75.6 52.6

Averages 62.6 68.7 58.0 93.3 56.4

20�10

LA26 225.6 156.0 345.0 241.1 288.3 344.4 250.1 52.9 6.9 27.8 52.6 10.8

LA27 226.3 148.4 303.8 292.4 286.1 358.0 271.3 34.3 29.2 26.4 58.2 18.9

LA28 212.4 155.9 301.4 330.8 227.3 410.2 342.3 41.9 55.7 30.5 93.1 61.1

LA29 216.1 150.7 270.2 276.2 266.9 443.4 269.9 25.0 27.8 23.5 105.1 24.9

LA30 233.8 155.2 396.2 372.9 382.9 425.4 337.6 69.4 59.5 63.7 81.9 44.4

Averages 44.7 35.8 34.4 78.2 32.2

I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412 407

rules are measured in 10 test problems to ®nd the
appropriate local and global functions for the
beam search algorithm. Five rules (SPT, EDD,
LWR, MDD and MODD) are used in the exper-
iments (see Table 6 for the complete description).
Results indicate that the solution quality of EDD,
MDD and SPT are comparable with each other
and they are all better than the other rules with the
average tardiness values of 517.9, 540.3 and 485.6,
respectively. Similar to the makespan case, we
determine most suitable branching scheme, evalu-
ation functions and search parameters. Computa-
tional experiments are carried out in two stages:
we ®rst investigate the branching scheme and then
local evaluation function and search parameters.
Descriptions of these search methods are given in
Table 7.

Active vs. nondelay schedules: The results in-
dicate that the performance of nondelay sched-
ules is better than the active schedules for only
small ®lter widths (Fig. 6). However, after the
®lter width value of 3, the performance of the
active generation method becomes better than the
nondelay method (see Appendix A, Table 11 for
the details of the experiments). This behavior is
observed due to the fact that the number of ac-
tive schedules generated by the beam search al-
gorithm is greater than the number of nondelay
schedules. Hence, there is more chance to obtain

better results by searching active schedules. For
that reason, in contrast to the makespan mea-
sure, the active scheduling scheme is used in this
case.

Local and global evaluation functions: In the
experiments, as a part of the active schedule gen-
eration scheme, MODD, SPT and EDD rules are
used in both local and global evaluation functions.
Results shows that SPT is better than the other
rules. This result is consistent with results of the
earlier studies reported by Kiran and Smith (1984)
that SPT is one of the best priority rules in terms
of all due-date related measures.

However, due-date based rules were expected to
perform well for the mean tardiness criterion.
Hence, the second set of experiments is carried out
with EDD, MDD and MODD as the local eval-
uation functions. Due to better performance of the
beam search with evaluation functions of SPT rule
in the previous analysis, global estimation is again
performed by this rule (see Table 8). The experi-
mental results indicate that the due-date based
rules perform better than SPT (Fig. 7). As given in
Table 12 of Appendix A, due-date based rules ®nd
promising nodes easily for small ®lter widths. For
that reason, their performances are considerably
better than SPT. However, for the large beam and
®lter widths, they only perform slightly better than
SPT. Overall, MODD displays the best perfor-

Table 9 (Continued)

Algor. b� 5, f� 5 EDD LWR MDD MODD SPT EDD LWR MDD MODD SPT

Prob. Sol. CPU Sol. Sol. Sol. Sol. Sol. % Dev. % Dev. % Dev. % Dev. % Dev.

30�10

LA31 348.3 915.4 566.6 566.4 564.2 783.3 625.9 62.7 62.6 61.9 124.8 79.7

LA32 364.8 942.3 565.8 563.8 571.4 813.5 652.9 55.1 54.5 56.6 123.0 78.9

LA33 378.1 940.1 565.4 501.3 584.9 755.2 540.0 49.5 32.6 54.7 99.7 42.8

LA34 333.3 900.7 582.4 549.4 537.2 776.4 591.9 74.7 64.8 61.1 132.9 77.5

LA35 335.3 866.5 605.6 567.1 587.2 815.1 603.4 80.6 69.1 75.1 143.0 79.9

Averages 64.5 56.7 61.9 124.7 71.8

15�15

LA36 33.53 123.03 113.93 115.20 113.9 142.2 140.7 239.7 243.5 239.7 324.1 319.7

LA37 26.8 125.4 48.0 109.4 54.1 172.1 118.6 79.3 308.2 101.9 542.2 342.8

LA38 27.1 126.3 128.6 136.6 130.0 87.4 53.1 374.2 403.5 379.1 222.1 95.8

LA39 24.5 121.9 87.3 114.3 87.3 93.3 76.1 256.0 366.0 256.0 280.4 210.3

LA40 43.6 125.5 92.1 123.2 106.4 126.2 88.9 110.9 182.1 143.8 188.9 103.6

Averages 212.0 300.7 224.1 311.6 214.7

Sol.: Solution; % Dev: Percent deviation from algorithm's solution.

408 I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412

mance, and hence is selected as the local evalua-
tion function.

Filter and beam widths: As previously discussed
in the makespan case, only a few nodes are ex-
panded from a beam node in the job shop prob-
lem. Hence, increasing the ®lter width does not
improve the solution quality. It seems that the
appropriate value is 5 (see also Figs. 6 and 7). For
the beam width parameter, the test results show
that the beam width of 5 is also a proper value for
the tardiness case when considering the CPU times

and the quality of solutions (Fig. 5). As a result,
we decide to use active schedule generation meth-
od with local evaluation function of the MODD
rule and global evaluation function of the SPT
rule.

5.1. Computational results

After determining the proper evaluation func-
tions and parameter settings, the resulting beam

Table 10

Percent deviation from optimal solution vs. ®lterwidth

f b:1 b:2 b:3 b:4 b:5 b:6 b:7 b:8 Dispatch

Active branching, Local: MWR, Global: MWR dispatching rule

1 23.45 21.38 20.28 19.95 19.73 19.73 18.59 18.56 14.34

2 8.36 7.09 7.29 6.68 5.58 5.41 6.67 6.20 14.34

3 7.29 6.84 6.52 6.51 6.05 6.05 6.16 6.16 14.34

4 7.28 6.83 6.21 6.07 5.61 5.61 5.72 5.62 14.34

5 6.97 6.53 6.21 6.07 5.47 5.47 5.57 5.57 14.34

6 6.74 6.29 5.97 5.83 5.37 5.37 5.48 5.48 14.34

7 6.74 6.29 5.97 5.83 5.37 5.37 5.48 5.48 14.34

8 6.74 6.29 5.97 5.83 5.37 5.37 5.48 5.48 14.34

Nondelay branching, Local: MWR, Global: MWR dispatching rule

1 12.47 12.47 12.12 11.59 11.32 10.85 9.99 9.99 14.34

2 8.02 7.78 7.41 7.20 6.42 6.15 6.16 6.13 14.34

3 6.86 6.46 6.32 6.15 5.43 5.43 5.88 5.78 14.34

4 6.85 6.45 6.31 6.19 5.48 5.48 5.93 5.82 14.34

5 6.61 6.30 6.21 5.87 4.86 4.86 5.31 5.22 14.34

6 6.61 6.31 6.21 6.13 5.13 5.13 5.58 5.29 14.34

7 6.61 6.31 6.21 6.13 5.13 5.13 5.58 5.29 14.34

8 6.61 6.31 6.21 6.13 5.13 5.13 5.58 5.29 14.34

Active branching, Local: LB, Global: MWR dispatching rule

1 34.16 32.43 31.25 30.68 30.33 30.17 28.28 28.28 14.34

2 13.56 12.12 11.06 10.57 9.69 8.87 9.49 9.49 14.34

3 7.77 7.38 6.85 6.84 6.24 6.24 6.39 6.39 14.34

4 7.28 6.83 6.21 6.07 5.72 5.72 5.72 5.72 14.34

5 6.98 6.53 6.21 6.07 5.57 5.72 5.72 5.72 14.34

6 6.74 6.28 5.97 5.83 5.48 5.48 5.48 5.48 14.34

7 6.74 6.28 5.97 5.83 5.48 5.48 5.48 5.48 14.34

8 6.74 6.28 5.97 5.83 5.48 5.48 5.48 5.48 14.34

Nondelay branching, Local: LB, Global: MWR dispatching rule

1 13.55 13.55 12.91 12.38 12.09 11.63 10.84 10.84 14.34

2 8.41 8.16 7.82 7.29 6.43 6.16 6.16 6.16 14.34

3 6.86 6.46 6.33 6.15 5.44 5.44 5.88 5.77 14.34

4 6.85 6.45 6.31 6.19 5.48 5.48 5.93 5.82 14.34

5 6.60 6.29 6.21 5.87 4.86 4.86 5.31 5.23 14.34

6 6.61 6.31 6.21 6.14 5.13 5.13 5.58 5.49 14.34

7 6.61 6.31 6.21 6.14 5.13 5.13 5.58 5.49 14.34

8 6.61 6.31 6.21 6.14 5.13 5.13 5.58 5.49 14.34

I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412 409

search algorithm is applied to the 48 test problems
described earlier. The detailed results of the algo-
rithm and ®ve dispatching rules are given in Ta-
ble 9. Since we do not know optimal solutions in
the tardiness case, we only compare the algorithm
with the rules. Note that the percent deviations of
dispatching rules from the solution of the pro-
posed algorithm are also reported in that table.

The results indicate that, the proposed algo-
rithm outperforms the rules for all problem in-

stances. Among the dispatching rules, there is not
a clear winner in the experiments. Their relative
performances usually vary for di�erent problem
types (i.e., square or rectangular). We also note
that the mean tardiness values are quite low for
the square type instances (i.e., number of jobs
equals to number of machines). For that reason,
these small numbers in Table 9 results in high
percent deviation of the rules for these problem
instances.

Table 11

Mean tardiness vs ®lterwidth analysis

f b:1 b:2 b:3 b:4 b:5 b:6 b:7 b:8 Dispatch

Active branching, Local: SPT, Global: SPT dispatching rule

1 1641.7 1585.7 1485.6 1415.2 1300.9 1300.6 1266.4 1254.2 485.6

2 636.1 486.7 403.7 352.2 349.4 335.7 317.1 317.1 485.6

3 398.3 326.0 264.0 212.1 212.1 212.1 201.0 201.0 485.6

4 295.1 263.2 213.9 200.2 200.2 200.2 198.5 198.5 485.6

5 268.5 265.5 216.2 202.2 202.2 202.2 200.5 200.5 485.6

6 268.5 265.5 216.2 202.2 202.2 202.2 200.5 200.5 485.6

7 268.5 265.5 216.2 202.2 202.2 202.2 200.5 200.5 485.6

8 268.5 265.5 216.2 202.2 202.2 202.2 200.5 200.5 485.6

Active branching, Local: SPT, Global: SPT dispatching rule

1 450.7 434.3 402.9 371.8 369.4 369.4 364.4 364.4 485.6

2 323.6 307.0 303.7 274.6 277.4 271.1 270.9 252.5 485.6

3 316.9 293.5 267.1 232.9 241.0 241.0 228.3 228.3 485.6

4 287.0 270.4 244.0 232.6 240.7 240.7 228.0 228.0 485.6

5 287.0 274.7 248.3 236.9 245.0 240.7 232.3 232.3 485.6

6 287.0 274.7 248.3 236.9 245.0 240.7 232.3 232.3 485.6

7 287.0 274.7 248.3 236.9 245.0 240.7 232.3 232.3 485.6

8 287.0 274.7 248.3 236.9 245.0 240.7 232.3 232.3 485.6

Active branching, Local: EDD, Global: EDD dispatching rule

1 1300.9 1214.5 1181.9 1175.1 1139.4 1104.4 1124.2 1100.0 485.6

2 333.5 311.2 309.9 266.3 249.3 249.3 249.3 248.9 485.6

3 258.4 250.5 240.0 237.5 237.5 226.9 220.2 216.2 485.6

4 256.8 240.3 239.6 220.6 220.6 218.3 217.0 216.2 485.6

5 256.8 240.3 239.6 220.6 220.6 218.3 217.0 216.2 485.6

6 256.8 240.3 239.6 220.6 220.6 216.6 216.6 216.6 485.6

7 256.8 240.3 239.6 220.6 220.6 216.6 216.6 216.6 485.6

8 256.8 240.3 239.6 220.6 220.6 216.6 216.6 216.6 485.6

Nondelay branching, Local: EDD, Global: EDD dispatching rule

1 475.3 475.3 414.8 388.4 376.7 374.9 360.0 360.0 485.6

2 366.4 316.4 291.1 276.1 268.0 254.4 211.6 211.6 485.6

3 342.7 293.9 280.3 268.2 258.7 247.9 202.6 202.6 485.6

4 324.7 275.7 267.1 256.9 247.4 223.0 200.3 200.3 485.6

5 312.3 271.2 262.6 252.4 247.4 223.0 200.3 200.3 485.6

6 312.3 271.2 262.6 252.4 247.4 232.3 209.3 209.6 485.6

7 312.3 271.2 262.6 252.4 247.4 232.3 209.3 209.6 485.6

8 312.3 271.2 262.6 252.4 247.4 232.3 209.3 209.6 485.6

410 I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412

6. Conclusion

In this paper, we used the beam search to solve
the classic job shop scheduling problem for the
makespan and mean tardiness criteria. We also
examined active and nondelay schedule generation
schemes, di�erent priority rules for both local and
global evaluation functions and various values of
beam and ®lter width parameters. According to
our computational experience, we identi®ed the
proper values of these parameters which can also

be used in future applications of this method. The
results also indicate that the beam search method
is a very good heuristic for the job shop problems.

As compared to other algorithms, the speed
and the performance of a beam search based al-
gorithm are manipulated by changing search pa-
rameters and evaluation functions. In addition, it
is also quite possible to generate partial schedules
with the beam search method, since as the sched-
ules are built progressively from the ®rst operation
to the last one in a forward direction. This is an

Table 12

Mean tardiness vs. ®lterwidth analysis

f b:1 b:2 b:3 b:4 b:5 b:6 b:7 b:8 Dispatch

Active branching, Local: MDD, Global: MDD dispatching rule

1 1221.2 1182.0 1155.0 1129.6 1117.6 1101.9 1133.8 1116.2 485.6

2 365.8 333.9 319.4 285.3 274.4 273.2 266.9 265.7 485.6

3 294.1 286.0 250.4 262.6 248.3 217.5 189.1 189.1 485.6

4 274.0 270.4 265.6 243.2 241.5 224.1 202.7 202.7 485.6

5 274.0 270.4 262.0 243.2 241.5 224.1 202.7 202.7 485.6

6 274.0 270.4 262.0 243.2 241.5 227.8 206.4 206.4 485.6

7 274.0 270.4 266.1 243.2 241.5 227.8 206.4 206.4 485.6

8 274.0 270.4 266.1 243.2 241.5 227.8 206.4 206.4 485.6

Active branching, Local: MDD, Global: SPT dispatching rule

1 1267.3 1224.9 1141.9 1103.0 1103.0 1085.4 1129.6 1110.2 485.6

2 577.4 455.8 351.3 317.6 296.5 276.0 281.2 281.2 485.6

3 242.7 233.4 222.5 192.6 192.6 186.1 185.9 183.8 485.6

4 233.7 230.7 219.8 198.2 198.2 191.7 188.3 188.3 485.6

5 233.7 230.7 219.8 198.2 198.2 191.7 188.3 188.3 485.6

6 233.7 230.7 219.8 198.2 198.2 191.7 188.3 188.3 485.6

7 233.7 230.7 219.8 198.2 198.2 191.7 188.3 188.3 485.6

8 233.7 230.7 219.8 198.2 198.2 191.7 188.3 188.3 485.6

Active branching, Local: EDD, Global: SPT dispatching rule

1 1282.9 1256.6 1166.6 1134.4 1131.7 1095.3 1086.7 1075.7 485.6

2 569.4 450.1 340.9 313.5 291.8 276.0 276.5 276.5 485.6

3 242.7 232.7 221.8 192.6 192.6 186.1 185.9 183.8 485.6

4 232.9 229.9 219.0 198.2 198.2 191.7 188.3 188.3 485.6

5 232.9 229.9 219.0 198.2 198.2 191.7 188.3 188.3 485.6

6 232.9 229.9 219.0 198.2 198.2 191.7 188.3 188.3 485.6

7 232.9 229.9 219.0 198.2 198.2 191.7 188.3 188.3 485.6

8 232.9 229.9 219.0 198.2 198.2 191.7 188.3 188.3 485.6

Active branching, Local: MOD, Global: SPT dispatching rule

1 1053.5 995.6 989.7 989.7 989.7 989.7 994.8 986.7 485.6

2 376.0 326.0 304.1 269.6 264.4 259.2 259.2 259.2 485.6

3 281.1 267.4 220.7 192.0 192.0 186.8 179.0 179.0 485.6

4 269.4 246.6 199.9 196.9 196.9 191.7 186.9 186.9 485.6

5 269.4 252.7 206.0 194.9 194.9 189.7 184.9 184.9 485.6

6 269.4 252.7 206.0 194.9 194.9 189.7 184.9 184.9 485.6

7 269.4 252.7 206.0 194.9 194.9 189.7 184.9 184.9 485.6

8 269.4 252.7 206.0 194.9 194.9 189.7 184.9 184.9 485.6

I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412 411

important property of this search technique be-
cause in a stochastic and dynamic environment
where unexpected events can easily upset sched-
ules, this feature of the beam search can be well
utilized to generate partial schedules in a rolling
horizon scheme. Finally, we should also point out
that, coding of the algorithm is very simple and
hence it can easily be implemented by practitio-
ners.

One drawback of the beam search algorithm is
imperfect assessing of the promise of nodes. As a
result of this, the nodes that can lead to good so-
lutions, are sometimes erroneously discarded. For
the makespan problems, however, strong lower
bounds are available in the literature. Hence, these
lower bounds can be used as a part of evaluation
functions to improve the performance of the pro-
posed beam search algorithm in future studies.

Appendix A. Numerical results

See Tables 10±12.

References

Aarts, E.H.L., Van Laarhoven, P.J.M., Ulder, N.L.J., 1991.

Local search based algorithms for job shop scheduling.

Working paper, Department of Mathematics and Computer

Science, Eindhoven University of Technology, Eindhoven,

The Netherlands.

Aarts, E.H.L., Van Laarhoven, P.J.M., Lenstra, J.K., Ulder,

N.L.J., 1994. A computational study of local search

algorithms for job shop scheduling. ORSA Journal on

Computing 6 (2).

Adams, J., Balas, E., Zawack, D., 1988. The shifting bottleneck

procedure for job shop scheduling. Management Science 34,

391±401.

Applegate, D., Cook, W., 1990. A Computational Study of Job-

Shop Scheduling. Technical report CMU-CS-90-145, Car-

negie Mellon University, School of Computer Science,

Pittsburgh, PA, 1990.

Baker, K.R., 1974. Introduction to Sequencing and Scheduling.

Wiley, New York.

Baker, K.R., 1984. Sequencing rules and due-date assignments

in job shop. Management Science 30 (9), 1093±1104.

Chang, Y., Matsuo, H., Sullivan, R.S., 1989. A bottleneck-

based beam search for job scheduling in a ¯exible manu-

facturing system. International Journal of Production Re-

search 27 (11), 1949±1961.

De, S., Lee, A., 1990. Flexible manufacturing system (FMS)

scheduling using ®ltered beam search. Journal of Intelligent

Manufacturing 1, 165±183.

Fox, M.S., 1983. Constraint directed search: A case study of job

shop scheduling. Ph.D Thesis, Carnegie Mellon University,

Pittsburgh, PA.

Garey, M.R., Johnson, D.S., 1979. Computers abd Intertra-

cability: A Guide to the Theory of NP-Completeness, W.H.

Freeman, San Francisco, California.

Glover, F., 1989. Tabu Search, Part-I. ORSA Journal on

Computing 1 (3), 190±206.

Glover, F., 1990. Tabu Search, Part II. ORSA Journal on

Computing 2 (1), 4±32.

Hatzikonstantis, L., Besant, C.B., 1992. Job-shop scheduling

using certain heuristic search algorithm. International

Journal of Advance Manufacturing Technology 7, 251±261.

Jain, A.S., Meeran, S., 1996. The Job Shop Problem: Past,

Present and Future. Department of Applied Physics and

Electronic and Mechanical Engineering, University of

Dundee, Dundee, UK.

Kiran, A.S., Smith, M., 1984. Simulation studies in job shop

scheduling ± I. A survey. Computer and Industrial Engi-

neering 8 (2), 87±93.

Lawrence, S., 1984. Resource Constrained Project Scheduling:

An experimental Investigation of Heuristic Scheduling

Techniques. GSIA, Carnegie Mellon University, 1984.

Lowerre, B.T., 1976. The HARPY speech recognition system.

Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.

Martin, O., Otto, S.W., Felten, E.W., 1989. Large-step Markov

chains for traveling salesman problem. Complex Systems 5,

299±326.

Matsua, H., Suh, C.J., Sullivan, R.S., 1988. A controlled search

simulated annealing method for the general job shop

scheduling problem. Working paper 03-04-88, Graduate

School of Business, The University of Texas at Austin,

Texas, USA.

Morton, T.E., Pentico, D.W., 1993. Heuristic Scheduling

Systems. Wiley, New York, 1993.

Nakano, R., Yamada, T., 1991. Conventional genetic algorithm

for job shop problems. Proceedings of the Fourth Interna-

tional Conference on the Genetic Algorithms and Their

Applications, San Diego, California, USA, pp. 474±479.

Ow, P.S., Morton, T.E., 1988. Filtered beam search in

scheduling. International Journal of Production Research

26 (1), 35±62.

Sabuncuoglu, I., Gurgun, B., 1996. A neural network model for

scheduling problems. European Journal of Operations

Research 2 (93), 288±299.

Sabuncuoglu, I., Karabuk, S., 1998. A beam search algorithm

and evaluation of scheduling approaches for FMSs. IIE

Transactions 30 (2), 179±191.

412 I. Sabuncuoglu, M. Bayiz / European Journal of Operational Research 118 (1999) 390±412

