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Abstract

We study lot streaming in shops in which the order the jobs are to be processed is immaterial. For a single job case, the
properties of the optimal routing is determined. For the multi job case, two machine shops are analyzed. It is shown that lot
streaming will improve makespan only if there is a job with large processing times. We show that there can be at most one
such job and derive the optimal sublot sizes and their sequence. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The advances in manufacturing automation and the
changing nature of business competitiveness created
demand for viable production scheduling systems. Lot
streaming is one such avenue of research. Very sim-
ply stated, lot streaming is moving some portion of
a process batch ahead to begin a downstream opera-
tion. Although the speci�c research in this area started
in the mid-1980s [1, 14], its roots can be traced to
Group Technology (leading to cell-based manufactur-
ing, resulting in shorter lead times and reduced work
in progress inventories), just-in-time systems (lot size
of one) and OPT=synchronous manufacturing (trans-
fer vs. process batches). Lot streaming is closely re-
lated to batching and lot sizing. Extensive review of
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research in this area can be found in Potts and Van
Wassenhove [9].
The classical machine scheduling theory envision

an operation as an elemental task to be performed. It
is assumed that “[t]he processing times of successive
operations of a particular job may not be overlapped.
A job can be in process on at most one operation at
a time” [4]). This assumption may be justi�ed if jobs
are monolithic entities. But it is hardly acceptable if
we are concerned with production lots consisting of a
number of units. The processing time of such a lot is
composed of a (usually “detached”) setup time plus
the product of processing time of a unit and the num-
ber of units in the lot. For instance, given that the
machine is available, it is not necessary to delay its
setup until all items arrive from an upstream machine.
Such problems are discussed in the context of deter-
ministic ow shops in Baker [3], �Sen et al. [10] and
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stochastic ow and job shop environments are dis-
cussed in Smunt et al. [12]. This paper discusses lot
streaming in open shops.
The next section de�nes the problem. The rest of the

paper is organized as follows: The next section de�nes
the problem. Section 3 presents results on single job
models. Section 4 discusses lot streaming of multiple
jobs in two-machine open shops and states the condi-
tions under which improvements can be achieved.

2. Open shop scheduling and lot streaming

The open shop scheduling model consists of m ma-
chines, M1; : : : ; Mm and n jobs, J1; : : : ; Jn. Each job Jj
has m operations, {O1j; : : : ; Omj}. Oij has a process-
ing of length Pij to be performed on machine Mi. A
machine can process at most one job at a time and op-
erations of a job cannot be processed simultaneously.
The routing for a job is the order of machines that the
job visits. If each job Jj is to be processed Pij consec-
utive time units on machine Mi, the shop is called a
non-preemptive open shop, otherwise it is a preemp-
tive open shop. De�ne Cij to be the completion time of
ith operation of job Jj. The completion time, Cj, of a
job Jj is the time when all of its m operations are com-
pleted, i.e. Cj =maxi Cij. The makespan is the maxi-
mum of the completion times, i.e. Cmax =maxj Cj.
An open shop schedule must satisfy the following

two sets of constraints;

• No two jobs can be processed simultaneously on a
machine. That is, for each machine Mi and for each
pair of jobs (Jj; Jk),

either Cij¿Pij + Cik or Cik¿Pik + Cij: (1)

• No two machines can process a job simultaneously.
That is, for each job Jj and for each pair of machines
(Mi;Ml),

either Cij¿Pij + Clj or Clj¿Plj + Cij (2)

One of the fundamental results in open shop schedul-
ing is the linear time algorithm, proposed by Gonzales
and Sahni [7], to minimize makespan in a two ma-
chine non-preemptive open shop. We briey outline
the algorithm below.

Denote aj =P1j; bj =P2j.

Algorithm
Step 1: De�ne A= {Jj|aj¿bj}; B= {Jj|aj¡bj}
Step 2: Choose Jr and Jl such that

ar¿max
Jj∈A

aj; bl¿max
Jj∈B

bj

and let A′=A− {Jl; Jr} B′=B− {Jl; Jr}
Step 3:
If
∑n

j=1 aj − al¿
∑n

j=1 bj − br ,
Construct the schedule (l; B′; A′; r) on M1,
(r; l; B′; A′) on M2, with job Jr having the rout-
ing (M2; M1), and other jobs (M1; M2)

otherwise,
Construct the schedule (B′; A′; r; l) on M1,
(l; B′; A′; r) on M2, with job Jl having the rout-
ing (M2; M1), and other jobs (M1; M2)

The jobs in A′ and B′ can be ordered arbitrarily.

It can be shown [7] that the algorithm �nds a sched-
ule with a makespan,

Cmax =max




n∑
j=1

aj;
n∑
j=1

bj;max
j

{aj + bj}

 :

Since this is a lower bound for the length of any sched-
ule, the algorithm is optimal. Furthermore, Gonzales
and Sahni [7] have shown that the problem is NP-
Hard for m¿3.
One of the interesting and important characteristics

of the open shop is the one-to-one correspondence be-
tween an m machine n job problem (with processing
times Pij of job j on machine i) and the open shop
problem with n machines m jobs (with processing
times Pij of job i on machine j), where machines are
considered as jobs and jobs as machines. This relation
is depicted in Fig. 1, with a 2-machine 3-job open shop
and its corresponding 3-machine 2-job open shop. As
it may be seen, the completion time of jth job on ith
machine in the �rst shop is equal to the completion
time of ith job on jth machine in the second shop.
Note also that the routing of jth job on the �rst shop is
equivalent to the sequence of jobs on the jth machine
on the second shop and vice versa. This correspon-
dence is due to the analogous type (1) and type (2)
constraints that both shops are subject to. Optimizing



A. �Sen, �O.S. Benli / Operations Research Letters 23 (1999) 135–142 137

Fig. 1.

makespan in the �rst shop is equivalent to optimizing
makespan in the second shop.
If the jobs are not monolithic and it is possible to

split them, then lot streaming can be useful in improv-
ing the makespan of an open shop problem. De�ne Uj
to be the number of identical units that forms the job
Jj. Let pij be the unit processing time of jth job on
ith machine, i.e. pij =(1=Uj)Pij. Each job Jj can have
at most sj sublots. The problem is to �nd the routing
and the size of these sublots. Lijk represents the size
of the kth sublot of job j on machine i.
The sublots are consistent, if the sublot sizes are the

same at each machine, i.e. Lijk =Ljk for each machine
i. If we assume that sublots are consistent, then we
have similar type (1) and type (2) constraints for each
sublot, with pijLjk being the processing time and Cijk
being the completion time of the kth sublot of jth job
on machine i. We rede�ne the completion time as the
time when each sublot of each job is completed.
When there is a single job, there are two cases to

consider. In the �rst case, all the sublots of the single
job may be restricted to follow the same routing, which
will be called single routing models. In this case, the
routing for the job and sizes of the sublots should
be optimized. However, an open shop may have fur-
ther exibility to allow for di�erent routings for each
sublot of the single job, which will be referred to as a
multiple routingmodel. In this case we expect to have
shorter makespans by optimizing the routing and size
of each sublot. If a machine has to be busy from its

�rst operation to the last one, we have a continuous
work model.
The problem becomes more complex in multi job

open shops. In addition to the concepts of single-
multiple routings and continuous work, preempting a
job may improve the makespan. If preemption is al-
lowed, a machine can process sublot(s) of some other
job between any two sublots of a job. When the lot
streaming is allowed, an open shop is called a non-
preemptive open shop, if each job Jj has to be pro-
cessed Pij consecutive time units on machine Mi, over
the time when machineMi is busy. Note however that,
in any case, we do not allow for preemption of an
individual sublot.

3. Single job models

Since there is only one job, we omit the subscript
j in this section. The single job has s sublots and we
are to determine the size and routing of these sublots
to achieve the minimum makespan. Without loss of
generality, let U ≡ 1.

3.1. Single routing model

In this case, we assume that the sublots are consis-
tent. There are two decisions to be made: the routing
which the job follows and the sizes of the sublots.
Clearly, if we are given the routing of the job, the
problem turns into a ow shop lot streaming model,
for which we can obtain optimal solutions e�ciently
by linear programming formulations [1].
On the other hand, if we are given the sublot sizes,

the problem is only to determine the routing of the
job. This model is studied by Steiner and Truscott [13]
with the equal sized sublots, i.e. Lk =1=s; k =1; : : : ; s.
With the additional restriction that the machines
must work continuously (“continuous work”), they
have shown that in an optimal schedule the job must
follow any of the pyramidal routings. In a pyrami-
dal routing Rp=(M(1); M(2); : : : ; M(m)), the job visits
the machines with an ascending order of processing
times followed by machines with a descending or-
der of processing times, i.e., there is no i such that
p(i−1)¿p(i)¡p(i+1).
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Here, we relax the assumption that the sublots must
be of equal size and the machines must work continu-
ously. We will show that pyramidal routings are still
optimal.
Now, consider them-machine open shop lot stream-

ing problem. Suppose that sublots are known a priori
and are L=(L1; L2; : : : ; Ls). Hence the problem is a
classical open shop problem with m machines and s
jobs, with processing times,

pik =piLk ; i=1; : : : ; m k =1; : : : ; s:

But in this speci�c problem, we also have job (k +1)
to follow job k. Therefore, the corresponding s-
machine m-job open shop problem is in fact a ow
shop problem with processing times,

pik =pkLi; i=1; : : : ; s k =1; : : : ; m: (3)

Observing this relation, we can now use the basic
results of the ow shop problem.
When there are two sublots, the corresponding ow

shop has two machines. There are two cases to con-
sider: L1¿L2 and L2¿L1. When L1¿L2, in the cor-
responding ow shop, the processing time on the �rst
machine is always greater than the processing time
on the second machine for each job, as seen from Eq.
(3). By Johnson’s Rule, an optimal solution to this
problem is LPT sequence for the processing times on
machine 2. Thus, the routing in the original open shop,
which corresponds to the LPT sequence in the corre-
sponding ow shop, is the routing in which the job
visits the machines with a descending order of process-
ing times, i.e. the routing Rd=(M(1); M(2); : : : ; M(m))
is such thatp(i)¿p(i+1) for i=1; : : : ; m−1. Similar ar-
guments are valid for the case L2¿L1, in which the job
visits the machines with an ascending order of process-
ing times, i.e. the routing Ra=(M(1); M(2); : : : ; M(m))
is such that p(i)6p(i+1) for i=1; : : : ; m − 1. More-
over, because of the reversibility of the ow shop
lot streaming problem, the two routings give the
same makespan. Thus, it is enough to consider only
one of these routings. Once the routing is known,
the problem is a single job two sublot ow shop lot
streaming problem, which can be solved by an LP
formulation or by the simple procedure by Baker and
Pyke [2].

When there are more than two sublots (s¿2), we
observe the following characteristic of the correspond-
ing s machine ow shop:

pik¿pil ⇒ phk¿phl;

since pkLi¿plLi ⇒ pkLh¿plLh:

pik¿phk ⇒ pil¿phl;

since pkLi¿pkLh ⇒ plLi¿plLh:

i; h ∈ {1; : : : ; s} k; l ∈ {1; : : : ; m}:
These characteristics are the properties of an or-

dered ow shop. Smith et al. [11] have shown that
the best permutation schedule for this problem is one
of the pyramidal schedules, i.e. the sequence on any
machine Sp=(J(1); J(2); : : : ; J(m)) is such that there is
no k; 16k6m with p(k−1)¿p(k)¡p(k+1). An im-
mediate result of pyramidal schedules in the corre-
sponding ow shop is the pyramidal routings for the
original open shop. Hence, we need to consider one
of the 2m−1 pyramidal routings.
When the sublots are of equal size, it is easy to

see that all the pyramidal routings result in the same
makespan. Moreover, it is always possible to ensure
continuous work on each machine without increasing
the makespan.

3.2. Multiple routing model

In this case, each sublot of the job may have a
di�erent routing resulting in shorter makespans. This
problem is studied by Glass et al. [6] and the following
results are derived.
When the number of sublots available is more than

the number of machines, i.e. s¿m, optimal sublots are
consistent and,

Lk =

{
1=m for k =1; : : : ; m;

0 for k =m+ 1; : : : ; s

with sublot k having the routing (Mk; : : : ; Mm;M1;
: : : ; Mk−1) and achieving a makespan Cmax =max{p1;
: : : ; pm}. Note that, in each of the m equal length
intervals in the interval (0; Cmax), each machine pro-
cesses exactly one of the m sublots and hence there is
no overlapping.
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When there are two sublots and m machines,
optimal sublots are consistent and L1 =L2 = 1

2 . The
routings of two sublots are found by applying Gon-
zales and Sahni’s [7] algorithm to the corresponding
2-machine m-job problem, generating a makespan,
Cmax =max{ 12

∑m
i=1 pi;max{p1; : : : ; pm}}.

4. Multi job models

To our knowledge, there is no study of analytical
results in the literature on streaming multi jobs in an
open shop. Dauzere–Peres and Laserre [5] give an it-
erative procedure to solve the preemptive open shop,
job shop and ow shop problems. The procedure starts
with a sequence of sublots on each machine. Given
the sequences, optimal sublot sizes are computed. The
optimal sublot sizes are now input to a classical
scheduling problem where each sublot are assumed to
be distinct jobs. The iterative procedure stops when
there are no more improvements.
In this section, we study the 2-machine open

shop problem. In the �rst part, we discuss the non-
preemptive case where each sublot of a job has the
same routing, i.e. “single routing”. In the second
part, we study the preemptive case where each sublot
of a job may have di�erent routings, i.e. “multiple
routing”. Again, we denote aj =P1j; bj =P2j.
When there are only two machines, Gonzales and

Sahni’s [7] linear time algorithm �nds the optimal
schedule with a makespan,

Cmax =max




n∑
j=1

aj;
n∑
j=1

bj;max
j

{aj + bj}

 :

Clearly, if max{∑n
j=1 aj;

∑n
j=1 bj}¿maxj{aj +

bj}, the makespan cannot be improved by lot
streaming. Hence, lot streaming is e�cient only if
maxj{aj + bj}¿max{

∑n
j=1 aj;

∑n
j=1 bj}.

For the results of the following subsections, we need
the following lemma.

Lemma 1. There can be at most one job v such that

av + bv¿max




n∑
j=1

aj;
n∑
j=1

bj


 : (4)

Proof. Suppose that there are two jobs v and l that
satisfy,

av + bv¿max




n∑
j=1

aj;
n∑
j=1

bj


 ;

al + bl¿max




n∑
j=1

aj;
n∑
j=1

bj


 ;

which results,

av + bv + al + bl¿2max




n∑
j=1

aj;
n∑
j=1

bj


 : (5)

On the other hand,
n∑
j=1

aj +
n∑
j=1

bj¿av + bv + al + bl; (6)

and

2max




n∑
j=1

aj;
n∑
j=1

bj


¿

n∑
j=1

aj +
n∑
j=1

bj: (7)

From (5)–(7) we have

max




n∑
j=1

aj;
n∑
j=1

bj


¿max




n∑
j=1

aj;
n∑
j=1

bj




which is a contradiction. Hence there are no such two
jobs v and l.

4.1. Non-preemptive single routing model

Consider the case, in which there is a job v that
satis�es Eq. (4), for otherwise lot streaming will not
improve makespan.Without loss of generality, assume
that Uv=1. If we consider only job v for streaming,
assigning an arbitrary routing (M1; M2) or (M2; M1)
and ignoring the other jobs, the optimal sizes of the
sv sublots are simply the geometric sublots given in
Potts and Baker [8]. If we take the routing as (M1; M2)
these sizes are,

Lv1 =
1− �
1− �sv ;

Lvk = �Lk−1; k =2; : : : ; s;
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Fig. 2.

where � ≡ bv=av: The optimal completion time of the
job v is,

Cv= avLv1 + bv= av
1− �
1− �sv + bv

(see Fig. 2a).
The next step in constructing an optimal schedule

is sequencing other jobs after job v on machine M1
and before job v on machine M2 (see Fig. 2b). The
resulting schedule is optimal if one of the following
conditions hold,

avLv1¿
n∑
j=1

bj and bvLvsv¿
n∑
j=1

aj

which results in a makespan Cmax =Cv (Fig. 2b),

avLv1¿
n∑
j=1

bj and bvLvsv¡
n∑
j=1

aj

which results in amakespanCmax =
∑n

j=1 aj (Fig. 2c),

avLv1¡
n∑
j=1

bj and bvLvsv¿
n∑
j=1

aj

which results in a makespan Cmax =
∑n

j=1 bj
(Fig. 2d).
However, if

avLv1¡
n∑
j=1

bj and bvLvsv¡
n∑
j=1

aj

(Fig. 2e), a left shift of all jobs and sublots on machine
M1 will result in a makespan Cmax =max{

∑n
j=1 aj;∑n

j=1 bj} (Fig. 2f). Note that this left shift is always
possible, since

av + bv¿
n∑
j=1

bj ⇒ av¿
n∑

j=1; j 6=v
bj:

That is, the processing time of job v on machine M1
is longer than the total processing of all other jobs on
machine M2 and a left shift on machine M1 does not
create any overlapping.
Since in each case we achieve the makespan,

Cmax =max




n∑
j=1

aj;
n∑
j=1

bj; Cv


 ;

this construction is an optimal one.
For the continuous case, we can also determine the

required number of sublots to have a makespan which
achieves the physical limit Y , which is,

Y =max




n∑
j=1

aj;
n∑
j=1

bj


 (8)

for any two machine shop. Equating this limit to Cv,

Y =Cv= av
1− �
1− �sv + bv

which results in

sv=
⌈
log(Y − av)− log(Y − bv)

log bv − log av

⌉
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after some manipulation. It can be shown that sv is a
positive integer for all values of av and bv when av 6=
bv. For av= bv,

Cv=
av
sv
+ av=

(sv + 1)
sv

av

and the optimal value of sv is

sv=
⌈

av
Y − av

⌉
:

4.2. Preemptive multiple routing model

In this case, each sublot is taken as a separate job.
Again we will consider the case when there is a job v
that satis�es Eq. (4), for otherwise lot streaming will
not improve makespan. We start with the following
lemma.

Lemma 2. For each job l,

1
2
(al + bl)6max




n∑
j=1

aj;
n∑
j=1

bj


 :

Proof.

al + bl6
n∑
j=1

aj +
n∑
j=1

bj

6 2max




n∑
j=1

aj;
n∑
j=1

bj


 :

We will now show that two sublots of equal size for
job v will be su�cient to reduce the makespan to its
physical limit, Eq. (8). Take these sublots as distinct
jobs v1 and v2 with processing times av1 = av2 = 1

2av
and bv1 = bv2 = 1

2bv. Then apply the Algorithm of
Gonzales and Sahni given in Section 2 to the n + 1
jobs. The optimal makespan will be

Cmax =max




n∑
j=1; j 6=v

aj + av1 + av2;

n∑
j=1; j 6=v

bj + bv1 + bv2;max
j

{aj + bj}

 :

Obviously,
∑n

j=1; j 6=v aj + av1 + av2 =
∑n

j=1 aj and∑n
j=1; j 6=v bj + bv1 + bv2 =

∑n
j=1 bj. We also have

al + bl6max




n∑
j=1

aj;
n∑
j=1

bj




for l 6= v1 and l 6= v2
from Lemma 1, and,

al + bl6max




n∑
j=1

aj;
n∑
j=1

bj




for l= v1 or l= v2

from Lemma 2. Hence our actual makespan is

Cmax =max




n∑
j=1

aj;
n∑
j=1

bj




which is the physical limit.
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