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Abstract

This paper develops the asymptotic theory for residual-based tests and quasi-likeli-
hood ratio tests for cointegration under the assumption of infinite variance errors. This
article extends the results of Phillips and Ouliaris (1990) and Johansen (1988, 1991) which
are derived under the assumption of square-integrable errors. Here the limit laws are
expressed in terms of functionals of symmetric stable laws rather than Brownian motion.
Critical values of the residual-based tests of Phillips and Ouliaris (1990) and likelihood-
ratio-based tests of Johansen (1991) are calculated and tabulated.

We also investigate whether these tests are robust to infinite variance errors. We found
that regardless of the index of stability a, the residual-based tests are more robust to
infinite variance errors than the likelihood-ratio-based tests. ( 1998 Elsevier Science
S.A. All rights reserved.

JEL classification: C32
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1. Introduction

A considerable literature has developed in the recent years for the analysis of
cointegration, see e.g. Engle and Granger (1987), Phillips and Ouliaris (1990),
Phillips and Hansen (1990), Johansen (1988, 1991), Johansen and Juselius (1990),
Hansen (1992). The commonly used tests for cointegration are the residual-
based ZK o and ZK

t
tests of Phillips and Ouliaris (1990) and the likelihood-based

trace and maximum eigenvalue statistics of Johansen (1988, 1991). The distribu-
tion theory used to evaluate these test statistics is based on the assumption of
square integrable disturbances.
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In this paper we investigate whether these tests are robust to infinite variance
errors. It may not be immediately obvious that in economics we can find variables
with infinite variance. Mandelbrot (1963, 1967) shows that certain commodity
prices have large variances so that it may be assumed infinite. Fama (1965) notes
that the empirical distributions of stock price changes are leptokurtic, and they
are governed by stable laws. Recently, McCulloch (1996a,b) argued that financial
asset returns are the cumulative outcome of the economic agents decision over
time and finds that the returns of the stock prices can be governed by stable laws.

There also have been two recent studies using developing country data sets.
Koedijk and Kool (1992) investigate the empirical distribution of black-market
exchange rate returns for seven East European currencies focusing on the tails of
the distribution. Their results support the existence of finite second moments in
exchange rates only for 4 of the seven countries. Another study that examines
the black-market exchange rates for 12 Latin American countries is by Akgiray
et al. (1988). Strong evidence is found to support the infinite variance hypothesis.
This may be the case because of adverse balance of payments, exchange rate and
capital controls, large budget deficits. They then argue that constructing
a foreign exchange rate position for a country given the nonexistence of a vari-
ance might not be easy. These results show us that allowing for infinite variance
processes in economic analysis may be prudent.

The aim of our paper is to develop the asymptotic distribution of the residual-
based and quasi-likelihood-based tests for cointegration under the assumption
of weakly dependent errors with infinite variance. We find that the limit law for
the ZK o and ZK

t
tests of Phillips and Ouliaris (1990) and the trace and maximum

eigenvalue test statistics of Johansen (1988, 1991) under infinite variance errors
not only consist of functionals of symmetric stable laws but, in the case of
Johansen (1991), also involves the quadratic variation of a symmetric stable
process. The limit laws depend on the index of stability a and the number of
variables in the system. This work extends the results in Phillips and Ouliaris
(1990) and Johansen (1988, 1991), which are derived under the assumption of
finite variance errors, to the case of infinite variance errors.

Since the tests for cointegration depend on the assumption of square-integr-
able disturbances, it is unknown whether these tests are robust to infinite
variance errors or not. We answer this question by calculating the size distortion
induced by mistakenly using the conventional critical values of Phillips and
Ouliaris (1990) and Johansen (1988, 1991). We find that the Phillips and Ouliaris
(1990) ZK o and ZK

t
tests for cointegration are more robust to infinite variance

errors than the Johansen tests. The size distortion that is found biases the tests
towards the alternative hypotheses of cointegration. These findings can be
important in the empirical research. For example, if we would like to test
whether the purchasing power parity holds between two Latin American coun-
tries and if we conduct cointegration tests the results may be different depending
on the variance of the errors.
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It can be argued that cointegration tests-based on M - estimators may be
more efficient than OLS-based tests, but the scope of this paper is different. We
analyze the robustness of the existing cointegration tests to the assumption of
infinite variance errors.

In Section 2 some definitions, assumptions and limit theorems that will be
useful in the other sections are presented. Section 3 develops the limit theory for
the residual-based tests for cointegration and calculates the size distortions
when the errors have infinite second moments. In Section 4, the asymptotic
distribution theory for quasi-likelihood-based tests for cointegration are derived
when the errors have infinite variance. Also, the size distortions which occur by
mistakenly using the critical values of the tables in Johansen and Juselius (1990)
are calculated. Section 5 extends Section 4’s results to the limit law for the trace
and maximum eigenvalue statistics with linear trend. Section 6 concludes.

The following notation is used throughout the paper. The symbol ‘,’
denotes equality in distribution. EAE"[tr(A@A)]1@2 denotes the Euclidean norm
of a matrix A. ‘N’ denotes the weak convergence with respect to the Skorohod
metric. :A is integral with respect to the Lebesque measure. The proofs of the
theorems can be obtained from the author on demand.

2. Preliminaries

Let ½
t
be a p-vector integrated process generated by the following:

½
t
"½

t~1
#m

t
, t"1,2,2,n, (1)

where ½
0

is any random p-vector. m
t
is the following linear process:

m
t
"C(¸)e

t
, (2)

where C(¸)"+=
j/0

C
j
¸j, the C

j
are p]p, C

0
"I, C(1)O0 and C(1) is full rank.

Also, define

CI
j
"

=
+

v/j`1

C
v
. (3)

Assumption 1. e
t
is iid, symmetrically distributed and in the normal domain of

attraction of a p-variate symmetric stable law F with the same index a, for all
components of the vector 0(a(2. e

t
has independent components. The

coefficient matrices C
j
satisfy the following:

=
+
j/0

j2EC
j
Eh(R with 0(h(a'1. (4)
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e
t
is in the normal domain of attraction of a stable law and we denote that as

e
t
3ND(a). This shows that ath moment of the errors is infinite for a(2.

Assumption 1 implies the following limit theorems that will be used through-
out the paper.

a~1
n

*nt+
+
i/1

e
i
N½a, (5)

a~2
n

*nt+
+
i/1

P
i~1

e@
i
NP

t

0

½~a d½@a, (6)

n~1a~2
n

*nt+
+
i/1

P
i~1

P@
i~1

NP
t

0

½~a ½~{a , (7)

a~2
n

*nt+
+
i/1

e
i
e@
i
N½a(t)½a(t)@!P

t

0

½~a d½@a!P
t

0

d½a½~{a ,[½a,½a]t, (8)

a~2
n

n
+
t/1

½
t~1

m@
t
NC(1)P

1

0

½~a d½@aC(1)@#
=
+
j/0

C
j
[½a,½a]1CI @j, (9)

n~1a~2
n

+
t/1n

½
t~1

½@
t~1

NC(1)P
1

0

½~a ½~{a C(1)@, (10)

where P
t~1

"+t~1
i/1

e
i
and ½~a is a symmetrically stable random process with

independent components and a is the index of stability. Furthermore, the
superscript on ½ shows the left limit of the process. ½~a belongs to the space of
cadlag functions. From here on all the ½~a ’s on the limits are represented as
½ for notational convenience. Moreover, all the limits are on the space of cadlag
functions. [½a,½a]t represents the quadratic variation of ½a(t). These results are
proved in Sections 3 and 4 of Caner (1997).

We can assume

a
ni
"an1@a ∀i"1,2,2,k for some aO0.

This assumption greatly simplifies the asymptotic theory even though it is
restrictive (see Phillips (1995), Section 6). This does not change any of the results
obtained, but in order to understand the connections between the limit laws
when the errors have finite and infinite variance better, we use Assumption 1.
We define the stable process in the following way.

Definition 1. Stable processes are stochastic processes whose sample paths are in
D[0,1] with stationary independent increments. These increments have stable
distribution.

158 M. Caner /Journal of Econometrics 86 (1998) 155—175



For more information on stable processes see chapters 1 and 2 of Samorod-
nitsky and Taqqu (1994) and Resnick (1986).

3. Residual-based tests

First partition ½
t
"(½

1t
,½@

2t
)@ into the scalar ½

1t
and m vector ½

2t
(m"p!1).

Then consider the system of cointegrating OLS regressions

½
1t
"bK @½

2t
#uL

t
, (11)

uL
t
"oL uL

t~1
#eL

t
, (12)

where bK and oL are the least-squares estimates and uL
t
and eL

t
are the regression

residuals from Eqs. (11) and (12), respectively.
In this section we develop the limit theory of residual-based tests for cointe-

gration when the error terms have infinite variance. In these tests the null
hypothesis is: the residuals uL

t
have a unit root. So the null hypothesis corres-

ponds to the hypothesis of no cointegration. Specifically, we analyze the limit
behavior of the ZK o and ZK

t
tests proposed by Phillips (1987). In the case of finite

variance errors, Phillips and Ouliaris (1990) found that the asymptotic distribu-
tion only depends on the dimension p of the vector e

t
. Our goal is to find the

analog for the stable case with a(2. We start with a technical result which is
immediate from Eq. (10) and helps to prove the main theorems of this section.

¸emma 1. ¸et

Xa"C(1)½a

"C
Xa1
Xa2D

.

If ½
t
is generated by Eq. (1), under Assumption 1

bK NAP
0

Xa2X@a2B
~1

AP
1

0

Xa2Xa1B
"A~1

22
a
21

where

A"C
a
11

a@
21

a
21

A
22
D"C(1)P

1

0

½a½@aC(1)@"P
1

0

XaX@a.
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a
21

is an m-dimensional vector and A
22

is an m]m full rank matrix and Xa1 is
a stable process and Xa2 is an m-dimensional a-stable vector.

This lemma is a generalization of Theorem 2a of Phillips (1986) to the case of
infinite variance errors. By Lemma 1 we have

bK @"(1,!bK @)Ng@"(1,!a@
21

A~1
22

), (13)

where bK and g are p vectors. Now, set up

½a"C
½a1
½a2D

,

F"C
f
11

f@
21

f
21

F
22
D,P

1

0

½a½@a,

i@"(1,!f@
21

F~1
22

),

Qa(t)"½a1(t)!AP
1

0

½a1(t)½a2(t)@BAP
1

0

½a2(t)½a2(t)@B
~1

½a2(t),

where ½a1 is a symmetric stable process and ½a2 is an m]1 symmetric stable
vector process with independent components, f

11
is a scalar, f

21
is an m-

dimensional vector, F
22

is an m-dimensional square matrix.
The limit theory of the following residual-based tests for cointegration can be

derived using Eqs. (11) and (12).

1. Phillips ZK o test:

ZK o"n(oL !1)!(1/2)(s2
nl
!s2

n
)[n~2(+uL 2

t~1
)]~1,

2. Phillips ZK
t
test:

ZK
t
"(+uL 2

t~1
)1@2(oL !1)/s

nl
!(1/2)(s2

nl
!s2

n
)[s

nl
(n~2+uL 2

t~1
)1@2]~1,

where

s2
n
"n~1+eL 2

t
,

s2
nl
"n~1+eL 2

t
#2n~1

l
+
s/1

w
sl

n~s
+
t/1

eL
t
eL
t`s

.

Now, make the following assumption.

Assumption 2. Kernel weights w(.) satisfy for all x3R, Dw(x)D)1 and w(x)"
w(!x); w(0)"1; w(x) is continuous at zero and for almost all x3R; :

R
Dw(x)Ddx

(R. Also, the lag truncation parameter l satisfies l"o(n1@2).
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¹heorem 1. If ½
t
is generated by Eq. (1) and under Assumptions 1 and 2

(a)

ZK oN
:1
0
QadQa
:1
0

Q2a
.

(b)

ZK
t
N

:1
0
QadQa

(:1
0

Q2a )1@2 [Qa(1)2!2 :1
0
Qa dQa]1@2

.

Theorem 1 is the extension of Theorem 4.1a—b of Phillips and Ouliaris (1990)
to the case where the distribution of the disturbances e

t
are in the normal

domain of attraction of a symmetric stable law with index a, 0(a(2. The
results show that the ZK

t
, ZK o test statistics for cointegration can be represented as

functionals of stable processes in the case where the disturbances have infinite
variance, rather than functionals of Brownian motion as in the case of square-
integrable disturbances. Another point to note is the limit law in Theorem 1b is
a functional of the quadratic variation of Qa. Quadratic variation of Qa is
equivalent to (Qa(1)2!2:1

0
Qa dQa)"i@it. This is also a generalization of the

result found by Phillips and Ouliaris (1990). An important point is we could
have analyzed the ADF tests of Engle and Granger (1987), but this would have
probably resulted in the same limit law as the ZK

t
test at the cost of using a more

complicated proof.
In Theorem 1 observe that the limit laws only depend on the number of

variables (p) in the system and the index of stability a. If the statistics are based
on a regression with a fitted intercept in Eq. (11) then the limiting distributions
are functionals of demeaned stable processes. In the same way, if there is a time
trend, in the regression, the limit law in Theorem 1 consists of functionals of
detrended stable processes.

Theorem 1 allows us to investigate whether the ZK o and ZK
t
tests are robust to

infinite variance errors. In this respect, we calculate the size distortions if the
conventional critical values in Phillips and Ouliaris (1990) tables are mistakenly
used instead of the critical values found in this article. Then we will be able to
determine whether Phillips’ ZK o and ZK

t
tests for cointegration are robust to

infinite variance errors or not.
Tables 1 and 2 present estimates of the critical values for the ZK o and

ZK
t
statistics.1 The tables allow for p("1, 2 or 3), variables in the system (1).

Critical values are provided for the model in Eq. (12) with a constant (left part of

1Tables 1 and 2 were generated by simulation using 1000 observations with 20,000 iterations. The
symmetric stable random variables were generated by the algorithm of Kanter and Steiger (1974).
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Table 1
Critical values for ZK o statistic

Demeaned Demeaned and detrended

a"0.5 a"0.5

Size 0.1 0.05 0.025 0.01 0.1 0.05 0.025 0.01

p"1 !10.45 !16.52 !27.62 !53.45 !14.54 !20.85 !32.51 !62.91
p"2 !20.61 !31.09 !47.22 !89.36 !24.40 !36.40 !55.52 !94.72
p"3 !30.41 !46.51 !70.11 !121.11 !33.97 !51.06 !75.83 !139.46

a"1 a"1

p"1 !10.73 !14.81 !20.54 !30.35 !16.34 !20.92 !27.38 !42.02
p"2 !17.76 !23.37 !30.49 !44.85 !22.75 !29.16 !37.89 !55.30
p"3 !24.33 !31.43 !41.50 !60.40 !29.66 !37.48 !48.62 !72.02

a"1.5 a"1.5

p"1 !11.06 !14.26 !17.48 !23.35 !17.48 !21.35 !25.51 !32.19
p"2 !17.14 !21.01 !25.41 !31.97 !22.98 !27.78 !32.89 !40.40
p"3 !23.01 !27.49 !32.49 !39.74 !28.09 !32.91 !38.12 !45.98

Tables 1 and 2) and with a constant term and a trend (right part of Tables 1 and
2). These tests reject the null hypothesis of no cointegration if the test statistic is
smaller than the appropriate critical value. For example, when a"1, for
a regression with a constant term and p"3, we reject at the 5% level if the
computed value of ZK o is less than !31.44. From Tables 1 and 2 it is easy to see
that the critical values are larger in absolute value when a(2 than their
counterparts in Phillips and Ouliaris (1990). This suggests that if the researchers
falsely assume that error terms are square integrable the ZK o, ZK t tests will slightly
over-reject the null of no cointegration.

However, comparing critical values by themselves do not indicate the extent
of size distortion. So we also calculated the size distortions if the conventional
Phillips and Ouliaris (1990) criticals are mistakenly used. The results are given in
Tables 5 and 6.2 For nearly every case, the actual rejection frequency of the null
of no cointegration exceeds the nominal level.

The size distortion generally increases with the number of variables p and as
a decreases. For example, if we analyze the demeaned and detrended ZK o statistic
with 3 variables in Table 5, the actual rejection frequencies range between 0.066
and 0.022, 0.083 and 0.035, 0.103 and 0.06, 0.134 and 0.11 at the levels of 0.01,

2Tables 5 and 6 were generated using 5000 iterations.
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Table 2
Critical values for ZK

t
statistic

Demeaned Demeaned and detrended

a"0.5 a"0.5

Size 0.1 0.05 0.025 0.01 0.1 0.05 0.025 0.01

p"1 !2.77 !3.67 !4.83 !7.12 !2.93 !3.73 !4.92 !7.17
p"2 !3.50 !4.45 !5.58 !7.91 !3.68 !4.66 !5.88 !8.17
p"3 !4.15 !5.19 !6.43 !9.04 !4.30 !5.35 !6.69 !9.33

a"1 a"1

p"1 !2.64 !3.22 !3.95 !5.08 !3.03 !3.56 !4.23 !5.72
p"2 !3.16 !3.74 !4.38 !5.57 !3.51 !4.06 !4.77 !6.19
p"3 !3.64 !4.22 !4.93 !6.35 !3.96 !4.54 !5.28 !6.80

a"1.5 a"1.5

p"1 !2.59 !2.98 !3.40 !4.08 !3.08 !3.45 !3.84 !4.51
p"2 !3.07 !3.45 !3.84 !4.44 !3.49 !3.86 !4.25 !5.01
p"3 !3.49 !3.85 !4.23 !4.82 !3.82 !4.16 !4.52 !5.14

0.025, 0.05 and 0.1, respectively, when a increases from 0.5 to 1.5. Continuing
with the same test statistic in Table 5, when a"1, if the number of variables
increases from 2 to 3, the calculated size range between 0.031 and 0.041, 0.049
and 0.059, 0.072 and 0.091 and 0.11 and 0.14 at the nominal levels of 0.01, 0.025,
0.05 and 0.1, respectively. The results of Table 6 are similar to the ones presented
in Table 5. We conclude that the size distortions are moderate, and the Phillips
ZK o and ZK

t
tests for cointegration are mildly robust to infinite variance errors.

As a special case of our results, we can also analyze whether Phillips and
Perron (1988) unit root tests are robust to infinite variance errors (p"1 in
Tables 5 and 6). Even though the limit theory for the infinite variance case was
developed by Chan and Tran (1989) and Phillips (1990) the issue of robustness
has not been explored. From Tables 5 and 6 we can see that at the 5% nominal
level the actual size ranges between 6% and 9% and 5% and 6% for the
demeaned ZK

t
and ZK o tests, respectively. Similar results can be obtained for the

other levels. It appears that these tests are also moderately robust to the infinite
second moment in the noise.

4. Likelihood-based tests

Consider the following VAR model:

D½
t
"

k~1
+
i/1

C
i
D½

t~i
#P½

t~k
#e

t
, (14)
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Table 3
Critical values for maximum eigenvalue statistic

Without linear trend With linear trend

a"0.5 a"0.5

Size 0.1 0.05 0.025 0.01 0.1 0.05 0.025 0.01

p!r"1 7.76 13.52 23.10 46.14 N.A N.A N.A N.A
p!r"2 22.29 36.46 59.06 110.41 N.A N.A N.A N.A
p!r"3 40.75 65.17 98.64 192.40 N.A N.A N.A N.A

a"1 a"1

p!r"1 6.93 10.36 15.36 27.69 A.D A.D A.D A.D
p!r"2 15.93 22.34 32.95 53.34 A.D A.D A.D A.D
p!r"3 26.24 37.00 52.74 87.70 A.D A.D A.D A.D

a"1.1 a"1.1

p!r"1 6.77 9.50 13.36 21.59 2.61 3.43 4.20 5.28
p!r"2 15.03 20.27 27.72 42.31 11.95 15.46 20.52 30.38
p!r"3 24.37 32.05 42.96 69.38 20.90 26.75 35.17 56.19

a"1.5 a"1.5

p!r"1 6.61 8.74 11.34 16.36 2.63 3.58 4.60 6.05
p!r"2 13.69 16.82 20.60 28.72 12.14 14.75 17.56 23.81
p!r"3 20.54 24.50 29.77 43.47 19.34 22.77 27.37 37.19

Note: AD is available on demand from the author. Since the case for a"1 with the time trend
results in a different limit, it is not included in this table.

where e
t
’s are p-dimensional vectors and satisfy Assumption 1. ½

1~k
,2,½

0
are

fixed and the quasi-likelihood function for Eq. (14) will be calculated for given
values of these. The parameters C

1
,2,C

k~1
are unrestricted. The model in

Eq. (14) is denoted by H
1
. Then as in Johansen (1988) the hypothesis of (at most)

r cointegrating vectors is

H
2
: P"db@, (15)

where b and d are full rank p]r matrices which represent the cointegrating
vectors and the adjustment coefficients, respectively. In this section, first we
conduct inference on the number of cointegrating vectors and in order to test
different hypotheses we benefit from quasi-likelihood ratio statistics. Then
a limit theorem is derived for these quasi-likelihood-ratio-based tests when the
errors in Eq. (14) have infinite variance. So, the limit theory for the trace and
maximum eigenvalue test statistics of Johansen (1988, 1991) are obtained.
Critical values of these test statistics are established via simulation studies. Most
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Table 4
Critical values for trace statistic

Without linear trend With linear trend

a"0.5 a"0.5

Size 0.1 0.05 0.025 0.01 0.1 0.05 0.025 0.01

p!r"1 7.79 13.52 23.10 46.14 N.A N.A N.A N.A
p!r"2 25.08 39.29 62.42 116.23 N.A N.A N.A N.A
p!r"3 51.22 76.99 112.31 203.82 N.A N.A N.A N.A

a"1 a"1

p!r"1 6.93 10.36 15.36 27.69 A.D A.D A.D A.D
p!r"2 18.68 25.38 36.18 56.76 A.D A.D A.D A.D
p!r"3 36.08 47.52 63.50 98.83 A.D A.D A.D A.D

a"1.1 a"1.1

p!r"1 6.77 9.50 13.36 21.59 2.61 3.43 4.20 5.28
p!r"2 17.80 23.23 31.35 46.23 13.05 16.54 21.44 31.58
p!r"3 34.27 42.57 53.88 82.14 28.66 34.77 43.72 64.15

a"1.5 a"1.5

p!r"1 6.61 8.74 11.34 16.36 2.63 3.58 4.60 6.05
p!r"2 16.42 19.90 24.22 32.22 13.21 15.89 18.65 24.79
p!r"3 30.41 34.99 40.71 54.11 27.42 31.25 36.03 45.95

Note: AD is available on demand from the author. Since the case for a"1 with the time trend
results in a different limit, it is not included in this table.

important of all, the size distortions of these test statistics are calculated when
the conventional critical values of Johansen and Juselius (1990) are used rather
than the tables in this article. As we know the underlying assumption of the
Johansen and Juselius (1990) tables are square-integrable disturbances (i.e.
a"2). However, in this paper infinite variance errors (a(2) are assumed and
the tables reflect this. So we are able to determine whether Johansen’s trace and
maximum eigenvalue test statistics are robust to infinite variance errors or not.
Before presenting the notation and main theorem of this section we state an
important theorem that will be useful for the subsequent proofs.

¹heorem 2. ¸et d@
M
tb

M
have full rank (p!r). Define

C"b
M
(d@

M
tb

M
)~1d@

M
. (16)

¹hen D½
t
and b@½

t
are, given initial distributions, stationary while ½

t
is nonsta-

tionary. If the initial distributions are expressed in terms of the doubly infinite
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sequence then D½
t
has a representation

D½
t
"C(¸)e

t
,

with C(1)"C.

In the above theorem d
M

and b
M

are p](p!r) matrices of full rank such that
b@b

M
"0, d@d

M
"0. Denote the characteristic polynomial in Eq. (14) as

P(z)"(1!z)I!
k~1
+
i/1

C
i
(1!z)zi!Pzk,

!t"t(1) is the derivative of P(z) for z"1.
Now we can introduce some notation in order to clarify the proofs. As in

Johansen (1991) let Z
0t
"D½

t
, Z

1t
"(D½@

t~1
,2,D½@

t~(k~1)
)@ and Z

kt
"½

t~k
and

let C"(C
1
,2,C

k
). Then Eq. (15) can be rewritten as

Z
0
"CZ

1t
#db@Z

kt
#e

t
.

Define the product moment matrices and the residual sum of squares

M
ij
"a~2

n

n
+
t/1

Z
it
Z@

jt
(i, j"0,1, k), (17)

S
ij
"M

ij
!M

i1
M~1

11
M

1j
(i, j"0, k). (18)

Then it can be shown that the maximized quasi-likelihood function is found
from

¸~2@n
.!9

"DS
00

D
r

<
i/1

(1!jK
i
), (19)

where jK
i
’s are the estimated ordered eigenvalues jK

1
'2'jK

p
of S

k0
S~1
00

S
0k

with
respect to S

kk
, (Johansen 1988). Using Eq. (19) the quasi-likelihood ratio test

statistic can be set up. First when r"p; H
2
(r)"H

1
so that for the hypothesis

H
2
(r) in H

1
, ¸

.!9
(r)/¸

.!9
(p) is the quasi-likelihood ratio test statistics. When the

hypothesis is H
2
(r) in H

2
(r#1), ¸

.!9
(r)/¸

.!9
(r#1) is the corresponding test

statistic. Before the main theorem of this section we present the test statistics for
cointegration.

The likelihood ratio test statistic for hypothesis H
2
: P"db@ versus H

1
is

given by

¸R
u
"!n

p
+

i/r`1

ln(1!jK
i
),
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whereas the likelihood ratio test statistic of H
2
(r) versus H

2
(r#1) is given by

¸R*
u
"!n ln(1!jK

r`1
).

The main theorem of this section can now be presented.

¹heorem 3. ºnder Assumption 1

¸R
u
NtrG[½a,p~r

,½a,p~r
]~1
1 P

1

0

d½a,p~r
½@a,p~r

]AP
1

0

½a,p~r
½@a,p~rB

~1

P
1

0

½a,p~r
d½@a,p~rH, (20)

where ½a,p~r
is a (p!r)-dimensional symmetric stable process with independent

components. ¹hen

¸R*
u
Nj

.!9
,

where j
.!9

is the maximum eigenvalue of the matrix in Eq. (20).

In Eq. (20), [½a,p~r
,½a,p~r

]
1

is the quadratic variation of ½a,p~r
defined as

[½a,p~r
½a,p~r

]
1
"½a,p~r

(1)½a,p~r
(1)@

!AP
1

0

½a,p~r
d½@a,p~rB@!P

1

0

½a,p~r
d½@a,p~r

.

Note that the limit theory for the test statistic in Eq. (20) depends only on the
number of nonstationary variables (p!r) in the system and a. This theorem
generalizes Theorem 3 of Johansen (1988) to the case where e

t
’s have infinite

variance. Here the limit theory consists of functionals of symmetric stable
processes with independent components rather than functionals of standard
Brownian motions as in Johansen (1988). It can also be seen that when the
disturbances have infinite variance, the quadratic variation of stable process is
included in the limit law. However, when a"2, the quadratic variation of the
standard Brownian motion is the identity matrix. Both test statistics also can be
easily derived when there is a constant term in Eq. (14) but with no linear time
trend. Then the functionals will consist of the demeaned symmetric stable
processes in the limit law in Theorem 3. The left portion of Tables 3 and
4 present the estimates of the critical values of the maximal eigenvalue and trace
statistics of Johansen (1991) under the assumption of infinite variance errors.
The model that is used in left part of Tables 3 and 4 is Eq. (14) with an intercept.
But the model has no linear trend in the levels of ½

t
. Otherwise the intercept is
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Table 5
Size distortions for ZK o statistic

Demeaned Demeaned and detrended

a"0.5 a"0.5

Size 0.1 0.05 0.025 0.01 0.1 0.05 0.025 0.01

p"1 0.0895 0.0647 0.0495 0.0372 0.0629 0.4685 0.0367 0.0295
p"2 0.1322 0.0972 0.0762 0.0560 0.1064 0.0820 0.0668 0.0528
p"3 0.1676 0.1290 0.1046 0.0828 0.1338 0.1028 0.0828 0.0656

a"1 a"1

p"1 0.0912 0.0572 0.0387 0.0255 0.0729 0.0463 0.0314 0.0224
p"2 0.1100 0.0716 0.0486 0.0314 0.0966 0.0624 0.0444 0.0308
p"3 0.1396 0.0908 0.0588 0.0410 0.1108 0.0730 0.0500 0.0364

a"1.5 a"1.5

p"1 0.0958 0.0531 0.0294 0.0151 0.0847 0.0478 0.0271 0.0151
p"2 0.0966 0.0570 0.0342 0.0166 0.0964 0.0496 0.0304 0.0164
p"3 0.1072 0.0568 0.0310 0.0154 0.1102 0.0606 0.0352 0.0216

Table 6
Size distortions for ZK

t
statistic

Demeaned Demeaned and detrended

a"0.5 a"0.5

Size 0.1 0.05 0.025 0.01 0.1 0.05 0.025 0.01

p"1 0.1210 0.0941 0.0757 0.0599 0.0809 0.0649 0.0527 0.0427
p"2 0.1412 0.1072 0.0832 0.0662 0.1148 0.0924 0.0734 0.0592
p"3 0.1686 0.1320 0.1098 0.0924 0.1382 0.1034 0.0816 0.0678

a"1 a"1

p"1 0.1115 0.0767 0.0567 0.0406 0.0867 0.0603 0.0444 0.0329
p"2 0.1138 0.0772 0.0550 0.0386 0.1014 0.0692 0.0496 0.0360
p"3 0.1342 0.0848 0.0612 0.0450 0.1111 0.0760 0.0524 0.0388

a"1.5 a"1.5

p"1 0.1043 0.0638 0.0396 0.0245 0.0923 0.0546 0.0332 0.0206
p"2 0.0966 0.0558 0.0362 0.0204 0.0960 0.0536 0.0306 0.0192
p"3 0.1024 0.0544 0.0320 0.0186 0.1082 0.0574 0.0372 0.0236
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not restricted. The model with linear time trend will be investigated in the next
section. Observe that at the left-most column we have, p!r, which are the
number of nonstationary variables (i.e. they are not cointegrated with the other
variables). This means we have p variables in ½

t
and at most r of them are

cointegrated. The critical values are simulated in the same way as in Tables 1
and 2. But the different sizes represent the right-tail probabilities of the distribu-
tion. These tests reject the null hypothesis of at most r cointegrating vectors in
favor of more than r vectors if the computed statistic is larger than the critical
value. We illustrate this by an example. In Table 4 assume we have 4 variables in
½

t
and the null hypothesis is r"1 against the alternative of more than 1 coin-

tegrating vector. At 5% level if our a"1.5 then we can reject this hypothesis if
the computed statistic is larger than 34.99.

In Table 3, we reject the null hypothesis of r cointegrating vectors for
the alternative of r#1 cointegrating relations if the statistic is larger than
the critical value. We can give an example. If we analyze Table 3, with no
linear trend, using the example in the previous paragraph we can reject the
null of 1 cointegrating vector in favor of 2 if the computed statistic is larger
than 24.50.

We can now investigate whether the trace and maximum eigenvalue test
statistics of Johansen (1991), without the linear trend, are robust to infinite
variance errors or not. For this reason the size distortions of both test statistics
that arise from mistakenly using the conventional Johansen and Juselius (1990)
critical values are calculated and are given at the left side of Tables 7 and 8. For
almost all cases the calculated sizes are above the nominal levels. The size
distortion increases with the number of nonstationary variables (p!r) and
decreases as a increases. First take the case of 4 variables and the null of one
cointegrating vector (i.e. p"4, r"1). Concentrating on the maximum eigen-
value statistic without the linear trend in Table 7, we see that the actual levels
range between 0.19 and 0.04, 0.22 and 0.06, 0.25 and 0.09, 0.30 and 0.14 for the
nominal levels of 0.01, 0.025, 0.05, 0.10, respectively, when a increases from 0.5 to
1.5. When a"1, increasing the number of nonstationary variables (p!r) from
1 to 3 for the maximum eigenvalue statistic without the linear trend at the 0.10,
0.05, 0.025, 0.01 nominal levels we see that the actual levels increase from 0.11 to
0.20, 0.08 to 0.16, 0.06 to 0.13, 0.04 to 0.10, respectively. Thus, when a is near 1,
Tables 7 and 8 suggest large size distortions. So we can say that Johansen’s trace
and maximum eigenvalue tests for cointegration are not even mildly robust to
infinite variance errors like the residual-based tests studied in Section 3 of this
paper.

Note that when p"1 and r"0, the maximum eigenvalue and trace tests are
the square of Dickey—Fuller’s t-test. From Table 7 we observe that when a is
between 0.5 and 1.5 the actual size ranges between 10% and 6% for the
demeaned maximum eigenvalue statistic at the 5% level. So there is moderate
size distortion for this particular unit root test with infinite variance errors.
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Table 7
Size distortions for maximum eigenvalue statistic

Without linear trend With linear trend

a"0.5 a"0.5

Size 0.1 0.05 0.025 0.01 0.10 0.05 0.025 0.01

p!r"1 0.1186 0.0956 0.0779 0.0610 N.A N.A N.A N.A
p!r"2 0.2154 0.1812 0.1537 0.1275 N.A N.A N.A N.A
p!r"3 0.2980 0.2563 0.2240 0.1910 N.A. N.A N.A N.A

a"1 a"1

p!r"1 0.1063 0.0760 0.0565 0.0414 A.D A.D A.D A.D
p!r"2 0.1640 0.1215 0.0934 0.0702 A.D A.D A.D A.D
p!r"3 0.2049 0.1577 0.1278 0.1006 A.D A.D A.D A.D

a"1.1 a"1.1

p!r"1 0.1024 0.0695 0.0482 0.0332 0.0842 0.0309 0.0098 0.0026
p!r"2 0.1500 0.1075 0.0804 0.0586 0.0967 0.0650 0.0473 0.0348
p!r"3 0.1876 0.1396 0.1118 0.0837 0.1382 0.1022 0.0755 0.0570

a"1.5 a"1.5

p!r"1 0.0971 0.0613 0.0388 0.0239 0.0876 0.0391 0.0160 0.0057
p!r"2 0.1255 0.0825 0.0540 0.0348 0.1013 0.0596 0.0382 0.0233
p!r"3 0.1375 0.0865 0.0595 0.0386 0.1146 0.0729 0.0481 0.0314

After investigating the tables we can conclude that using the critical values of
trace and maximum eigenvalue test statistics in Johansen (1988, 1991) and
Johansen and Juselius (1990) instead of the tables in this paper when a is near 1,
will increase the likelihood of rejecting the null of r cointegrating vectors in favor
of more cointegrating ones.

5. Extension to time trend

In this section we extend the results of the previous section to the quasi-
likelihood-ratio-based tests with linear time trend. In this respect, the results of
this section are the generalization of Theorem 2.1 in Johansen (1991) to the case
where the error terms have infinite variance. However, the results derived here
cover only the stable processes with the index a, 1(a(2. Thus, the limit
theory of the likelihood-based tests for cointegration cannot be derived by the
technique that is used, when the error term have infinite mean. The case of a(1,
is not very common even in the case of economic variables of Latin American
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Table 8
Size distortions for trace statistic

Without linear trend With linear trend

a"0.5 a"0.5

Size 0.1 0.05 0.025 0.01 0.10 0.05 0.025 0.01

p!r"1 0.1186 0.0966 0.0779 0.0661 N.A N.A N.A N.A
p!r"2 0.2063 0.1676 0.1456 0.1234 N.A N.A N.A N.A
p!r"3 0.2765 0.2341 0.2024 0.1739 N.A N.A N.A N.A

a"1 a"1

p!r"1 0.1063 0.0760 0.0565 0.0414 A.D A.D A.D A.D
p!r"2 0.1549 0.1165 0.0900 0.0689 A.D A.D A.D A.D
p!r"3 0.1940 0.1484 0.1168 0.0918 A.D A.D A.D A.D

a"1.1 a"1.1

p!r"1 0.1024 0.0700 0.0500 0.0300 0.0842 0.0309 0.0098 0.0026
p!r"2 0.1432 0.0993 0.0764 0.0574 0.0940 0.0630 0.0442 0.0326
p!r"3 0.1768 0.1324 0.1038 0.0754 0.1260 0.0900 0.0653 0.0487

a"1.5 a"1.5

p!r"1 0.0971 0.0613 0.0388 0.0239 0.0876 0.0391 0.0160 0.0057
p!r"2 0.1220 0.0751 0.0522 0.0353 0.0972 0.0596 0.0345 0.0219
p!r"3 0.1388 0.0876 0.0569 0.0367 0.1125 0.0684 0.0430 0.0271

countries. As we rarely encounter infinite mean error terms in economics, this is
not a big loss from the practitioners’ point. Next, we establish the general model

D½
t
"

k~1
+
i/1

D½
t~i

#P½
t~k

#k#e
t
. (21)

This model allows us to have a linear trend in the levels of ½
t
.

We can add two more results to Theorem 2 in this case. First ½
t
is nonstation-

ary with linear trend qt"Ckt. Then if the initial distributions are expressed in
terms of the doubly infinite sequence then D½

t
has the following representation:

D½
t
"C(¸)(k#e

t
).

Given the model (21), the likelihood ratio test statistic for hypothesis H
2
"db@

versus H
1

is given by

¸R
u
"!n

n
+

i/r`1

ln(1!jK
i
),
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whereas the likelihood ratio test statistic of H
2
(r) versus H

2
(r#1) is given by

¸R*
u
"!n ln(1!jK

r`1
).

¹heorem 4. ¼hen 1(a(2 and d@
M
kO0 then under Assumption 1

¸R
u
N trM[½a,p~r

,½a,p~r
]~1
1

»@º~1»N, (22)

where

»"P
1

0
CA

½a,p~r~1
!:1

0
½a,p~r~1

t!1
2

Bd½@a,p~rD,
and

º"P
1

0
C
½a,p~r~1

!:1
0
½a,p~r~1

t!1
2

DC
½a,p~r~1

!:1
0
½a,p~r~1

t!1
2

D
@
.

and ½a,p~r~1
is the p!r!1 dimensional symmetric stable vector with indepen-

dent components. Next

¸R*
u
Nj

.!9
,

where j
.!9

is the maximum eigenvalue of the matrix in Eq. (22).

Remark. When a(1, the linear trend is dominated by the stochastic partial
sums so we cannot develop the limit laws. However, at a"1 it can be easily
shown that » and º in Theorem 4 can consist of a (p!r#1) vector which has
a (p!r)-dimensional symmetric stable vector and a time trend, instead of the
(p!r) vector which has a (p!r!1) symmetric stable vector and the time trend
in the case of 1(a(2.3 The proof, the table values and size distortions for
a"1 is available from the author on demand.

Note that the asymptotic theory is different from Johansen (1991). We have
the inverse of the quadratic variation of a (p!r) dimensional stable process
with symmetric independent components in the limit law in Eq. (22). Similar to
the previous section the limit law is represented as functionals of symmetric
stable processes rather than the functionals of standard Brownian motions in
Theorem 2.1 of Johansen (1991). We also calculated critical values for a"1.1
and 1.5 by simulation. The right side of Tables 3 and 4 present the critical values
of the maximum eigenvalue and trace statistics, with linear trend, under the
assumption of infinite variance errors. The usage of the tables are the same as

3 I owe this suggestion to an anonymous referee.
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the tables that are presented in Section 4. We calculated size distortions for
these test statistics. These are tabulated on the right side of Tables 7 and 8.
However, we do not have the results for 0(a)1, when we have a linear trend.
So, instead, we calculated critical values and size distortions when a"1.1 and
a"1.5. Here, if we analyze the right side of Tables 7 and 8 we see that again the
size distortions increase with (p!r) and decrease as a increases. But this time
the magnitude of the distortions are not as large as the ones cited in Section
Section 4 when a changes. For example, if we analyze Table 7 with linear trend
we see that when a"1.1 with 3 nonstationary variables, the calculated level is
10% and when a"1.5 this is 7% at the 5% nominal level. One reason why the
size distortion is reduced when the linear trend is included is as follows.When
a decreases there are heavier tails for the noise. Then it might become difficult to
identify the cointegration relations. If there are deterministic trends, since they
are much less varying it could be easier to identify the correct cointegration
relation despite the misspecification of the noise process.4 However, using
the same example but analyzing the case without linear trend we see that
the actual level decreases from 14% to 9% at the 5% nominal level when
a increases from 1.1 to 1.5. The same pattern can be seen at the other levels in
Tables 7 and 8.

6. Conclusions

This paper generalizes the econometrics literature on the tests for cointegra-
tion. Instead of the usual assumption of finite variance errors we analyze the
residual-based tests and quasi-likelihood ratio tests for cointegration under the
assumption of infinite variance errors. The limit laws consist of functionals of
symmetric stable processes rather than Brownian motion. Furthermore, the
limit laws depend on ‘a’ the index of stability. We should also note that the limit
laws that are found for the Johansen’s tests are not mere replacements of
Brownian motions with symmetric stable laws. They also involve the quadratic
variation of a symmetric stable process.

We also check whether the ZK o and ZK
t
tests of Phillips and Ouliaris (1990) and

the trace and maximum eigenvalue statistics of Johansen (1991) are robust to
infinite variance errors. In order to analyze this problem the size distortion
induced by mistakenly using the conventional critical values tabulated in Phil-
lips and Ouliaris (1990) and Johansen and Juselius (1990) are calculated. It is
observed that the ZK o and ZK

t
tests exhibit moderate size distortion when a is

small. However, when a is near 1 the trace and maximum eigenvalue tests for
cointegration display meaningful size distortion. So in this one dimension we

4 I owe this explanation to an anonymous referee.
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find that the residual-based tests of Phillips and Ouliaris (1990) are more robust
to infinite variance errors than the quasi-likelihood ratio tests of Johansen (1988,
1991).

We would like to comment on the issues related to the empirical implications
of the work. Since the limit laws depend on a we should have an estimate of the
stability index in order to conduct these tests. Recently, McCulloch (1996a) finds
that estimating a’s with only moderate samples from the tails results in larger
estimate of a compared with the true value. He proposes a maximum-likelihood
method to estimate a with full sample which gives reliable estimates. Another
point that is important to remember is in the data different variables may have
different a. Unfortunately, there has not been any theoretical result established
with different a’s Caner (1997) provides a result for only iid case). Here the
conservative strategy may be to choose the minimum of the estimates so that we
can avoid size distortions. This strategy is easier to implement in the case of the
residual-based tests.

We can say that the results obtained by the trace and maximum eigenvalue
tests on the developing country data sets should be evaluated with caution.
Since we know by Koedijk and Kool (1992) and Akgiray et al. (1988) that foreign
exchange returns in the developing countries are governed by stable laws with
stability indexes which range between 1 and 1.5, if the existing studies have
found cointegration among variables in the system then this might be easily due
to assuming wrongly that a"2. Note that even the moderate size distortions
associated with a near 2 can change the results of the tests for cointegration. For
example if we reject the null of no cointegration in the borderline by assuming
finite variance errors, even though the true a is below 2,this result could be easily
due to the size distortion. So even in the US where the financial asset returns
may be governed by stable laws we should be careful in evaluating the results
from the likelihood-ratio-based tests. (McCulloch (1996a,b))
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