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The optical and digital implementations of general linear systems are costly. Through several examples we
show that either exact realizations or useful approximations of these systems may be implemented in the form
of repeated-filtering operations in consecutive fractional Fourier domains. These implementations are much
cheaper than direct implementations of general linear systems. Thus we may significantly decrease the
implementation costs of general linear systems with little or no decrease in performance by synthesizing them
with the proposed repeated-filtering method. © 1998 Optical Society of America [S0740-3232(98)01706-2]
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1. INTRODUCTION
Space and spatial-frequency domains are the special
cases of so-called fractional Fourier domains. They cor-
respond to the zeroth and first fractional Fourier do-
mains, respectively. Thus filtering in the space domain
is equivalent to filtering in the zeroth fractional domain.
Likewise, filtering in the spatial-frequency domain is
equivalent to filtering in the first fractional domain. In
Refs. 1–4 it is shown that the added degree of freedom af-
forded by the order parameter a allows improved perfor-
mance in a variety of signal processing applications.
Furthermore, since both the digital5 and optical6–9 imple-
mentations of the fractional Fourier transformation do
not lead to extra work compared with the conventional
Fourier transformation, these improvements come at no
cost. Two important applications of filtering in a single
fractional Fourier domain are discussed in Refs. 3 and 4.
In Ref. 3 optimal Wiener filtering has been generalized to
fractional Fourier domains, and in Ref. 4 desired mutual
intensity functions for a given input mutual intensity
have been synthesized by filtering in fractional Fourier
domains. Later, in Ref. 10, we generalized single-
fractional-Fourier-domain filtering to repeated filtering in
consecutive fractional Fourier domains and showed that
we may obtain a considerable improvement in signal res-
toration compared with that for single-domain filtering.
In Ref. 10 we also compared the repeated-filtering method
with the optimum linear estimation method in signal res-
toration and saw that use of the repeated-filtering method
may result in significant computational savings with little
or no sacrifice in performance.

Thus, in Ref. 10, repeated filtering in consecutive frac-
tional Fourier domains has been successfully applied to
signal restoration. In this paper we apply the repeated-
filtering method for the synthesis of general linear sys-
tems. In other words, we synthesize the linear systems
by introducing several multiplicative filters at different
consecutive fractional Fourier domains. The configura-
0740-3232/98/061647-11$15.00 ©
tion is shown in Fig. 1. Here we apply the first filter in
the zeroth fractional domain (the space domain), the sec-
ond filter in the a1th fractional domain, the third filter in
the (a1 1 a2)th fractional domain, and so on. Our aim is
to find the optimal filter profiles in the repeated-filtering
configuration in order to approximate a given linear sys-
tem.

To implement the configuration in Fig. 1 both digitally
and optically, we assume that the input and output sig-
nals are represented by one-dimensional arrays of size N.
These arrays may also represent AN 3 AN images.

Any linear system can be implemented optically with
conventional approaches such as matrix–vector-
multiplier architectures11 or multifacet architectures,12

but these are not space–bandwidth efficient.13 In other
words, to implement a given general linear transforma-
tion represented by an N 3 N matrix, it is necessary to
employ an optical system whose space–bandwidth prod-
uct is N2. However, the proposed repeated-filtering con-
figuration provides a space–bandwidth-efficient method
in the sense that the space–bandwidth product of the op-
tical system need be only of the order of N. Let us illus-
trate the concept of space–bandwidth efficiency with an
example. Assume that the maximum space–bandwidth
product of the optical elements that we are allowed to use
is 10,000. With these optical elements, when we apply
the inefficient conventional approaches, we can synthe-
size only the linear systems between input and output ar-
rays of size 100 (or 10 3 10 images). However, again
with the same optical elements, when we apply our
repeated-filtering method, we can this time synthesize
the linear systems between input and output arrays of
size 10,000 (or 100 3 100 images). The optical imple-
mentation cost of our space–bandwidth-efficient
repeated-filtering configuration depends highly on the
number of stages used. Here we desire to reduce the cost
by synthesizing linear transformation kernels with the
use of a moderate number of filters in the repeated-
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filtering configuration. As phase-only filters are some-
times preferred to those with arbitrary complex ampli-
tudes, we also consider the repeated-filtering problem
under this constraint.

In addition to their optical implementations, digital
implementations of general linear systems are also costly.
To implement a general linear transformation repre-
sented by an N 3 N matrix, we need O(N2) computation
time. However, the digital implementation of our
repeated-filtering configuration requires O(MN log N)
computation time (where M is the number of stages sand-
wiched between the filters). Thus our digital implemen-
tation cost also depends on the number of stages, and we
can again reduce the cost if we are able to obtain a good
approximation of the given linear system by using a mod-
erate number of filters.

We start the paper by giving a brief introduction to
fractional Fourier transformation in Section 2. Then, in
Section 3, we define the problem of approximating linear
systems by using repeated filtering in consecutive do-
mains and show that it can be reduced to a simple canoni-
cal form. In this section we also propose an iterative al-
gorithm to obtain the filter profiles in the repeated-
filtering configuration necessary for the synthesis of a
desired linear system. Then we modify the iterative al-
gorithm for phase-only filters. Last, in Section 4, we dis-
cuss the applications of the repeated-filtering method
through several examples.

2. FRACTIONAL FOURIER
TRANSFORMATION
The ath-order fractional Fourier transformation pa(u) of
p(u) is defined for 0 , uau , 2 as

pa~u ! 5 ~1 2 j cot f!1/2E
2`

`

exp@ jp~u2 cot f

2 2uu8 csc f 1 u82 cot f!# p~u8!du8, (1)

where f 5 ap/2. The kernel is defined separately for a
5 0 and a 5 62 as B0(u, u8) [ d (u 2 u8) and
B62(u, u8) [ d (u 1 u8), respectively.14 The definition
is easily extended outside the interval @22, 2# through
F 4i1aq̂ 5 F aq̂ for any integer i. Both u and u8 are di-
mensionless variables.

Some essential properties of the transformation are (1)
it is linear, (2) the first-order transformation (a 5 1) cor-
responds to the common Fourier transformation, and (3)
it is additive in index (F a1F a2q̂ 5 F a11a2q̂). Other
properties may be found in Refs. 1, 6, 7, and 14–17.

The fractional Fourier transformation kernel in Eq. (1)
has only a single free parameter, its fraction. By allow-
ing for the possibility of a residual quadratic-phase term
and a scale factor, we can generalize this kernel as8,18

Fig. 1. Configuration for repeated filtering in consecutive frac-
tional Fourier domains.
h~x, x8! 5 K exp~ jpx2/lR !expF jp

s2 S x2

M2 cot f

2 2
xx8

M
csc f 1 x82 cot f D G , (2)

where f 5 ap/2. This kernel maps a function p(x/s)
into K8 exp( jp x2/lR)pa(x/sM), where pa(•) is the
ath-order fractional Fourier transformation of p(•) and
K8 is a new constant. In Eq. (2) s is the unit in which x
and x8 are measured, M . 0 is referred to as the scale
factor associated with the transformation, and R is the
radius of the spherical surface on which the scaled frac-
tional Fourier transformation is observed. We see from
Eq. (2) that the pure mathematical form of the fractional
Fourier transformation in Eq. (1) is obtained when s
5 1, M 5 1, and R 5 `.

Axially symmetric quadratic-phase optical systems un-
der the standard approximations of Fourier optics19 are
closely related to the fractional Fourier trans-
formation.8,18 Thin lenses, arbitrary sections of free
space (under the Fresnel approximation), quadratic
graded-index media, and any combinations of these be-
long to the class of quadratic-phase systems. We charac-
terize the members of quadratic-phase systems
through8,20–23

pout~x ! 5 E
2`

`

Q~x, x8!p in~x8!dx8, (3a)

Q~x, x8! 5 Kq expF jp

s2 ~ax2 2 2bxx8 1 gx82!G , (3b)

where Kq is a complex constant and a, b, and g are real
constants. Thus, apart from the constant factor Kq ,
which has no effect on the resulting spatial distribution, a
member of the class of quadratic-phase systems is com-
pletely specified by the three parameters a, b, and g. We
deduce the close relationship between the quadratic-
phase systems and the fractional Fourier transformation
by comparing the kernels in Eqs. (2) and (3b). By setting
a 5 (cot f)/M 2 1 1/lR, b 5 (csc f)/M, and g 5 cot f, we
see that these two kernels are equivalent. Thus we con-
clude that any quadratic-phase system can be interpreted
as a fractional Fourier transformer.

Fractional Fourier transformation can be easily real-
ized optically in the same manner as the ordinary Fourier
transformation,6–9,24,25 which has led to many applica-
tions in optical signal processing.6–9,15,16,24,26,27 In Ref. 5
a fast algorithm that calculates the fractional Fourier
transformation in O(N log N ) time is also presented. As
this transformation is a generalization of the common
Fourier transformation, it becomes a natural candidate
for improving the results in applications in which the
Fourier transformation is widely used. Some of these ap-
plications are space-variant filtering and signal
detection,1–3,28,29 time-variant or space-variant multiplex-
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ing and data compression,1 correlation, matched filtering,
and pattern recognition,30,31 signal synthesis,32 radar,3

generalization of Wiener filtering to fractional Fourier
domains,2,3,33 and phase retrieval.34

3. SYNTHESIS OF A DESIRED LINEAR
TRANSFORMATION KERNEL
We characterize one-dimensional linear systems through

fout~u ! 5 E Td~u, u8!f in~u8!du8, (4)

and, similarly, two-dimensional ones through

fout~u, v ! 5 EE Td~u, v, u8, v8!f in~u8, v8!du8dv8,

(5)

where Td(u, u8) and Td(u, v, u8, v8) are the kernels of
the one-dimensional and two-dimensional linear systems,
respectively. We see from these equations that linear
systems are fully characterized by their associated trans-
formation kernels. Thus we will define our problem of
linear system synthesis as the synthesis of their associ-
ated transformation kernels. We will then show that the
problem reduces to a simple canonical form and also in-
troduce the discrete version of this canonical form. Then
we will propose a method for the solution of the problem.
At the end of this section, we will also consider the
repeated-filtering problem with phase-only filters.

A. Mathematical Definition of the Problem
We will first restrict ourselves to one-dimensional sys-
tems. The basic filtering configuration has already been
depicted in Fig. 1. As the transformation stages in this
figure, we will consider the more general three-parameter
definition given in Eq. (2) or, equivalently, the quadratic-
phase system defined in Eqs. (3). Filtering in a single
quadratic-phase system domain was discussed in Ref. 35.

Let there be M consecutive quadratic-phase systems.
We place M 1 1 filters such that each quadratic-phase
system becomes sandwiched between two filters. The
configuration is shown in Fig. 2(a). In this figure
h1(u), h2(u),..., hM11(u) are the filter functions, and
Ql(u, u8), l 5 1,..., M, are the quadratic-phase system

Fig. 2. Repeated filtering in consecutive (a) one-dimensional
(1D) quadratic-phase systems, (b) two-dimensional (2D)
quadratic-phase systems.
kernels defined in Eq. (3b). [Here we scale the variables
of all Ql(x, x8), l 5 1,..., M, with s. That is, we replace
x/s with u and x8/s with u8. Now u and u8 are dimen-
sionless variables.] In such a configuration fout(u) is re-
lated to f in(u8) through a linear transformation [as in Eq.
(4)] whose kernel is expressed as

T~u, u8! 5 EE ¯E du1¯duM21 h1~u8!

3 h2~u1!¯hM~uM21!hM11~u !

3 QM~u, uM21!QM21~uM21 ,

uM22!¯Q1~u1 , u8!. (6)

As can be seen, T(u, u8) has a specific form. We want to
choose the filters h1(u), h2(u),..., hM11(u) and the
quadratic-phase system parameters a1 , b1 , g1 ,..., aM ,
bM , gM such that T(u, u8) is as close as possible to the
desired kernel Td(u, u8). Quantitatively, we will try to
minimize the mean-square error (MSE), defined as

e 5 EE uTd~u, u8! 2 T~u, u8!u2 dudu8. (7)

Let us now define our repeated-filtering problem in two
dimensions. The fractional Fourier transformation can
be generalized to two dimensions in two ways. One of
them is the separable two-dimensional fractional Fourier
transformation, and its kernel can be easily formed as the
multiplication of two one-dimensional fractional Fourier
transformation kernels. The other definition of the two-
dimensional fractional Fourier transformation has a non-
separable form, which has been defined in Refs. 36 and
37. However, the form of the most general two-
dimensional quadratic-phase system includes both cases.
Thus we will consider such general quadratic-phase sys-
tems, whose kernel is given by

Qk~x, y, x8, y8! 5 Kk expF jp

s2 ~akx2 1 bk y2 1 ckx82

1 dky82 1 2ekxy 1 2 fkxx8!G
3 expF jp

s2 ~2gkxy8 1 2hk yx8

1 2mk yy8 1 2nkx8y8!G , (8)

where Kk is complex and all the remaining parameters
(i.e., ak , bk ,..., nk) are real. The two-dimensional ver-
sion of the configuration is shown in Fig. 2(b). This time
fout(u, v) is related to f in(u8, v8) through a linear trans-
formation [as in Eq. (5)] whose kernel is expressed as

T~u, v, u8v8! 5 EE ¯EE du1dv1¯duM21dvM21

3 h1~u8, v8!h2~u1 , v1!¯hM11~u, v !

3 QM~u, v, uM21 ,

vM21!¯Q1~u1 , v1 , u8, v8!. (9)
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[As in the one-dimensional case, we also scale the vari-
ables of all Ql(x, y, x8, y8), l 5 1, ..., M, with s and ob-
tain the dimensionless variables u, v, u8, and v8.] The
error is now defined as

e 5 EEEE uTd~u, v, u8, v8!

2 T~u, v, u8, v8!u2 dudvdu8dv8. (10)

Again our purpose is to choose the filters and the param-
eters of the two-dimensional quadratic-phase system ker-
nels in order to minimize this error, provided that
T(u, v, u8, v8) is in the form given in Eq. (9).

B. Reduction of the Problem to Its Canonical Form
Let us first consider the one-dimensional problem. It is
possible to show that the configuration in Fig. 2(a) can be
converted to that in Fig. 3(a) by appropriately choosing
the hatted filter functions ĥ1(u), ĥ2(u),..., ĥM11(u) and
the real constant c. Thus we see that it is possible to
cast the quadratic-phase-system-based repeated-filtering
problems into an equivalent but simpler form involving
only ordinary Fourier transforms. A weaker form of this
result was stated in Refs. 38 and 39.

Let us now look at the two-dimensional version of the
problem. This time it is possible to show that the con-
figuration in Fig. 2(b) can be converted to that in Fig. 3(b)
by appropriately choosing the hatted filter functions
ĥ1(u, v), ĥ2(u, v),..., ĥM11(u, v) and the real constants
p, r, s, and t. Thus again the quadratic-phase-system-
based repeated-filtering problem is reduced to repeated
filtering in consecutive ordinary Fourier stages.

The demonstration of these results is straightforward
but involves an amount of algebra. Starting with the as-
sociated kernel expressions in Eqs. (6) and (9), we see
that, by changing the integration variables properly and
absorbing the quadratic exponential terms in the filter
functions, we can convert these kernel expressions into
the ones whose block diagrams are shown in Fig. 3.

Since fractional Fourier transformations are a special
case of quadratic-phase systems, repeated filtering in con-
secutive fractional Fourier domains can also be reduced to
repeated filtering in consecutive conventional Fourier do-
mains (in both one-dimensional and two-dimensional sys-

Fig. 3. Canonical forms for (a) the 1D repeated-filtering configu-
ration in Fig. 2(a), (b) the 2D repeated-filtering configuration in
Fig. 2(b).
tems). This does not, however, reduce the conceptual
and practical importance of the fractional Fourier trans-
formation (or of quadratic-phase systems). First of all,
optical and digital implementations of the fractional Fou-
rier transformation (or quadratic-phase systems) are not
more difficult than those of the ordinary Fourier transfor-
mation. Thus filtering in different domains does not im-
ply extra work. Second, the implementation of necessary
filters may be easier at a specific domain. For example,
in chirp elimination1 the filters necessary in fractional do-
mains are simply the mask filters. However, in the space
and spatial frequency domains the filters would have to
be complex functions. Furthermore, the accuracy needed
to implement a filter in one domain may be less than that
needed in others. Thus repeated filtering in consecutive
fractional Fourier domains may offer better noise redun-
dancy and may be more robust. In conclusion, the
equivalence of repeated filtering in any consecutive
quadratic-phase system domains should be used to in-
crease the number of possible candidates for a specific
physical realization. From now on we will concentrate
on the configurations in Fig. 3 and also ignore the scale
factor c at the output in Fig. 3(a), or the parameters p, r,
s, and t at the output in Fig. 3(b), since these can be eas-
ily handled. The filter profiles in Figs. 2(a) and 2(b) can
be easily recovered in terms of the ones in Figs. 3(a) and
3(b), respectively.

C. Discretization of the Problem
Let us first look at the one-dimensional repeated-filtering
configuration in Fig. 3(a). We assume that the maximum
value for the space–bandwidth products of the signals
is N. Then we sample f in(u), fout(u), ĥ1(u), ĥ2(u),...,
ĥM11(u) to obtain the vectors f̄ in , f̄out , h̄1 , h̄2 ,..., h̄M11 ,
each of which has N elements, and the matrices T̂ and
T̂d , which have N 3 N elements. We can now relate f̄out

to f̄ in through

f̄out 5 T̂ f̄ in , (11a)

T̂ 5 L̂M11F̂L̂MF̂¯F̂L̂2F̂L̂1 , (11b)

where L̂k is an N 3 N diagonal matrix with its diagonal
elements equal to the components of h̄k and F̂ is an N
3 N discrete Fourier transformation matrix. Thus, for
one-dimensional systems, we can state our repeated-
filtering problem so as to choose the vectors h̄1 , h̄2 ,...,
h̄M11 to minimize the error function

e 5 (
k51

N

(
l51

N

u~T̂d!kl 2 T̂klu2. (12)

This error function is the discrete version of the error
function expressed in Eq. (7). The matrix T̂d corresponds
to the kernel of the linear transformation in Eq. (4).

Let us now consider the two-dimensional case in Fig.
3(b). Here we again assume that the maximum value
for the space–bandwidth products of the signals is
N. Then we sample f in(u, u8), fout(u, u8), ĥ1(u, u8),
ĥ2(u, u8),..., ĥM11(u, u8) to obtain the corresponding
N 3 N square matrices f̂ in , f̂out , ĥ1 , ĥ2 ,..., ĥM11 and
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the four-dimensional tensors T̃ and T̃d . Similarly, we
now relate f̂out to f̂ in through

f̂out 5 T̃ f̂ in , (13a)

T̃ 5 L̃M11F̃2DL̃MF̃2D¯F̃2DL̃2 F̃2D L̃1 , (13b)

where the four-dimensional tensor T̃ represents the ker-
nel of the linear transformation between the two-
dimensional input and output signals, F̃2D represents the
conventional two-dimensional discrete Fourier transfor-
mation, and L̃k is related to the kth filter through

~L̃k!lmjk 5 H ~ ĥk!lm if l 5 j and m 5 k

0 otherwise
.

(14)

We define the multiplication of a four-dimensional tensor
with a two-dimensional matrix in Eqs. (13) as

~K̃f̂ !uv 5 (
l

(
m

K̃uvlm f̂lm (15)

and the multiplication of two four-dimensional tensors as

~K̃L̃ !uvjk 5 (
l

(
m

K̃uvlmL̃lmjk . (16)

Our problem is once again to choose the matrices ĥ1 ,
ĥ2 ,..., ĥM11 to minimize the error function

e 5 (
u51

N

(
v51

N

(
j51

N

(
k51

N

u~T̃d!uvjk 2 T̃uvjku2. (17)

This time the error function corresponds to the discrete
version of the error function expressed in Eq. (10). The
four-dimensional tensor T̃d corresponds to the kernel of
the linear transformation in Eq. (5).

D. Solution of the Problem
Let us again first consider the one-dimensional case. We
see from Eq. (11b) that T̂ depends on the filters in a
highly nonlinear manner. Thus we cannot obtain the
closed forms of the filter functions that minimize the error
expression in Eq. (12). For this reason we obtain the fil-
ters by an iterative algorithm. We first initialize all the
filters to some convenient values. Then, starting with
the first filter, we assume that all the filter profiles apart
from h̄k are known, and we calculate the optimum value
for the kth filter in terms of the remaining filters. We
then pass on to the (k 1 1)th filter. When we reach
k 5 M 1 1 and obtain the optimum profile for h̄M11 , we
set k 5 1 and start again with the first filter. We con-
tinue this until the iteration converges.

An important step of the algorithm is to calculate the
kth filter in terms of the other filters so as to bring T̂ as
close to T̂d as possible. Defining Â and B̂ as

Â 5 L̂M11F̂¯F̂L̂k11F̂, (18)

B̂ 5 F̂L̂k21F̂¯F̂L̂1 , (19)

we can rewrite T̂ in Eq. (11b) in the form

T̂ 5 ÂL̂ kB̂. (20)
We now show how to find the filter h̄k (whose elements
are simply the diagonal elements of L̂k) that minimizes
the error e in Eq. (12). We express the mth component of
the kth filter as

hkm 5 hkm
r 1 jhkm

i . (21)

Then we differentiate the error with respect to the real
and imaginary parts of these components and equate the
resulting expressions to zero:

de

dhkm
r 5 0,

de

dhkm
i 5 0, m 5 1, 2,..., N. (22)

If we use the definition of e in Eq. (12), then, after some
algebra, these two conditions imply that

D̂h̄k 5 c̄. (23)

In this equation

D̂ 5 ~ÂHÂ ! ^ ~B̂B̂H!T, (24)

where the operator ^ corresponds to elementwise multi-
plication of two matrices, and we get the elements of c̄
through

c̄ l 5 ~ÂHT̂dB̂H!ll . (25)

[In Eqs. (24) and (25), ÂH and ÂT correspond to the Her-
mitian transpose and the ordinary transpose of Â, respec-
tively.] Thus, as evident from Eq. (23), we have N linear
equations with N unknowns, from which we can solve for
the filter coefficients. As a result, given all the filter pro-
files apart from h̄k , we know how to obtain the filter h̄k .
Once this subroutine is established, the iteration proceeds
as described in the first paragraph of this subsection.

The corresponding subroutine for the two-dimensional
case is established similarly. Now we define Ã and B̃ as

Ã 5 L̃M11F̃2D¯F̃2DL̃k11F̃2D , (26)

B̃ 5 F̃2DL̃k21F̃2D¯F̃2DL̃1 (27)

and rewrite T̃ in Eq. (13b) as

T̃ 5 ÃL̃kB̃. (28)

After some algebra we then obtain

D̃ĥk 5 ĉ. (29)

In this equation

D̃ 5 ~ÃHÃ ! ^ ~B̃B̃H!T, (30)

and we get the elements of ĉ through

ĉ lm 5 ~ÃHT̃dB̃H!lmlm . (31)

[ ÃH is the Hermitian transpose of the four-dimensional
tensor Ã. That is, the (u, v, l, m)th element of ÃH is
equal to the conjugate of the (l, m, u, v)th element of Ã.
Similarly, the (u, v, l, m)th element of ÃT is equal to the
(l, m, u, v)th element of Ã.] Thus, as evident from Eq.
(29), we have N2 linear equations with N2 unknowns,
from which we can solve for the filter coefficients. As a
result, given all the filter profiles apart from ĥk , we know
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how to obtain the filter ĥk , and the iteration proceeds as
described in the first paragraph of this subsection.

The iterative algorithm that we propose always con-
verges to a minimum point. However, because of the
nonlinear nature of the problem, the algorithm may not,
and in general will not, converge to the global minimum
but rather will converge to a local minimum. In practice,
we ran the algorithm for several different initial starting
points and chose the run resulting in the smallest MSE.
We did not overly concern ourselves with determining the
global minimum, since the values that we obtained al-
ready represented satisfactory performance figures.
Thus our results represent achievable, but not necessarily
the best possible, solutions. Better solutions may be ob-
tained by using more sophisticated optimization algo-
rithms.

E. Kernel Synthesis with Repeated Phase-Only
Filtering
As phase-only filters are sometimes preferred to those
with arbitrary complex amplitudes, we will also consider
the repeated-filtering problem under this constraint.
More specifically, we will restrict the filters in Fig. 3 to be
phase-only filters.

For the solution of the repeated phase-only filtering
problem, the discussion of Subsection 3.D applies identi-
cally until Eq. (23). Now, since the filter coefficients are
restricted to being phase only, D̂ in that equation reduces
to the identity matrix, so that

~ h̄k!l 5 ~ÂHT̂dB̂H!ll . (32)

Once we obtain h̄k in terms of the other filters by using
this equation, we then force it to be a phase-only filter by
dividing each of its element by its magnitude, i.e.,

~ h̄k!l

u~ h̄k!lu
→ ~ h̄k!l , l, m 5 1, 2,..., N. (33)

The iteration then proceeds as in the first paragraph of
Subsection 3.D. Similarly, in the two-dimensional case
ĥk is obtained as

~ ĥk!lm 5 ~ÃHT̃dB̃H!lmlm (34)

and is forced to be a phase-only filter according to

~ ĥk!lm

u~ ĥk!lmu
→ ~ ĥk!lm , l, m 5 1, 2,..., N. (35)

Note that in the phase-only case there are no equations to
be solved, unlike the general case, where N equations in
N unknowns were solved for the one-dimensional case
and N2 equations in N2 unknowns were solved for the
two-dimensional case. Thus fewer computations are
needed in the phase-only case.

The phase-only case is, of course, less flexible than the
general case but may nevertheless be found satisfactory
under a variety of circumstances.

4. APPLICATIONS
We see from Eqs. (4) and (5) that linear systems are com-
pletely characterized by their transformation kernels.
The matrix T̂d or the four-dimensional tensor T̃d can be
considered as the sampled versions of the kernels
Td(u, u8) and Td(u, v, u8, v8), so that the products f̄out

5 T̂d f̄ in and f̂out 5 T̃d f̂ in represent a discrete approxima-
tion of the continuous linear systems given in Eqs. (4) and
(5). Alternatively, these products may represent a priori
discrete linear systems or simply matrix–vector or
tensor–matrix products that we wish to evaluate. Thus
we will discuss the applications of our repeated-filtering
method from two broad perspectives. One of them is
about the implementations of linear systems, and the
other is about matrix algebra operations.

A. Implementations of General Linear Systems
In some applications we may want to implement a desired
linear system in order to observe a certain effect on the
input. However, the optical and digital implementations
of general linear systems are costly. If we can obtain sat-
isfactory approximations to a given linear system by us-
ing a moderate number of filters in our repeated-filtering
configuration, we can considerably reduce the implemen-
tation costs. We will consider two examples in which
this is possible.

1. Signal Restoration
Sometimes we may want to restore a desired signal that
is degraded by a known system and/or by a noise term.
With this aim in mind, we search for an appropriate op-
erator that minimizes the effect of degradation and noise.
This operator strongly depends on the observation model,
the design criteria used, and the prior knowledge avail-
able about the desired signal and noise. We assume a
signal observation model of the form

ȳ 5 Ĥx̄ 1 n̄. (36)

In this equation ȳ, x̄, and n̄ are the column vectors rep-
resenting the output, input, and noise processes, respec-
tively, and Ĥ is the matrix characterizing the degradation
process. We further assume that the correlation matri-
ces of the signal and the noise are known and that the
noise is independent of the signal x̄ and has zero mean.
Our aim is to minimize the MSE, defined as

s2 5
1
N

E@~ x̄ 2 x̄e!
H~ x̄ 2 x̄e!#. (37)

There are now two basic approaches at our disposal.

1. We may restrict the estimate to be of the form

x̄e 5 @L̂M11F̂L̂MF̂¯F̂L̂2F̂L̂1# ȳ (38)
and seek the diagonal matrices L̂M11 , L̂M ,..., L̂2 , L̂1 (or
the filters h̄M11 , h̄M ,..., h̄2 , h̄1) that minimize the MSE.
This approach was proposed in Ref. 10 and was applied to
three important degradation models. These were the ef-
fect of multiple random-phase plates (which may model
surface imperfections in optical systems), atmospheric
turbulence, and nonconstant-velocity moving-camera
blur. In all of the examples in Ref. 10, it was seen that
when the proposed approach was compared with single-
domain filtering methods, significant improvements in
performance were obtained with only modest increases in
processing time. The method of that paper was also com-
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pared with the optimum linear estimation method, and it
was seen that its use might result in significant computa-
tional savings while still yielding acceptable performance.

2. Alternatively, we can first obtain the optimum lin-
ear estimation operator that gives the smallest MSE
among all linear operators:

x̄e 5 Ĝopt ȳ. (39)
As discussed above, direct implementation of this opera-
tor is costly. Here we will consider approximating Ĝopt
with our repeated-filtering configuration. To illustrate
this concept, we will approximately synthesize the opti-
mum linear estimation kernel that corresponds to space-
varying atmospheric turbulence for purposes of illustra-
tion. The system degradation that corresponds to space-
varying atmospheric turbulence is the result of
inhomogeneous statistical properties of the turbulent
media.40 The one-dimensional kernel is given by

h~x ; x8! 5 exp@2pa 2~x!~x 2 x8!2#, (40)
where a(x) is a function of x characterizing the distribu-
tion of the physical parameters in the turbulent atmo-
sphere. It is convenient to employ piecewise-constant
approximation. Here we consider seven intervals num-
bered by k 5 1, 2,..., 7 such that a(x) 5 a0 1 bk , where
a0 5 0.1 and bk ! a0 . We obtain the corresponding op-
timum linear estimation matrix Ĝopt and illustrate the
performance of our repeated-filtering configuration by us-
ing the normalized error en , defined as

en 5 e/iT̂di2, (41)
where e is defined in Eq. (12) and T̂d 5 Ĝopt . With N
5 128 and initializing all the diagonal matrices in Eq.
(11b) to the identity matrix, we obtain the normalized-
error values through the iterative algorithm proposed in
Section 3. The en values for the sinusoidal-type input
signal (i.e., the desired signal is a sinusoidal whose fre-
quency, phase, and amplitude are random) corrupted
with no additive noise are plotted in Fig. 4 for different
numbers of filters.

It is important to emphasize that the method that we
propose is general and not dependent on any of the spe-
cific assumptions made in this problem. Typically, linear

Fig. 4. Normalized error en versus number of filters in the
repeated-filtering configuration for the signal restoration ex-
ample.
restoration, recovery, reconstruction, and many other sig-
nal and image processing problems can be thought to con-
sist of two distinct processes. The first of these is to ob-
tain the optimal linear restoration, reconstruction,
enhancement, etc., operator. The second is to implement
this operator. We deal with this second part of the prob-
lem regardless of how and under which assumptions the
optimal linear operator to be implemented is obtained.
Thus the above example is only one of a large class of ap-
plications that may benefit from the method.

2. Moment Generation
This time we will apply the repeated-filtering configura-
tion for generating the moments of signals. The mo-
ments of a signal are important in several signal process-
ing applications such as feature extraction.40,41

Let f in(x) > 0 be a real bounded function that is zero
outside a finite interval. Without loss of generality it is
assumed in Ref. 40 that f in(x) is nonzero only in the in-
terval 21 , x , 1. Then the ith-order moment of f in(x)
is defined as

Mi 5 E
21

1

f in~x !xi dx. (42)

The discrete form of this equation is

M̄ 5 T̂d f̄ in , (43)

where f̄ in is the column vector corresponding to the
sampled version of f in(x), the ith row of the matrix T̂d
corresponds to the sampled version of the function xi21,
and the ith element of the vector M̄ is equal to the
(i 2 1)th moment of the input signal (i.e., the first ele-
ment of M̄ is equal to the zeroth moment, the second ele-
ment of M̄ is equal to the first moment, and so on).

Thus all of the moments of f̄ in can be calculated simul-
taneously by multiplying it with the matrix T̂d . We will
synthesize this matrix with the repeated-filtering
method. We again show our results in terms of the nor-
malized error en defined in Eq. (41). With N 5 128 [and
starting the iterative algorithm proposed in Subsection
3.D with all the diagonal matrices in Eq. (11b) initialized
to the identity matrix], we obtain the plot in Fig. 5. In
this plot, for example with only two filters, en 5 0.737.
This value reduces to 0.038 with four filters, and it fur-
ther reduces to 0.009 with five filters.

Reduction of the MSE may not always translate into a
better output. For this reason, in Fig. 6 we present an
illustrative example that helps us to visualize the perfor-
mance of our repeated-filtering method (which minimizes
the MSE) more clearly. In Fig. 6(b) we show the moment
space representation (i.e., all 128 moments, starting with
the zeroth moment going up to the 127th moment) of the
sine function shown in Fig. 6(a). Then, for this specific
moment generation problem, we calculate the optimum
(in terms of MSE criteria) single filter and the repeated-
filtering configuration with M 5 5 filters and show their
approximation for the moment space representation of
the sine function in Figs. 6(c) and 6(d), respectively. We
see from these plots that use of M 5 5 filters is clearly su-
perior to use of only one filter, and in some situations the
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configuration with M 5 5 filters can be considered as suf-
ficient for approximating the desired linear system that
generates moment space representations of signals.

We can similarly generate the moments of an image.
Let f in(x, y) > 0 be a real bounded function that is zero
outside a finite region. We assume this time that
f in(x, y) is nonzero only in the region defined by 21 , x
, 1 and 21 , y , 1. Then the (i, l)th-order moment
of f in(x, y) is defined as

Mi,l 5 E
21

1 E
21

1

f in~x, y !xiyl dxdy. (44)

Similar to that of the one-dimensional case, the discrete
form of this equation is

M̂ 5 T̃d f̂ in , (45)

where f̂ in is the matrix corresponding to the sampled ver-
sion of f in(x, y), the (i, l)th matrix of the four-

Fig. 5. Same as Fig. 4, but for the moment generation example.

Fig. 6. (a) Sinusoidal function, (b) moment space representation
of the sine function in (a), (c) approximation of the moment space
representation in (b) obtained with one filter (M 5 1), (d) ap-
proximation of the moment space representation in (b) obtained
with five filters (M 5 5).
dimensional tensor T̃d corresponds to the sampled ver-
sion of the function xi21yl21, and the (i, l)th element of
the vector M̄ is equal to the (i 2 1, l 2 1)th moment of
f̂ in . The desired four-dimensional tensor is separable.
That is, the elements of T̃d can be written as the multi-
plication of the elements of the two matrices T̂dx and T̂dy .
These matrices are of the same form as that of the matrix
appearing in Eq. (43). Thus, once the optimal filter pro-
files are obtained for the one-dimensional case, those for
the two-dimensional case can be immediately synthe-
sized.

Various optical setups for calculating the moments of
an image have been suggested. However, these typically
calculate only one moment at a time.41 In other words, to
compute, for example, 20 moments of an image, each time
we have to modify the setup (i.e., we have to change the
spatial filter in the setup accordingly) and repeat the ex-
periment 20 times (or we have to employ 20 different op-
tical setups operating in parallel, or we have to divide the
aperture into 20 different channels). However, with our
method we can simultaneously calculate the 128 3 128
moments without modifying the setup. Thus the full mo-
ment space representation of images is obtained at once.
The system consists of a moderate number of stages and
requires an optical space–bandwidth product equal to the
number of pixels in the image (128 3 128 in the above ex-
ample). This is in contrast to matrix–vector-multiplier
or multifacet-type architectures, which both require opti-
cal space–bandwidth products equal to the square of the
number of pixels.

B. Matrix Algebra Operations
In Subsection 4.A we assumed that f̄out 5 T̂d f̄ in or f̂out

5 T̃d f̂ in represent the discrete approximations of con-
tinuous linear systems. We will now interpret these as
representing an a priori discrete linear system or simply
a matrix–vector product that we wish to compute. We
will again try to obtain satisfactory approximations to the
desired matrices or tensors by using a moderate number
of filters in our repeated-filtering configuration. Thus we
will be able to realize these matrix–vector products more
efficiently.

1. Synthesis of the Hadamard Transformation
The Hadamard transformation is one of the standard uni-
tary transformations in signal processing. Its definition
and properties may be found in Ref. 40. Here we synthe-
size this transformation with our repeated-filtering
method, and for N 5 128 we find the normalized error en
in Eq. (41) to be 0.01 with five filters. [We obtain this
value through the iterative algorithm when the diagonal
matrices in Eq. (11b) are initialized to the identity ma-
trix.]

When we restrict ourselves to phase-only filters, we ob-
tain en 5 0.214 with seven filters and en 5 0.028 with 11
filters. We further decrease en to 0.005 with 15 filters.
This shows that if we do not restrict the filter type, the
same error can be achieved with a smaller number of fil-
ters. The cost of the repeated-filtering configuration
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depends on both the filter type and the number of filters
used. Given the relevant cost functions, one can deter-
mine whether a smaller number of arbitrary filters or a
relatively larger number of phase-only filters results in
overall less cost.

It may have been possible to come up with an optical
setup with a comparable or even a fewer number of stages
through ingenuity and invention. Our approach pro-
vides, on the other hand, a systematic way of obtaining
such an implementation. This would be of great utility,
especially in those cases where the structure of the trans-
formation matrix is not simple, or even when we are con-
fronted with a matrix supplied in numerical form for
which no easily discernible structure is apparent.

2. Synthesis of Optical Interconnection Architectures
Here we will consider the problem of realizing one-to-one
interconnection patterns between N input and N output
channels13,42 and will try to implement these interconnec-
tion patterns with repeated phase-only filtering. There
are many different ways of achieving this aim. Some of
these have been compared in Refs. 13 and 42, and the con-
clusion is reached that the multistage architectures based
on regular patterns such as the perfect shuffle or the Ban-
yan are most favorable. The repeated-filtering-based ap-
proach that we will discuss is essentially analogous to
multistage architectures. However, not only does our
method provide a systematic way of designing such sys-
tems, but the implementation of such systems may be
more convenient and/or cheaper, since the present ap-
proach is based on the use of conventional spatial filters
rather than micro-optical elements.

Any one-to-one interconnection architecture between N
input and N output channels is characterized by its asso-
ciated N 3 N permutation matrix. In such a matrix ev-
ery row and column has only one nonzero element, which
is equal to unity. We synthesize the interconnection ar-
chitectures by synthesizing their associated permutation
matrices.

First, we consider the reverse perfect shuffle architec-
ture shown in Fig. 7. We find that this interconnection
pattern can be synthesized exactly (en 5 0) by using six
phase-only filters in five consecutive domains. [The coef-
ficients of the filters in Eq. (11b) were initialized to
exp( jp/25).] We have also considered a large number of
interconnection patterns that do not exhibit any obvious
regularity. In all cases these patterns could be realized

Fig. 7. Reverse perfect shuffle interconnection architecture.
with a moderate number of filters. (We do not explicitly
include specific examples of these, to avoid taking up
space by specifying the interconnection pattern.) Con-
ventional multistage permutation network architectures
can realize arbitrary permutations in O(log N) stages.
Extensive numerical experimentation on many different
arbitrary permutation matrices indicates that the pro-
posed method is also able to realize these in a similar
number of stages. Although it is not difficult to achieve
T̂ 5 T̂d with a moderate number of stages, in most cases
it is possible to get away with an even smaller number of
stages, since, as a result of the digital nature of such sys-
tems, a considerable deviation of T̂ from T̂d can be toler-
ated while still retaining an acceptable eye pattern.

Let us also consider the two-dimensional case. In the
event that the four-dimensional tensor mapping the input
to the output is separable, the elements of T̃d can be writ-
ten as the multiplication of the elements of the two ma-
trices T̂dx and T̂dy [i.e., (T̃d)uvlm 5 (T̂dx)ul(T̂dy)vm for all
u, v, l, and m]. In this case the matrices T̂dx and T̂dy
correspond to the N 3 N matrices appearing in the one-
dimensional case, and the two-dimensional mapping can
be realized in a relatively straightforward manner. In-
stead of the separable case, we have considered the direct
implementation of the more general nonseparable case.
For the sake of illustration, we assume a nonseparable
mapping, shown in Fig. 8. This time e in Eq. (41) corre-
sponds to the one defined in Eq. (17), and T̂d stands for
the four-dimensional kernel of the interconnection archi-
tecture in Fig. 8. In this example seven phase-only fil-
ters were sufficient to obtain an exact representation
(en 5 0). [The coefficients of the filters in Eq. (13b) were
initialized to unity.] If one is willing to tolerate greater
errors, the number of filters needed may be reduced.

5. DISCUSSION
In Section 4 we interpreted the discrete equations f̄out

5 T̂d f̄ in and f̂out 5 T̃d f̂ in in two different ways. How-
ever, these interpretations are not different from each
other. Any matrix or tensor in matrix algebra can be
considered as representing the kernel of a linear system,

Fig. 8. 64 points are mapped to 64 points. The points lying in
the first quadrant are mapped to the points in the third quad-
rant, which are symmetric to them with respect to the origin.
The points lying in the fourth quadrant are similarly mapped to
points in the second quadrant. However, the points lying in the
second quadrant are mapped to points in the first quadrant,
which are symmetric to them with respect to the y axis. The
points in the third quadrant are likewise mapped to the fourth
quadrant.



1656 J. Opt. Soc. Am. A/Vol. 15, No. 6 /June 1998 M. F. Erden and H. M. Ozaktas
and any discrete form of the kernel of a linear system can
be interpreted as a specific matrix or tensor in matrix al-
gebra.

In this paper what we essentially did was to synthesize
a given matrix or a four-dimensional tensor with our
repeated-filtering method. The synthesized matrices or
tensors may find applications in both linear system imple-
mentations and matrix algebra operations. We have
tried to obtain satisfactory approximations to the desired
matrices or tensors by using a moderate number of filters
in our repeated-filtering configuration. Thus we were
able to implement more efficiently either the linear sys-
tems corresponding to these matrices or tensors, or the
matrix-vector multiplications. The examples that we
presented should be considered merely as illustrations;
doubtless the method can be applied to a wide range of
situations.

While implementing the repeated-filtering configura-
tion optically, apart from the efficient realization of the
desired system, we also have to take into account the limi-
tations associated with the practical realization of several
optical fractional Fourier filters. The cumulative effects
of diffraction, scattering, and attenuation will ultimately
limit the possible number of stages. It is for this reason
that we have emphasized systems involving only moder-
ate numbers of stages in our numerical examples, al-
though from an algorithmic viewpoint the method is ap-
plicable for larger values of M as well. In a digital
implementation of the repeated-filtering configuration,
we do not have such restrictions.

The cost of the system, either digital or optical, in-
creases with the number of stages. On the other hand, a
greater number of filters allows a better approximation to
the desired linear system or matrix. This is the basic
performance–cost trade-off in repeated filtering. The
plots in Figs. 4 and 5 can also be interpreted as typical
performance–cost trade-off figures. We can choose the
most attractive performance–cost point on the curve by
selecting the number of stages appropriately. For in-
stance, the intrinsic accuracy of analog optical systems is
limited to approximately a dynamic range of 100 or so.
Given this accuracy, it is pointless to try to implement the
desired linear system by using a scheme that could in
principle accommodate much greater accuracies (such as
a conventional matrix–vector-multiplier architecture).
Furthermore, when we are implementing digital optical
interconnection architectures, even greater inaccuracies
can be tolerated while still maintaining an acceptable eye
pattern. Thus the proposed method allows one to reduce
the cost of implementing such systems.

Naturally, the number of filters required to attain a
given accuracy will be smaller for matrices or tensors ex-
hibiting greater regularity or more subtle forms of intrin-
sic structure. The regularity or the structure inherent in
a matrix may be exploited on a case-by-case basis through
ingenuity or invention. Most fast algorithms are ob-
tained in this manner. In contrast, our method provides
a systematic way of obtaining an efficient implementation
that does not require ingenuity on a case-by-case basis.
This approach would be especially useful when the regu-
larity or the structure of the matrix is not expressed sym-
bolically or when we are presented with a specific matrix
in numerical form that does not have any evident regu-
larity or structure.

6. CONCLUSION
In this paper we have formulated the problem of approxi-
mating linear systems by using repeated filtering in con-
secutive domains. The utility of the method is illustrated
by several examples.

In the first example we restore signals degraded by
space-variant turbulence by synthesizing the correspond-
ing optimum linear estimator with our repeated-filtering
method. In the second example we propose an efficient
way of generating the moments of signals. In the third
one we synthesize the Hadamard transformation, and, fi-
nally, in the fourth example we consider the implementa-
tion of optical permutation architectures.

In all of the examples, we saw that we could obtain use-
ful approximations of the desired linear transformations
with our repeated-filtering configuration by using a mod-
erate number of filters. The cost of implementing these
systems (optically or digitally) is much less than the cost
of implementing general linear systems. We also saw
that excellent approximations are also possible with
phase-only filters.

The basic method proposed can be applied to many dif-
ferent applications where one seeks to efficiently realize a
linear system or a matrix–vector product. If the matrix
or the tensor at hand has some kind of intrinsic structure,
we may obtain better approximations with a smaller
number of filters. In such cases computing the matrix–
vector product digitally in O(N2) time or realizing it with
a conventional matrix–vector-product architecture re-
quiring the space–bandwidth product N2 is clearly ineffi-
cient. This is one case where the proposed repeated-
filtering method would be useful, allowing one to exploit
the intrinsic structure as much as possible in a systematic
manner.

A distinct circumstance in which the method may be
beneficial, even when such an intrinsic structure does not
exist, is that in which we wish to compute the matrix–
vector product or realize the linear system with limited
accuracy. This may be the case when some other compo-
nent or stage of the overall system limits the accuracy to
a lower value anyway, when we are transmitting digital
signals, or simply when the application demands limited
accuracy.

If the approximation obtained with a given number of
filters is not sufficient, we must increase the number of
filters to obtain a better approximation. Thus the pro-
posed method allows us to trade off efficiency and accu-
racy.
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