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3-D Motion Estimation of Rigid Objects for
Video Coding Applications Using an Improved

Iterative Version of the E-Matrix Method
A. Aydın Alatan and Levent Onural,Senior Member, IEEE

Abstract—As an alternative to current two-dimensional (2-D)
motion models, a robust three-dimensional (3-D) motion esti-
mation method is proposed to be utilized in object-based video
coding applications. Since the popular E-matrix method is well
known for its susceptibility to input errors, a performance in-
dicator, which tests the validity of the estimated 3-D motion
parameters both explicitly and implicitly, is defined. This indica-
tor is utilized within the RANSAC method to obtain a robust set
of 2-D motion correspondences which leads to better 3-D motion
parameters for each object. The experimental results support the
superiority of the proposed method over direct application of the
E-matrix method.

Index Terms—E-matrix method, object-based motion analysis,
object-based video coding, RANSAC, 3-D motion and structure
estimation.

I. INTRODUCTION

T HREE-DIMENSIONAL (3-D) motion models are alter-
natives to their two-dimensional (2-D) counterparts for

modeling motions of the objects in the scene between frames.
However, most of the 3-D motion estimation algorithms suffer
from computational complexity and input errors [1]–[3]. The
linear E-matrix method [3] is a fast but noise-susceptible
algorithm. In order to improve error immunity, some nonlinear
versions are also proposed [1], [2], [4], even though there is
a significant increase in computation time.

Based on the E-matrix method, we propose a novel algo-
rithm that estimates the 3-D motion of the rigid objects in the
scene in a robust manner. The aim is to utilize this algorithm
in object-based video encoders to estimate and describe the
object motions between frames.

II. DESCRIPTION OF THEPROPOSEDALGORITHM

In order to define objects, a segmentation step is necessary
prior to 3-D motion estimation. Usually, the segmentation is
based on 2-D dense motion vectors. This dense set of 2-D
motion vectors for each object usually contains correct 2-
D correspondences as well as some outliers, i.e., incorrect
matches. Moreover, some irrelevant motion vectors of the
neighboring objects might also be included in the object
motion vector set due to incorrect segmentation. Hence, rather
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than finding robust 2-D correspondences, which are needed
for the E-matrix computation, between frames using another
algorithm, a robust selection mechanism over the existing 2-
D dense motion vectors is proposed. The proposed selection
mechanism is iterative and a performance indicator is tried to
be maximized by the iterations.

A. The Performance Indicator

Since there are a number of error sources that affect
the performance of the E-matrix method, a few parameters
are defined to indicate whether the estimated 3-D motion
parameters are valid or not. The parameters are defined based
on the following reasonings: First of all, the error between
the original (input) and projected 2-D motion vectors must
approach to zero for a valid 3-D motion estimate set. Second,
assuming that the E-matrix method is applied, the eigenvalues
of must be equal to [4]. In such a case,
the matrix implicitly contain a valid rotation (orthonormal
of first kind) matrix and a translation vector. Third, since all
the objects are assumed to move in front of the image plane,
they should all have positive depths [4]. Taking the above
ideas into account, five parameters are defined below to test
the performance of the 3-D motion estimates.

1) 2 where

2 is the horizontal component for the 2-D projection
of the estimated 3-D motion and is the horizontal
component for the input 2-D motion estimates for the
Object

2) 2 where

2 is the vertical component for the 2-D projection

of the estimated 3-D motion and is the vertical
component for the input 2-D motion estimates for the
Object

3) where is the smallest eigenvalue (usually
have zero value) of matrix.

4) where and
are the nonzero eigenvalues of matrix.

5) where and are the
number of negative depth values for tested points at
time and respectively.

Ideally, all these parameters should be equal to zero for the
correct rotation and translation estimates. Consequently, the
sum of these five test parameters, which can be denoted
as should also approach to zero for valid motion
parameters. A new parameter, is defined to be
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and it should be equal to one for the correct 3-D
motion parameters. is chosen as theperformance indicator;
according to the value of the estimation results can be
“trusted” or not.

B. Random Sample Consensus

Random sample consensus (RANSAC) is a paradigm for
fitting a model to experimental data [5]. It is capable of inter-
preting and smoothing data containing a significant percentage
of gross errors. In RANSAC, assuming that a given procedure
requires at least data points to determine the model pa-
rameters and there are points in the initial experimental
data set a random subset of the data points with

points is selected to construct a model. For the initial-
point data set, the percentage of the points, which fits to the
constructed model within an error tolerance, is checked using
a threshold. If the percentage is less than this threshold, then a
new random subset is used until the error tolerance is satisfied
or the maximum number of iterations is reached.

Application of RANSAC to E-matrix method is straight-
forward. The E-matrix method requires at least eight corre-
spondences to estimate the E-matrix and there are dense 2-D
motion fields for each object. Additionally, the error tolerance
can be determined using the test parametersand which
test the validity of the model to the data, as it is suggested
by the original RANSAC approach [5]. However, RANSAC
can further be improved by using the parameterinstead.
While the test parameters check the fit of the model to
all the input data, is necessary to understand whether the
randomly selected subset is a “good” choice or not. Data due
to incorrect segmentation can be identified using

C. The Algorithm

The overall algorithm can be summarized as below.

For each moving object, do the following.
1) Select a random subset from 2-D motion

vectors.
2) Find E-matrix, 3-D motion and

corresponding P.
3) If (P Thresholdfor P)

exit with current 3-D motion
else,

If (P maximumP so far)
save P and 3-D motion.

If maximum # of iterations has reached
exit with saved 3-D motion.

goto step 1.

Hence, using the algorithm above, a rotation matrix and a
translation vector are found for each object in a robust manner.

III. EXPERIMENTAL RESULTS

A. The Effect of Different Error Sources to the
Conventional E-Matrix Method

The simulations on 3-D motion estimation are conducted
in three phases. In the first phase, artificial data is used to
test performance of the conventional E-matrix method [3]

TABLE I
SIMULATIONS ON E-MATRIX METHOD USING ARTIFICIAL DATA

TABLE II
SIMULATIONS ON 3-D MOTION PARAMETER ESTIMATION USING

THE CONVENTIONAL E-MATRIX METHOD USING 130TH AND

135TH FRAMES OF MOTHER AND DAUGHTER SEQUENCE

by examining the effect of the image resolution (Step 1.a
resolution: 176 144; Step 1.b resolution: 1760 1440),
matching errors (Step 2: adding Gaussian noise on top of
motion vectors so that they are distorted 10 percent on the
average), focal length error (Step 3: distorting the focal length
with 10 percent) and combined effect of these three error
sources (Step 4). Such an experiment gives an idea about the
upper limit of the performance of this algorithm. The results
are given in Table I.

The results of Step 1 show that there is some amount of
error due to quantization noise, as expected [2]. The utilization
of frames with high spatial resolutions might improve the
performance of the conventional E-matrix algorithm. Unfor-
tunately, in very low bit rate video coding applications it
may not be possible to use frames with high resolutions.
On the other hand, the E-matrix method is very susceptible
to correspondence errors according to the test parameters of
Step 2. The focal length should also be selected or estimated
carefully, since the distortion on focal length might also
degrade the results considerably. As expected, the combined
effect of these three error sources is much more severe and
such a situation is also highly expected in natural sequences.

B. The Performance of the Conventional
E-Matrix Method with Real Data

In the second phase of the experiments, the conventional E-
matrix method [3] is applied to real data. Some QCIF frames
(176 144) from the “mother and daughter” sequence are
used. It is assumed that the focal length of the camera is
equal to 250 pixels (This approximately corresponds to 50 mm
focal length of a 35 mm camera). The optical-axis) axis is
assumed to pass through the center of these images and pixels
are assumed as squares. The object segmentation and 2-D
motion are estimated simultaneously using a Markov random
field-based (MRF-based) method [6] and given as inputs to the
3-D motion estimation step. For each object, all the 2-D motion
vectors are used to estimate the E-matrix in the least squares
sense. The input data for the second phase is shown in Fig. 1.

Table II shows that the performance indicator, is quite
low, which is an indication of a poor performance. The projec-
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(a) (b) (c)

Fig. 1. Original, (a) 130th, and (b) 135th frames of the “mother and daughter” sequence. (c) Input segmentation.

(a) (b) (c)

Fig. 2. Needlegram representations for (a) the input 2-D motion. Projection of the estimated 3-D motion and structure using (b) conventional E-matrix
and (c) the proposed method.

tion of estimated 3-D motion and structure parameters, which
is observed in Fig. 2(b), supports that the low value of

C. Performance of the Proposed Method with Real Data

In the third phase of the experiments, the inputs, which
are shown in Fig. 1, are utilized again. The performance of
the proposed algorithm given in Section II-C is tested. The
maximum number of iterations is chosen as whereas
the threshold for which determines the acceptability of
the obtained motion parameters, is selected as 0.5. The test
parameters are tabulated in Table III.

There is a significant decrease with respect to the corre-
sponding parameters in Table II for each object. The projection
of the 3-D motion, which is estimated using the proposed
scheme, is shown in Fig. 2(c) and it shows the superiority
of the proposed scheme over the conventional method [2].

The computation time of the method based on RANSAC is
at most times worse than conventional E-matrix method.
However, according to the 2-D motion estimates and the
related threshold, this value can be much more smaller, i.e.,
convergence can be obtained in fewer iterations.

IV. CONCLUSIONS

Compared to the conventional E-matrix method, which uses
all the available 2-D motion vectors without any selection, the
proposed scheme performs better. Moreover, there is no need
to find some feature matches explicitly. As the obtained test
parameters and the needlegrams indicate, the estimated 3-D
motion parameters are acceptable.

The proposed performance indicator is a good parameter to
qualify the performance of the results of the E-matrix method
for different inputs. This indicator not only compares the

TABLE III
SIMULATIONS ON 3-D MOTION PARAMETER ESTIMATION

USING THE PROPOSEDMETHOD USING 130TH AND

135TH FRAMES OF MOTHER AND DAUGHTER SEQUENCE

results with inputs explicitly and it also measures
the performance implicitly and

Although the proposed method is superior to the conven-
tional E-matrix method, the overall computation time increases
while the performance of the 3-D motion estimation step im-
proves with this new scheme. Nevertheless, the linear E-matrix
method is not a time-consuming algorithm by itself, and the to-
tal execution time of the proposed algorithm is still acceptable.
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