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Abstract—Derivation of the closed-form Green’s functions
and analytical evaluation of the method of moments (MOM)
matrix entries have improved the computational efficiency of
the significantly in the analysis of printed geometries. With this
background in mind, an extension of this efficient numerical tech-
nique is to incorporate an optimization algorithm and to assess its
potential as a computer-aided design (CAD) tool. Therefore, we
have employed the Gradient search and Genetic algorithms, in
conjunction with the electromagnetic (EM) simulation technique,
to a number of representative examples of interest.

Index Terms—Green’s functions, method of moments, printed
antennas.

I. INTRODUCTION

I N computer-aided design (CAD) of microstrip integrated
circuits and antennas, it is of paramount importance to

have access to an analysis program that is computationally
efficient, though not at the expense of sacrificing the accuracy
to any significance. This is because the analysis of microwave
integrated circuits and printed antennas can be very time-
consuming, and this can lead to an extremely inefficient design
procedure, which typically calls for the circuit to be analyzed
at each iteration of the design cycle. The method of moments
(MoM), when applicable, is perhaps the most efficient and
accurate technique for analyzing microstrip structures. How-
ever, it can still be computationally expensive if it employs
a conventional approach based on the use of the Sommerfeld
integrals. This has prompted us to develop certain efficient
schemes that circumvent the evaluation of the Sommerfeld
integrals and employ closed-form expressions, not only for
the Green’s functions but for the elements of the method of
moments matrix as well. The derivation of the closed-form
Green’s functions has been detailed in [1], the expressions
for the matrix elements have been presented in [2] and it has
been demonstrated that the matrix fill time can be significantly
reduced via the use of the tactics described therein. The
procedure applied to obtain the port parameters of a printed
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structure and the comparison of the numerical accuracy of the
computationally efficient MoM with a commercially available
software program are given in [3].

The focus of the present paper is on interactive design
or optimization rather than on just analysis. Obviously, the
more efficient the analysis, the greater is the speed with
which we can carry out the design procedure. However,
there are other strategies besides speeding up the analysis
procedure that can help us in our goal to develop a useful
CAD design tool. In this paper, we will discuss some of
these strategies and will also present a number of optimization
procedures for designing microwave integrated circuits and
printed antennas.

One simple strategy for speeding up the computation is to
recognize that in interactive design or optimization, typically
the entire geometry of the circuit or antenna is not changed at
each iteration, but that only a small part of it is either deleted
or augmented. Thus, at each iteration step, only a few rows
and columns are added to, or deleted from, the matrix system
utilized in the previous iteration step. In this type of situation,
the order recursive Gaussian elimination (ORGE) method [4],
developed to improve the computational efficiency of solving
the matrix equations for modified geometries, can be utilized
very efficiently. This method constructs the solution of the
modified matrix equation by utilizing the one generated in the
previous iteration and, hence, eliminates the need to repeatedly
solve the entire matrix equation. Since the computation time is
significantly reduced by following this procedure, it becomes
possible to make a real-time assessment of the effects caused
by the modifications in the geometry that are introduced
in the design process to improve the performance of the
system.

With the incorporation of the schemes for improving the
matrix fill and solution times, the MoM becomes a very
efficient analysis technique for use in conjunction with an
optimization procedure. It should be recognized, however,
that different optimization algorithms may be employed for
different applications to fit the characteristics of the prob-
lem [5], [6]. For instance, in one of the applications to
be discussed in this paper, genetic algorithms (GA’s) will
be used to optimize the geometrical properties of a printed
circuit configuration. In this method, the shape of the metallic
etch that needs to be optimized is divided into subregions
(cells) and GA’s are applied to determine whether or not
a particular cell is to be metallized. In a different type of
application, the dimensions of the geometry are optimized
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by using the directional (gradient) search algorithms, such as
the steepest descent or the conjugate gradient methods. The
uniform meshing is not well suited for this type of application,
and the dimensions of one or two subintervals are regarded as
the variables to be optimized to meet the desired performance
specifications.

The computationally efficient MoM is summarized in
Section II, the descriptions of the problems to be optimized
and a brief overview of the optimization algorithms are
presented in Section III. The results are discussed in
Section IV and some conclusions are drawn on the basis
of these results in Section V.

II. BRIEF OVERVIEW ON THE EFFICIENT MOM

Application of the spatial-domain MoM to the solution of
mixed-potential integral equation results in a matrix equation
whose entries contain two-dimensional (2-D) integrals over
finite domains. These integrals involve spatial-domain vector
and scalar type Green’s functions which can be obtained
from their spectral-domain counterparts via Hankel transfor-
mation which is computationally inefficient due to the highly
oscillatory and slow convergent nature of the kernel of the
transformation. Hence, the matrix-fill time in the application
of the spatial-domain MoM is mainly determined by two
processes: 1) calculation of the spatial-domain Green’s func-
tions and 2) evaluation of the 2-D integrals. The problems
pertaining to the former process are eliminated by the use
of the closed-form Green’s functions method in which the
spectral-domain Green’s functions are approximated by com-
plex exponentials and their spatial-domain counterparts are
cast into a form of complex exponentials, via the Sommerfeld
identity. The robustness and efficiency of the closed-form
Green’s functions method are improved by using a two-level
approximation scheme as detailed in [1]. After approximating
the spectral-domain Green’s functions, the spatial domain
Green’s functions can be cast into a form of

(1)

where is a complex distance and is
the wave number in the source medium.

The 2-D integrals involved in the calculation of the matrix
entries, which is the second process that contributes to the
matrix-fill time, can be performed analytically by using the
following procedure which is described here on a typical
matrix entry as

(2)

where , denotes inner product, and , are the
testing and basis functions, respectively. The testing and
basis functions are chosen to be rooftop functions which are
triangular in the longitudinal direction and constant in the
transverse direction. The first inner product of (2) is written

explicitly as

(3)

By changing the order of integration and substituting the
closed-form Green’s functions given in (1), the inner product
takes the form of

(4)

where denotes correlation function, which can be evaluated
analytically. It has been shown that the 2-D integrals in (4)
can be evaluated analytically by replacing the exponential term
with its Taylor’s series expansion whose center of expansion is
chosen to be the mid point of each integration region [2]. The
elimination of the numerical integrals reduces the computation
time approximately by a factor of 40.

Although, the matrix fill time has been significantly reduced
with this approach, there is still possibility for improve-
ment. This is recognized from the fact that the Taylor series
expansion is applied for every exponential function in the
closed-form Green’s function expression and the analytic
integration is performed for every exponential. To avoid this
repetition, the overall summation is approximated in the least
square sense by a polynomial as

(5)

where . As the resultant polynomial is a
function only of , the analytical integrations are performed
only once. Since the polynomial approximation cannot be
applied for the matrix entries which contain singularities, it
is used in the calculation of all the matrix entries except for
the self and adjacent terms. The improvement obtained in the
matrix fill time is approximately 10–15 times as compared to
the Taylor’s series approximation method.

III. OPTIMIZATION PROBLEMS AND ALGORITHMS

In the design of printed structures, the shape of the geometry
plays an important role in changing the characteristics of
the structure. For example, for a patch antenna, a circular
polarization characteristic can be obtained either by placing
stubs at the proper locations [see Fig. 1(a)] or by inserting
a diagonal slot at the center of the antenna, as shown in
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(a) (b)

(c) (d)

Fig. 1. Different microstrip patch antenna configurations.

[Fig. 1(b)]. In addition, the antenna can be tuned by using
an inset-fed configuration as in [Fig. 1(c)], or the bandwidth
can be increased by adding parasitic elements [Fig. 1(d)].

We observe that for all of these types of applications, the
entire geometry is not modified but only a small portion of it
is either deleted from, or added to, the geometry to obtain a
desired specification. Consequently, it is unnecessary to solve
the entire problem at each iteration during the optimization
process. Instead, a better strategy is to select a region to
be optimized at the beginning of the process and designate
the remainder of the structure, which will remain unaltered,
as the “main structure.” Next, the entire structure is divided
into cells, the corresponding spatial-domain MoM matrix
is filled by using the rooftop basis and testing functions,
and the matrix thus computed is stored. The matrix entries
corresponding to the main structure are selected from the
stored matrix, and the lower upper (LU) decomposed form
of the matrix is obtained by using the Gaussian elimination
method. Next, the matrix entries corresponding to the “region
to be modified” are selected and appended to the end of the LU
decomposed matrix. Finally, the contribution of the modified
region is calculated by using the ORGE method. The strategy
outlined above enables us to observe the effects of any change
in the modified region in a very efficient manner without
recalculating the matrix entries at each iteration and without
solving the matrix equation from the beginning.

For the type of design problems described above, it is
quite convenient to use GA’s for optimization. In GA’s, the
parameters that are going to be optimized are encoded in a
binary form by using a string of “0’s” and “1’s”. The encoding
process of this problem is very easy as the code of each cell
in the modified region is set equal to one if it is metallized
and zero otherwise. The length of the string resulting from

the above coding procedure is equal to the number of cells
in the modified region, which is typically quite small. GA’s
are well suited for problems where one desires to find the
optimal solution among a large number of admissible ones.
For the present example, let us consider the case where the
modified region is divided into cells. Then, since
each cell can take on the value of either one or zero, there are

possible solutions to the problem at hand.
Therefore, in addition to the discreteness of the problem also
due to the large search space, GA’s truly excel when applied
to this type of optimization problems.

Let us now turn to a different type of application where the
shape of the printed structure is known, but it is desired to
optimize the dimensions of the structure. For instance, to tune
an inset-fed patch antenna, one may wish to optimize the depth
of the notch and the length of the antenna. The use of a uniform
meshing for this problem leads to a relatively large number
of unknowns if one desires to observe the effects of small
changes in the dimensions of the structure. Hence, to eliminate
this problem, we use nonuniform meshing and optimize the
width of the nonuniform sections. In the inset-fed antenna
problem, the widths of the two sections (Fig. 2, Sections 1
and 2) are chosen to be the variables, and are optimized to
obtain the desired input impedance level. In this problem,
the shaded region shown in Fig. 2 is the main structure and
the corresponding MoM matrix entries are calculated and the
LU decomposed form of the matrix is stored before initiating
the optimization algorithm. For these type of problems, the
directional search type optimization algorithms are preferred,
since the problem is simple enough to be solved with a
traditional gradient search algorithm. In addition, the number
of unknowns in this problem are small, and there is no need
to encode the real unknowns.
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Fig. 2. Nonuniform meshing with variable widthsx1 andx2.

We will now proceed to present a brief overview of the
aforementioned optimization algorithms that would help the
reader in making the appropriate choice for the algorithm that
is best suited for the problem at hand.

A. Directional (Gradient) Search Algorithms

The objective of an optimization problem is to minimize
(or maximize) a cost function subject to certain constraints.
In a directional search optimization, this can be achieved via
the use of an iterative algorithm comprised of two steps,
namely the “direction finding” and the “one-dimensional (1-
D) search,” In the first step, an “improving” direction (descent
direction for the minimization problem) is determined at the
iteration point, and this is followed by a 1-D search where
the next iteration point is calculated by finding a minimum
in the “improving” direction, which has been determined
earlier.

Among the different types of directional search algorithms,
the most common are the steepest descent (SD), Newton’s, the
conjugate gradient (CG), and quasi-Newton methods [7].

Generally, SD is the first choice in many of the applications
because of its simplicity and globally convergent behavior.
However, in many other applications, requiring a large num-
ber of variables, CG and quasi-Newton methods, which are
also globally convergent, are prefered because of their better
performance especially around optimum points. In this study,
since the number of variables is only two (the width of the
two variable sections), the SD method is prefered.

The most commonly used 1-D search algorithms, are the
equal interval search, golden section search, dichotomous
search, Fibonacci search methods, and the parabolic fit tech-
nique [8]. If it is desired to obtain a fixed interval of uncertainty
with a minimum number of function evaluations, the Fibonacci
search algorithm is the preferred choice.

B. Genetic Algorithms

GA’s [9] and simulated annealing [10] techniques, which
are stochastic rather than deterministic in nature, provide
two alternatives to traditional optimization schemes, and they
employ directed random searches to locate optimal solutions
in complex landscapes. Since the traditional optimization
algorithms deal with the local properties of the iteration
points, they may stagnate at a local extremum. In contrast,

the GA’s make use of a random search in addition to a
systematic search and this prevents these methods from getting
trapped into a local minimum or maximum. In fact, it has
been proven that under certain conditions the GA’s converge
to a global optimum, which, of course, is highly desirable
[11].

GA’s are structured to solve real-world problems by imitat-
ing the processes occuring in natural evolution. The encoding
mechanism maps each solution to a unique binary string. A
set of strings constitutes a population and it evolves from
generation to generation through the application of genetic
operations, the most common of which are reproduction,
crossover, and mutation.

Reproduction is based on the principle of survival of the
fittest chromosome. Each string is associated with a fitness
value that reflects its goodness relative to other members of the
population. These fitness values are used to bias the selection
of the chromosomes so that those with the best evaluations
tend to reproduce more often than those whose evaluations
are less superior. Several selection schemes are available, and
among them, proportionate selection and the roulette wheel
selection algorithms [12] are most frequently used.

The main operator to work on the parents is crossover,
which is applied with a certain probability called crossover rate

. The recombination of the genetic material is simulated
through the crossover mechanism by exchanging portions of
chromosome strings between parents.

Mutation helps to regenerate the lost genetic material. It is
performed by randomly changing one bit of the chromosome
from zero to one or vice versa. The mutation rate is
the probability that a bit will be flipped. Mutation can be
considered as the random search part of the algorithm and
it enhances the possibility of finding a better solution.

In the application of GA’s most of the steps can be per-
formed in a variety of ways (i.e., selection schemes) and there
are many parameters ( , population size) that require
careful tuning. Therefore, one might need to try different
combinations of possible choices of parameters and possible
ways of applying genetic operators to get the best out of
GA for every problem. In this study the main motivation for
choosing the GA’s is not to use an optimization algorithm that
converges to the global optimum but to use a procedure which
fits the discrete nature of the problem.

IV. RESULTS AND DISCUSSIONS

To illustrate applications of some of the optimization tech-
niques mentioned above, as a first example the SD method
with a Fibonacci search was used to optimize the dimen-
sions of an inset-fed patch antenna. For typical patch widths

, the input impedance of the antenna is so high
that it is necessary to feed the antenna with a very narrow
transmission line to decrease the mismatch between the an-
tenna and the feed network. To eliminate this problem, the
antenna feed point should be shifted toward the center of
the patch via the insertion of notches. An inset-fed patch
antenna with dimensions mm mm was analyzed
at different frequencies for different notch depths and the
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Fig. 3. Input impedance of an inset-fed patch antenna (7.62 mm� 7.62 mm)
for different notch depths.�r = 2:33, d = 1:5748 mm. Circle: present
method; Square: numerical results in [14]; Triangle: experimental results
in[14]. fstart = 11:3 GHz, fstop = 11:7 GHz, fstep = 0:1 GHz.

results were compared with the calculated and measured
values presented in [14], as shown in Fig. 3. The permittivity
and the thickness of the substrate are 2.33 and 1.5748 mm,
respectively.

From Fig. 3, it can be observed that the antenna should be
operated at 11.6 GHz, to have a good matching condition.
However, to obtain a good operation at 11.0 GHz, the depth
of the notch and the length of the antenna need to be
optimized by making the widths of Section I and Section II
(shown in Fig. 2) variable. For this example, the algorithm
was found to converge within ten iterations and, at each
iteration, the number of function evaluation is nine (five for
Fibonacci search, two for the derivative with respect to,
and two for the derivative with respect to ). As a result
of optimization, a perfect match at 11 GHz was achieved
when the length of the patch and the depth of the notch
were chosen to be 8.12 mm and 1.88 mm, respectively. The
input impedance variation around the resonance is given in
Fig. 4.

In the next example, the GA was employed in the design
of a circularly polarized antenna by removing some portions
of the metallization from the opposite corners of a square
patch antenna. In center-fed square patch antennas, circular
polarization can be obtained by exciting two diagonal modes in
such a way that the resonant frequency of one of them becomes
slightly higher than that of the other. This can be achieved by
disturbing the field variation of one of the diagonal modes [15].
This disturbance can be obtained either by placing a diagonal
slot at the center or by perturbing the opposite corners of the
patch. The frequency of operation should be adjusted such that
the two diagonal modes are excited in phase quadrature.

With this background, we made use of the GA’s to obtain
the best possible axial ratio. A center-fed square patch antenna
with parameters, , cm,

cm was divided into 17 17 cells. The states of
the cells, which are located at the opposite
corners of the antenna (shown in Fig. 5) were chosen as

Fig. 4. Input impedance of the inset-fed patch antenna withL = 8:12 mm,
W = 7:62 mm, notch depth= 1:88 mm.

Fig. 5. Optimized region in the application of GA.

the parameters to be optimized. The state of a cell is one
if it is metallized, zero if it is empty, and the length of a
chromosome is 50. For these choices, the initial number of
basis functions corresponding to the main structure is 467
and there are an additional 100 basis functions in the region
to be modified. Central processing unit (CPU) of Sparc 20
workstation times for the evaluation of the matrix entries and
the solution of matrix equations are given in Table I. From
the table it can be observed that the cost function evaluation
of a single chromosome requires at most 34.75 s (the CPU
time is obtained for the case that all the modified region is
metallized).

In the application of GA’s, as the population gets larger
there will be more chance to explore the different regions of
the search space. However, in spite of all the acceleration
techniques described herein, the evaluation time for the cost
function is not very short, so there is a compromise in the
choice of the population size. Consequently, before fixing the
population size, several simulations were performed to obtain
the table shown in Table II, which shows the average number
of iterations required to find the optimum solution for different
population sizes.
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TABLE I
CPU TIMES

TABLE II
AVERAGE NUMBER OF ITERATIONS FORDIFFERENT POPULATION SIZES

Fig. 6. Circularly polarized antenna geometry with 17� 17 divisions.

It is seen that although the convergence is obtained more
rapidly for a large population, the population with size 40
gives the best performance as far as the total number of cost
function evaluations are concerned. Due to these observations,
the population size was chosen to be 40 and the first generation
was initialized randomly.

The cost function, which is the axial ratio of the antenna,
takes a value between one and infinity. A fitness function was
used to assign a higher fitness value to the chromosome with
a lower axial ratio. In addition to that, fitness scaling was
employed to avoid the premature convergence which may arise
due to the large range space of the cost function.

In general, high crossover and mutation rates are pref-
ered for small populations to increase the variety of the
chromosomes within the population. Indeed, the crossover
rate is somewhat equivalent to the ratio of the number of
offsprings reproduced in one generation to the population size.
As our population size was small, the number of offsprings
was chosen to be equal to the population size. Parents were
selected by using the roulette-wheel selection scheme and they

Fig. 7. Measured polarization pattern of the antenna shown in Fig. 6.

Fig. 8. Circularly polarized antenna geometry with 21� 21 divisions.

were used to reproduce 40 offsprings by applying a two-point
crossover process.

In most of the GA applications, the mutation rate is not
fixed throughout the simulation but it is adjusted according to
the convergence behavior of the problem. In our application,
using the crossover operation alone always provided good
convergence rate and this could not be improved any further
with the use of different mutation rates. Hence, the mutation
rate was fixed to 0.003. Then, the elitist model was applied by
retaining the chromosome with the best fitness value for the
next generation, and by choosing the other 39 chromosomes
randomly among the parents and the children. The initial
generation was replaced by the new generation and the same
steps were carried out until the required error criterion was
obtained. At the end, the chromosome with the best fitness
value was returned as the output. The best result at 1.48 GHz
axial ratio was obtained for the geometry shown

in Fig. 6. This antenna was fabricated and we measured the
polarization pattern of it by using the well-known procedure
in which the test antenna is rotated opposite to a linearly
polarized antenna and the signal level on the test antenna is
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Fig. 9. Measured polarization pattern of the antenna shown in Fig. 8.

plotted with respect to the position of the linearly polarized
one. The measured polarization pattern is plotted in Fig. 7,
which shows that the measured axial ratio is 2.5 dB .
The discrepancy between the measured and calculated axial
ratio values is most probably due to the insufficient gridding
of the structure. As the designed structure contains some
discontinuities, a finer gridding is required to fit the abrupt
variation of the current distribution. Due to these observations,
the same design procedure was repeated by dividing the
antenna into 21 21 cells. The best resultaxial ratio
was obtained for the geometry shown in Fig. 8. The measured
polarization pattern is given in Fig. 9, which shows that a good
agreement between the calculated (0.748 dB) and measured
(1.0 dB) axial ratio values was obtained. However, the best
axial ratio in the measurement was obtained at 1.455 GHz,
slightly different from the design frequency, which could be at-
tributed to a small variation in the permittivity of the dielectric
substrate.

V. CONCLUSION

Recently, it was demonstrated that the use of closed-form
Green’s functions, and the analytical evaluation of the MoM
matrix entries lead to an accurate EM simulation tool for
the analysis of microwave circuits and antennas. A nat-
ural extension of the above effort is to incorporate this
analysis technique into an optimization algorithm and to
assess its potential as a CAD tool. With this background in
mind, we have employed the gradient search and genetic
algorithms, in conjunction with the EM simulation tech-
nique, to a number of representative examples of interest.
The gradient search algorithm has been employed for the
optimization of the input impedance of an inset-fed mi-
crostrip antenna, while the genetic algorithm has been used
to design a circularly polarized microstrip antenna. We have
pointed out that, for best results, one should choose the

optimization algorithm that is well adapted for the specific
problem at hand and that not all the optimization algorithms
are equally well suited for each and every design prob-
lem.
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