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costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.
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INT. J. ELECTRONICS, 1997, VOL. 82, NO. 6, 641± 654

An efficient program for analysis of interconnect circuits

MUSTAFA SUNGUR² , A. SUAT EKINCI²
and ABDULLAH ATALAR²

A circuit simulation program using generalized asymptotic waveform evaluation
techniques is introduced. The program analyses circuits with lumped and
distributed components. It computes the moments at a few frequency points, and
extracts the coefficients of an approximating rational by matching the moments
simultaneously. The accuracy of the results and the execution times are compared
with conventional simulators using several examples, indicating that our simulator
provides a speed improvement without a significant loss of accuracy.

1. Introduction

Accurate simulation of VLSI circuits for the large circuit sizes of today is diffi-
cult. Shrinking device sizes and increasing operating speeds require faster circuit
simulation programs which do not trade execution time for accuracy. Spice-like
programs with high accuracy are widely used for intensive verification and design
of VLSI circuits, but for reducing execution times, new circuit solving algorithms are
needed. While Spice-like simulators predict the behaviour of the circuit at a large
number of discrete points both in frequency and time domain analysis, most of the
new simulators employ faster algorithms to solve the circuit matrix at a lower num-
ber of points.

The asymptotic waveform evaluation (AWE) technique (Pillage and Rohrer
1990) is used in some new simulators in order to reduce the execution time of the
simulation. Instead of solving the circuit at many discretized points, AWE seeks to
capture the behaviour by approximating the dominant poles of the circuit with a
lower order model. The reduced order model is matched to the moments of the linear
circuit, which are obtained from the Taylor series expansion of the circuit response
around s = 0. Since the information carried by the moments is accurate in the low
frequency region, the AWE technique will be efficient in extracting the low frequency
poles of the circuit. At relatively higher frequencies the AWE technique becomes
inefficient and several methods are proposed to improve AWE’s accuracy. AWE is
extended to handle distributed elements (Tang and Nakhla 1992, Bracken et al.
1992) in order to analyse circuits that cannot be modelled by only lumped compo-
nents. Also, Laurent series expansion (s = ¥ ) is added to improve the accuracy of
transient analysis in the vicinity of t = 0 (Huang et al. 1990). Stability of approx-
imations is improved by manipulating the moment matching techniques (Anastakis
et al. 1993). A complex frequency hopping technique is introduced in order to find all
the dominant poles of the circuit in a frequency range of interest (Chiprout and
Nakhla 1995). The PVL algorithm, PadeÂ Approximation via the Lanczos Process is
introduced to provide high numerical stability of PadeÂ approximants (Feldmann and
Freund 1995).
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Recently, a multi-point PadeÂ approximation was proposed (CË elik et al. 1995) for
analysis of interconnect networks with transmission lines, not only in low frequencies
but also in high frequency regions. Apart from the moments at s = 0 (DC), this
method uses shifted moments as well. This property provides the necessary informa-
tion about all the frequency range. This approach requires the solution of the circuit
matrix at several frequency points that are determined by the complex frequency
hopping technique.

In this paper, we present the results of a simulation program implementing the
multi-point PadeÂ approximation. The program is implemented in C++ language
running on UNIX and it uses the moment matching algorithms proposed earlier
(CË elik et al. 1995). We compare the run-times as well as the accuracies with conven-
tional simulators. In the next three sections, we introduce the theoretical background
of the work. Beginning from § 5, we present the simulations and computational
results on several examples.

2. Order reduction

Consider a linear network which contains linear lumped components, and arbi-
trary linear subnetworks. The subnetworks may contain distributed elements. The
MNA matrix equations of the network can be written as

W
d
dt

z(t) + Hz(t) + å
Ns

k= 1

DkIk = bu(t) (1)

where z(t) is the node voltage vector including independent voltage source currents
and linear inductor currents, W is the matrix for frequency dependent lumped
components, H is the matrix for frequency independent lumped components, b is
the vector for independent sources, Dk is the selector matrix that maps Ik , the
currents entering subnetworks, and u(t) is the input function. For the subnetworks
we have

Ak Vk + BkIk = 0 for k = 1, . . . ,Ns (2)
Writing the Laplace transform of the equations we obtain

sW + H D1 D2 . . . DNs

A1D
T
1 B1 0 . . . 0

A2D
T
2 0 B2 . . . 0

..

. ..
. ..

. . .
.

. .
. ..

.

ANsD
T
Ns 0 0 . . . BNs

é
êêêêêêêë

ùúúúúúúú
û

Z(s)
I1(s)
I2(s)

..

.

INs
(s)

é
êêêêêë

ùúúúúú
û

=

b
0
0
..
.

0

é
êêêêë

ùúúúú
û

U(s) (3)

We call the MNA matrix T(s), the vector of unknowns x(s), and the excitation
vector w

T (s)x(s) = w (4)
Let the output be a linear combination of the unknowns

H(s) = dTx(s) (5)
If the elements of the system matrix T (s) are polynomials, then the solution of the
system of (4) and (5) will give
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H(s) = å ais
i

å bjs j

In methods using order reduction, the aim is to ® nd an approximate Ĥ(s), which has
similar frequency characteristics as the original circuit

Ĥ(s) =
b0 + b1s + ´´´+ bq- 1s

q- 1

1 + a1s + ´´´+ aqsq

3. Frequency shifted moments

The system response vector x(s) = T - 1(s)w, can be written in a Taylor series
form around s = sk

x(s) = å
¥

i= 0
xki(s - sk)i

where

xki =

¶ i

¶ si [T - 1]ïïï
ï s= sk

i!
w

xk0 = T - 1(sk)w

xki = - T - 1(sk) å
i

r= 1

T (r)(sk)xk(i- r)

r!

üïïïïïïïïï
ýïïïïïïïïïþ

(6)

where T (r) stands for the rth derivative of the T matrix with respect to s. The details
of these equations are described elsewhere (CË elik et al. 1995, Tang and Nakhla 1992).
The frequency shifted moments of the output are obtained from the moment vectors
xki using the linear equation mki = dTxki. So we obtain

H(s) = mk0 + mk1(s - sk) + mk2(s - sk)2 + ´´´

4. Multi-point moment matching

In moment matching methods, the coefficients bi and ai satisfying (7) are found

Ĥ(s) =
b0 + b1s + ´´´+ bq- 1s

q- 1

1 + a1s + ´´´+ aqsq

= mk0 + mk1(s - sk) + mk2(s - sk)2 + ´´´+ mk(nk- 1)(s - sk)nk- 1 (7)

where nk is the number of moments calculated at s = sk .
In the AWE method, moments evaluated at sk = 0 and sk = ¥ are used to

calculate the unknown coefficients. The Markov parameters are the derivative
moments and they increase the accuracy of the transient simulation (Huang et al.
1990).

The complex frequency hopping (CFH) technique uses the fact that when the
series is truncated the function is well-approximated only around the expansion
point (Chiprout and Nakhla 1994). For each expansion point the moments are
matched to a ratio of polynomials, the poles and residues are found. The poles
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D

ow
nl

oa
de

d 
by

 [
B

ilk
en

t U
ni

ve
rs

ity
] 

at
 0

6:
02

 2
6 

Fe
br

ua
ry

 2
01

3 



are marked accurate if they are obtained at two different expansion points. The poles
closer to the corresponding expansion points are then marked accurate. The
obtained poles and corresponding residues define the system transfer function
uniquely.

In the following section, we describe the method for calculation of the
coefficients bi and ai directly from the moments.

4.1. Calculation of coefficients
For each expansion point s = sk we have the following equation

b0 + b1s + ´´´+ bps
p

1 + a1s + ´´´+ aqsq = mk0 + mk1ŝ + ´´´+ mk(nk- 1) ŝ
nk- 1 (8)

where ŝ = s - sk.
If we rewrite the left-hand side of (8) we obtain

âi = å
q

l= i
al

l
i( ) sl- i

k , i = 0,1, . . . ,q, a0 = 1

b̂i = å
p

l= i
bl

l
i( ) sl- i

k , i = 0,1, . . . ,p

üïïïï
ýïïïïþ

(9)

There are nk constraints for choosing p + q + 1 unknowns. This gives the equa-
tion b̂ = Bâ, where

b̂ =

b̂0

b̂1

..

.

b̂nk- 1

é
êêêë

ùúúú
û

â =

â0

â1

..

.

ânk- 1

é
êêêë

ùúúú
û

B =

mk0

mk1 mk0

..

. ..
.

mk(nk- 1) mk(nk- 2) . . . mk0

é
êêêêë

ùúúúú
û

We form the Cp and Cq matrices and the Mk matrix

Mk = [Cp1
..
.
Cp2

..

.
Cp3

..

.
- BCq2

..

.
- BCq3]

The Cn matrix can be de® ned as

Cn º [Cn1 | Cn2 | Cn3]

=

1
sk s2

k s3
k . . . sn- 1

k

1
2
1( ) sk

3
1( ) s2

k . . .
n - 1

1( ) sn- 2
k

1
3
2( ) sk

..

.

. .
.

. .
.

. .
.

. .
.

n - 1
nk - 1( ) sn- nk

k

ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï

ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï

sn
k

n
1( ) sn- 1

k

..

.

n
nk - 1( ) sn- nk + 1

k

é
êêêêêêêêêêêêêêêêêë

ùúúúúúúúúúúúúúúúúú
û

(10)

The solution of the equation
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Mk

b0

b1

..

.

bp

a1

a2

..

.

aq

é
êêêêêêêêêêêêë

ùúúúúúúúúúúúú
û

=

mk0

mk1

..

.

mk(nk- 1)

é
êêêë

ùúúú
û

(11)

will give the unknown coef ® cients.
If there is more than one expansion point, the equations will be solved simulta-

neously. Therefore, the coefficients are extracted according to the information
obtained from all expansion points. This method can also be extended for the solu-
tion of the system in the least squares sense. In the literature (CË elik et al. 1995) the
solution for p = q - 1 is explained in detail.

5. Simulations and computational results

The method presented above will be discussed here according to numerical and
practical concepts. The simulator we designed performs the following tasks:

(i) parsing the input file;
(ii) forming the circuit matrix;
(iii) calculation of frequency shifted moments according to the recursive scheme

given in (6) and in the literature (Tang and Nakhla 1992);
(iv) repetition of last step for each expansion point;
(v) matching moments to an approximating rational and extracting the

coefficients.

Since the lower-upper (LU) factorization of the circuit matrix is known from the
solution of the first moment vector, higher order moments are obtained by one
forward and one backward substitution (FBS) only. If the number of the expansion
points is n + 1, we have a total of (n + 1) LU factorizations of the circuit matrix.
Obtaining the AC response of the circuit at DC + n points includes (n + 1) LUs and

å n
i= 0 ni FBSs where ni is the number of moments at the ith expansion point.

5.1. Selection of the expansion points
Since we are employing a form of PadeÂ approximation and searching for an

approximating rational, only the dominant poles are crucial in our design. In time
and frequency analyses, the poles closer to the j x axis are important, therefore we
choose expansion points on the j x axis. Once we set our frequency range of interest,
we can apply the CFH technique. The frequency range of interest is generally
between DC and a maximum frequency ( < 1 GHz in interconnect circuits). The
CFH technique finds the expansion points by a binary search algorithm. This algo-
rithm first performs the single point expansions at s = 0 and s = j x max and looks for
common poles of these two expansions. If any common pole is found, it is marked as
an accurate pole, otherwise a third expansion point is selected between these two

Efficient program for analysis of interconnect circuits 645
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points. The binary search continues until every two successive points have at least
one common pole. The CFH technique gives not only the expansion points, but also
the number of moments for each expansion point. We use this information in our
method and obtain the multi-point PadeÂ approximation function.

5.2. Extracting the coefficients
The coefficients of the approximating function are obtained from a system of

matrix equations (11). Each Mk and mk element has its complex conjugate row in
matrix equations. Therefore, this N ´ N complex matrix system is equivalent to an
N ´ N real system of equations and can be solved using ordinary elimination algo-
rithms such as LU (Conte and de Boor 1981). To overcome the accuracy problems
we employ double precision arithmetic and frequency scaling in our simulations. A
problem in the method is the stability of approximations. As a consequence of using
PadeÂ approximation, our technique may generate spurious right-hand side poles.
Even so, in most cases, the unstable poles disappear when increasing the order of
approximation.

6. Examples

Several examples are presented here to demonstrate the performance of the
method. In run-time measurements, a SUN-SPARC20 machine running SunOS
4.1.3 is used and the averages of several run-times are given.

6.1. Example 1
The first example is an interconnect circuit given by CË elik et al. (1995), Tang and

Nakhla (1992). As seen from Fig. 1, the circuit has 29 lumped components, seven
lossless transmission lines and 21 nodes. Our frequency range of interest is 0± 6 GHz.
By applying the CFH technique to this circuit, we found the order of approximation
to be 35. The expansion points and moment numbers are given in Table 1. The AC
response of the circuit was computed according to the moment table.

The AC response H(s) of the circuit and the time comparisons are shown in Fig.
2 and Table 2, respectively. The I/O times are excluded in Table 2. As seen from the
figure, multi-point PadeÂ approximation (MAWE) and HSpice responses match each
other exactly. We can see from Table 2 that MAWE took much less time to get the
same results as HSpice and Spice3. When we calculate the AC response at 6000
points in the frequency range 0± 6 GHz, the proposed MAWE computes nearly 11
times faster than HSpice and nearly seven times faster than Spice3. In a 600 point
AC analysis, HSpice and Spice3 run times are closer to that of MAWE, but still
MAWE has three or four times better scores.

6.2. Example 2
The second example consists of two cascaded blocks, where the previous circuit is

taken as a block (Fig. 3). The circuit has twice as many elements and nodes, i.e. 42
nodes, 14 lossless transmission lines and 58 lumped components. We applied fre-
quency scaling as in the first example. The expansion points and number of moments
for this circuit are given in Table 3. Since this circuit is more complex and more stiff
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Efficient program for analysis of interconnect circuits 647

Figure 1. Interconnect model with seven transmission lines.

Expansion point Moments

s = 0 10

s = 2p 1´25 ´ 109j 10

s = 2p 2´50 ´ 109j 10

s = 2p 5´00 ´ 109j 10

Table 1. Expansion points and moment numbers
for interconnect network

Figure 2. Output waveform for interconnect network.
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than the other one, we need to spread the expansion points to eight points. The order
of approximation increased as well, i.e. we now compute a total of 78 moments.

The AC response of cascaded interconnects computed by MAWE are compared
with HSpice in Fig. 4. One can notice a slight difference between two plots only
around 3 GHz and 6GHz. This slight error is acceptable since the absolute error
never exceeds 3 5́ ´ 10- 4 (Fig. 5).

The time comparison is given in Table 2 where the I/O times are excluded.
MAWE still has a significant speed advantage over HSpice and Spice3. This time,
the speed up over HSpice is 14 times and over Spice3 is seven times.

We were expecting the simulator to become faster as the circuit enlarges.
However, as in this example, when the circuit size is doubled, the speed gain over
Spice simulators do not have a noticeable change. When we investigate the time
distribution in Fig. 6, we notice a remarkable time consumption for solving coeffi-
cients according to formula 11 and moment update according to formula 6. In
this example, the matrix solver consumed the biggest time because of the high
approximation order and too many expansion points. This results in a large and
ill-conditioned moment matrix system that takes a long time to solve.

648 M. Sungur et al.

Simulator

Real analysis time (s)

Interconnect Cct. Cascaded Int. Cct.

6000 pts 600 pts 6000 pts 600 pts

MAWE 1 1́ 0 9́ 1 6́ 1´5
HSPICE 11 9́ 3 7́ 21 9́ 4´9
SPICE3 7 8́ 2 4́ 11 0́ 4´2

Table 2. Timing results for interconnect networks (I/O times excluded).

Expansion point Moments

s = 0 10

s = 2p 1 0́0 ´ 109j 5

s = 2p 2 0́0 ´ 109j 4

s = 2p 2 5́0 ´ 109j 3

s = 2p 3 0́0 ´ 109j 5

s = 2p 4 0́0 ´ 109j 5

s = 2p 5 0́0 ´ 109j 5

s = 2p 5 5́0 ´ 109j 2

s = 2p 6 0́0 ´ 109j 5

Table 3. Expansion points and moment numbers
for cascaded interconnects.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
6:

02
 2

6 
Fe

br
ua

ry
 2

01
3 



Efficient program for analysis of interconnect circuits 649

F
ig

ur
e

3.
C

as
ca

de
d

in
te

rc
on

ne
ct

s
w

it
h

14
tr

an
sm

is
si

on
lin

es
.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
6:

02
 2

6 
Fe

br
ua

ry
 2

01
3 



6.3. Example 3
Next, we will consider two RLC circuits in the same topology with 10 cells and

100 cells as given in Fig. 7. The circuits have 10 RLC elements with 21 nodes and 100
RLC elements and 201 nodes respectively. The frequency range of interest in the first
circuit is 0± 5 Hz, while 0± 2Hz in the second one. Scaling was applied to element

650 M. Sungur et al.

Figure 4. AC Response of MAWE in cascaded interconnects circuit.

Figure 5. Absolute error of MAWE response in cascaded interconnects circuit.
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values as 1 ´ 109. The moment numbers and expansion points are given in Table 4. It
can be seen that, the 28th order approximation is needed to find the response of the
201-node circuit, while only the 20th order is sufficient for the 21-node circuit.

The output responses of two circuits are given in Figs 8 and 9. We can see that
the exact response of HSpice is matched by MAWE for both circuits. The time
comparisons for both RLC circuits are given in Table 5. In RLC20, MAWE’s run

Efficient program for analysis of interconnect circuits 651

Figure 6. Timing analysis for cascaded interconnects circuit.

Figure 7. Blocks that form the RLC circuits with 21 and 201 nodes.

Expansion point Moments

s = 0 12
s = 2p 2 5́0 ´ 109j 7
s = 2p 5 0́0 ´ 109j 7

s = 0 16
s = 2p 1 0́0 ´ 109j 10
s = 2p 2 0́0 ´ 109j 10

Table 4. Expansion points and moment numbers for (a)
21- and (b) 201-node RLC circuits.

(
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( )
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time improvement against HSpice is of the order of 30, while in RLC200 the
improvement is higher. This indicates that MAWE has better scores in a big analysis
such as 5000 points or more. This is valid not only for RLC circuits, but also
interconnect circuits with distributed components. When we look at time distribu-
tions in Fig. 10, the addition of the moment update process is easily noticed. In
contrast to Example 2, the moment update takes a longer time than solving coeffi-
cients in this example. This is because of the huge circuit matrix which is used in (6).

652 M. Sungur et al.

Figure 8. AC Response of the RLC circuit with 21 nodes.

Figure 9. AC Response of the RLC circuit with 201 nodes.
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The sum of multiplications at one expansion point is O(n2
i ´ n2), where n is the size

of the circuit matrix T and ni is the number of moments at one expansion point.
Consequently, in large circuits with large matrices, the moment update process

dominates the run time, while in moderate circuits with many expansion points and
high approximation orders, the coefficient’ s solving time becomes dominant in total
time. As the circuits expand, the addition of LU on total time will increase; however,
this will not cause dramatic changes in total execution time, since LU is performed
once at each expansion point.

7. Conclusions

We have introduced a program for verifying the AC response of linear circuits,
using multi-point moment matching techniques. Instead of calculating the frequency
response at a large number of discretized points, like conventional simulators do, our
program extracts the coefficient of an s-domain approximating rational of the
impulse response. The program can handle RLC. circuits as well as circuits with
lossless transmission lines with no topological constraints, such as inductor loops,
etc. Verification of the pole± zero analysis can also be done by the proposed program.
The execution time of the MAWE program compared with Spice-like simulators is
8± 10 times better. This improvement can be multipled by using a better matrix

Efficient program for analysis of interconnect circuits 653

Simulator

Real analysis time (s)

RLC with 21 nodes RLC with 201 nodes

5000 pts 500 pts 5000 pts 500 pts

MAWE 0´4 0 2́5 2 6́ 2 5́
HSPICE 12´5 5 4́ 89 12 9́
SPICE3 20´4 1 1́ 19 2 4́

Table 5. Timing results for RLC networks (I/O times excluded).

Figure 10. Timing analysis for RLC circuit with 201 nodes.
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solver. The performance of the simulator increases as the matrix solver’s execution
time decreases. Hence, MAWE will have better run-time advances against Spice-like
simulators by means of a faster solver than we have used. This program can also
handle multi-conductor transmission line circuits by using an approach presented by
Tang and Nakhla (1992). Finally, our simulator can perform transient analysis of
larger networks easily because of the nature of transient analysis which requires
lower order approximation (4) ± (8). The recovery of the execution time will also be
similar to AC analysis.
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