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Abstract 

In this paper, we address the problem of uninterruptedly scheduling a set of independent jobs that are ready at time 
zero with the objective of minimizing the coefficient of variation (CV) of their completion times. We first show that, for 
high processing time values of the longest job, a variance (V) minimizing schedule also minimizes CV. Using this 
equivalence, we next demonstrate the invalidity of an earlier conjecture about the structure of a CV-optimal schedule and 
proceed to establish the NP-hardness of the CV problem. Finally, drawing from our prior work on the V problem, we 
provide a pseudo-polynomial dynamic programming algorithm for the solution of the CV problem. 
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1. Introduction 

Consider the situation where a set of n (n 3 1) 
independent jobs is ready at time zero for process- 

ing on a single machine which is continuously 
available. Assume that the preemption of a job and 
the insertion of machine idle times are not allowed. 

Assume further, without loss of generality, that 

associated with each job j, j = 1, . . . , n, there is 
a distinct processing time pj and that the jobs are 
indexed such that p1 > pz > ... > p,,. Let o be a 
sequence of the n jobs, and note that a sequence is 

sufficient to specify a schedule in the present con- 
text. Now, letting [k] designate the index of the job 
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in position k in a sequence, define 

lCk<i 

C(a) = (l/n) C c[il(0)3 
1 <i$fl 

CV(0) = [ v(o)]“2/C(a). 

A scheduling objective that has received much 
attention over the last two decades is that of identi- 

fying a job sequence which minimizes 1/ or the 
completion time variance (call it the V problem); 
see Vani and Raghavachari [l] and De et al. [2] for 
a review of the pertinent literature. Recently, 
Raghavachari and Zammouri [3] have proposed 
the minimization of CV or the coefficient of vari- 

ation as an alternate objective (call it the CV prob- 
lem). The rationale for using this objective is that 
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CV is a unit-less measure of variation and also that 

its use may be appropriate in some scheduling 
situations. The CV problem is particularly relevant 

if one is looking for a high mean time in system (C) 
but a low time-in-system variance (V); consider, for 

example, the scheduling of chemical processes 
which on termination yield toxic wastes that are 
usually stored for future disposal. The CV problem 

has recently been studied by Mittenthal et al. [4] as 

well. 
In the sequel, we present several new and inter- 

esting results for the CV problem. First, we 
establish an equivalence between the V and CV 
problems for high processing time values of the 
longest job. We then exploit this equivalence to 

demonstrate that an earlier conjecture about the 
structure of CV-optimal sequences, as stated in 

a remark in [3, p. 3071 is incorrect, and establish 
further that the CV problem, like its V counterpart, 
is NP-hard. However, we go on to show that the 

CV problem is solvable in pseudo-polynomial time 

through the extension of a dynamic program for 
the V problem given in [2]. We conclude with 
a summary of our work. 

2. New results 

It has already been shown [3] that a CV-optimal 
sequence, like a I/-optimal sequence, is V-shaped, 
i.e., the jobs preceding the shortest job (job n) in this 

sequence appear in the longest-processing-time- 
first order and those following it appear in the 
shortest-processing-time-first order. It has been 

shown further [3] that the longest job (job 1) in 
a CV-optimal sequence necessarily appears in the 
first position (as it does in a I/-optimal sequence 

also). 
We now show that, for high values of the para- 

meter p1 beyond a certain point, a I/-optimal se- 
quence in fact becomes CV-optimal. Let I be the 
base problem instance with parameters n and pj, 
j=l,... , IZ, and @ be the set of all sequences which 
have the largest C among the I/-optimal sequences 
for I. Further, let 0 be the set of all V-shaped 
sequences which have the longest job in the first 
position and have c that are at least as large as 
s’(g), c E @. From the conditions for I/- and CV- 

optimality, viz., V-shape and longest-job-first 
[2,3], and the definitions of @J and 0, it follows that 
@ is a subset of 0. Noting further that a CV- 

optimal sequence cannot have e smaller than C(a), 
Q E @ (because otherwise a V-optimal sequence in 
@ will have a smaller CV and thus refute its opti- 

mality), it also follows that the set of all CV-optimal 
sequences for I, call it 52, is contained in 0 as well. 

Example. To illustrate the above defined sets, 
we consider a 5-job problem instance (I), where 

pr =lO, p2 =9, p3 =8, p4 =7 and ps =l. Let 

(il, . , is) represent a sequence where ik denotes the 
index of the job in the kth position. Notice that, in 

this instance, 0 = ((1,2,3.4,5), (1,2,3, 5,4), (1,2,4, 
5,3), (1,3,4,5,2)1, whereas @ = [(l, 3,4, 5,2)) and 
Sz = {( 1,2,4,5,3)j. Of the I/-optimal sequences, 

(1,2,5,4,3) and (1,3,4,5,2), the latter has the lar- 
ger C( =22.8) and thus constitutes @; recall that the 
cited e value is critical in the determination of 0. 

Clearly, as expected, @ and s2 are both subsets of 0. 

Returning to the task at hand, we now introduce 
a new problem instance I’ such that p’, = p1 + S for 
(5 3 0, and pi = pi, .i =2, . . . , n. From the expres- 

sions for C and I/ in terms of the positional process- 

ing times as given in Schrage [S], we can see that 
V’(a) = V(cr) and C’(a) = C(a) + 6 for CT in @, 
0 and Q. If we define @‘, 0’ and 0’ for I’ in the 

same manner as we have defined @, 0 and Q for I, 

then it becomes clear from the preceding observa- 
tion that @’ = @ and 0’ = 0. Using the same argu- 

ments used earlier for Q, it also becomes clear that 

Q’ is a subset of 0’ (and, therefore, of 0). 

Example. In the example introduced earlier, we let 
6 =240 and create an instance I’ from I such that 
p; = 250 and pi = pj for j = 2, . . ,5. Note that the 

sets @’ and 0’ are, respectively, identical to the sets 

@ and 8, and that Q’ = {(l, 3,4,5,2)1 is again 
a subset of 0’ as expected. 

We now state the result which shows that a mem- 
ber of Q’ (the complete set of the CV-optimal se- 
quences for I’) comes from the chosen subset of the 
V-optimal sequences for I’, @’ (and, therefore, from 
the corresponding set for I, @) and thus establishes 
the desired equivalence between the V and CV 
problems. 
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Results 1. There is a fi such that cr@ in @ is also in 0 the sequence (1.3,4,5,2) can be taken to be r~@ as 

long as 3 (p2 - p3) < (~4 - ~5). 

To avoid confusion and excessive notation. we 
choose to work primarily with @ and 0. First, we 

let Y = 0 - @. If Y is empty (as in the case for 
n < 3), G@ in @ is obviously also in 52 and the above 

result is trivially proved at 6 =O. For the foregoing, 

we thus assume Y to be non-empty. 

Result 1 also provides a convenient basis for 
proving that the CV problem is NP-hard. The 
proof is made possible by a recent result, due to 
Kubiak [6], that the related V problem is NP-hard. 

For all r~* E @ and oyJ E Y, first note that 

V’(0,) = V(0,) < P2, V’(0,) 3 V’(a,) + (I/pZ)3, 

C(G~~) > (5, C(G,) < P + 6, 

where P=Cl <j<nPj. Next, let 6 = 3n3P3, and 

note that 

Result 3. The CV problem is NP-hard. 

V’(a,) [C’(cJlf,)]2 - V’(0,) [c’(a,)]2 

< V’(a,)[P + S]’ - [V’(a,) + (l/n)3]fi2 

= V’(a,) [P’ + 26P] - (l/n)382 

< P2[P2 + 6n3P4] - 9n3P6 

< 0. 

* CV’(O@) < CV’(o,p). 

Consider the NP-complete V decision problem: 

given an instance I. is there a sequence 0 such that 
V(a) ,< G? Assume, without loss of generality, that 

c < P’ and that n3v is an integer. From instance I, 
construct an instance I’ by using 6 = 3n3P3 as 

before. Obviously, this is accomplished in time and 

space that are both polynomial in the length of I. 
We now show that the answer to the V decision 
problem is “yes” if and only if the answer to the CV 
decision problem ~ viz., given 1’, is there a sequence 
cr such that CV’(g) d ~l’~/6? - is “yes”. Since the 
CV decision problem is easily seen to be in NP, 

showing the above establishes that it is NP-com- 
plete and thus that its corresponding optimization 
problem is NP-hard. 

It follows that CV’(o,) < CV’(a,) for all o0 E 0,. First, assume that the answer to the V decision 
and that gQ is CV-optimal for I’ and thus in 52’. 
This completes our proof. 

problem is “yes”, i.e., there is a sequence CJ such that 
V(cr) d L’. Clearly, 

Example. In our 5-job problem, o6 = (1,3,4,5,2) 
is I/-optimal and gY = (1,2,4,5,3) is CV-optimal 

for 1. However, for I’ (with 6 =240), g8 becomes 

both I/-optimal and CV-optimal. 

CV’(a) = [V’(a,]‘:2/C’(a) 

= [v(a)]“2/[C(a) + S] 

We now state a negative result about the conjec- 
ture [3, p. 3071 that a CV-optimal sequence is al- 

ways of the form (1,2, ). 

Result 2. A CV-optimal sequence is not always of 
the form (1,2, . ..). 

<I‘ ,. 1,‘2 ,(j 

This indicates that the answer to the CV decision 
problem is “yes” as well. 

Next, assume that the answer to the CV decision 
problem is “yes”, i.e., there is a sequence (T such that 

CV’(rr) < ~>“~/6. This implies that 

It is sufficient to show that there exists a prob- 

lem instance I with a I/-optimal sequence (T* = 
(1,3, . ); because of Result 1, we are then able to 

create another instance I’ such that gg is CV-opti- 
ma1 as well. We have already shown the existence of 
exactly such an instance through our 5-job numer- 
ical example. Based on results in [S], it may be 
noted that, for 5-job problem instances in general, 

V(0) = V’(a) 

d (G/62) [C’(o)]2 

= (U/S2) [s;(o) + S]’ 

= 2’ + 2cC(a)/6 + v[C(o)]2,/S2. 

Substituting 6 = 3n2P3, v < P2 and C(o) < P, and 
noting that both n3V and n3v are integers, it follows 
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that 

V(a) < L’ + (2/3)(1/n)3 + (1/9)(l/n)‘j(l/P)’ 

< 2: + (l/n)3. 

X(t) = cc for t < 0 or t > kPk at k =l, . . . ,n -1. 
The optimal solution to the CV problem is found 

at the end of the recursion by computing 

Y* =mlno.,.,p\ ‘C41w21+ 

Thus, the answer to the V decision problem is 
also “yes”. This. in effect, completes the proof of 

Result 3. 

Result 5. The DP algorithm solves the CV problem 
in O(n’P) time and space. 

Though the CV problem is NP-hard, we now 
show that it can be solved in pseudo-polynomial 

time; the problem is, therefore, NP-hard only in the 
ordinary sense. The solution that we provide is 
basically an extension of the dynamic program- 

ming algorithm for the V problem given in [2]. The 
algorithm recursively builds upon V-shaped partial 
sequences to arrive at the V-shaped CV-optimal 

complete sequence. Let ok and a; be two V-shaped 
partial sequences formed of the shortest k jobs (jobs 
n - k + 1 through n). The main result related to 

their completion follows. 

The main part of the DP algorithm is essentially 
a recursive implementation of the enumerative al- 

gorithm given in [2]; it implicitly enumerates over 
all V-shaped partial sequences that are potentially 

optimal (cf. Result 4) and is therefore correct. Its 
time and space requirements at any stage k are 
bounded by kPk. The overall complexity of the 

algorithm, both in terms of time and space, is thus 
O(n’P). 

3. Summary and conclusion 

Result 4. If C(o,) = C(a;) and V(CJ~) < V(o/J, then 
0; cannot yield a CV-optimal sequence upon com- 

pletion. 

Let 0’ be the V-shaped sequence obtained from 
the optimal completion of a;. Assume that ok is 
completed identically to obtain the V-shaped se- 
quence 0. Under the stated conditions, it has been 

shown [Z] that C(o) = C(o’) and v(a) < V(a’). It 
immediately follows that CV(o) < CV(a’), proving 

Result 4. 
Let stage k of the dynamic program (DP) corres- 

pond to the scheduling of the kth shortest job (job 
n - k + 1) to form a k-job partial sequence gk. 

Define, for stage k,fk(t) = min{kV(a,)), where the 
minimum is taken over all k-job partial sequences 

CJ~ with k C(o,) = t. Also, define Pk = xn_k+, ~ j ~ n 

pj. The DP recursion is as follows: 

With regard to the CV problem, we have shown 

its equivalence to the V problem under certain 
parameter values, proved the invalidity of an earlier 
conjecture about the structure of CV-optimal se- 

quences, established its NP-hardness, and provided 

a pseudo-polynomial dynamic programming algo- 
rithm for its effective solution. Practically speaking, 
the problem has thus far been solved using heuristic 

methods only [3,4]. Given our computational ex- 
perience with the DP algorithm [2], the present 
results show that problem instances with up to 100 
jobs can be solved exactly in a reasonable amount 

of time. 
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