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Abstract 

We address two variations of the maximum diversity problem which arises when m elements are to be selected from an 
n-element population based on inter-element distances. We study problem complexity and propose randomized greedy 
heuristics. Performance of the heuristics is tested on a limited basis. 
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1. Introduction 

The maximum diversity problem has been ad- 
dressed off and on in the Operations Research 
literature. It involves the selection of elements from 
a population based on measures of overall or worst 
diversity; the specified inter-element distances usu- 
ally serve as a surrogate for diversity. 

Recently, Kuo et al. [7] have discussed various 
contexts in which the problem arises such as formu- 
lation of immigration and admissions policies, 
committee formation, curriculum design, market 
planning and portfolio selection. They have shown 
that maximizing overall diversity is NP-hard, and 
have gone on to provide mixed 0-1 linear program- 
ming formulations for maximizing both overall and 
worst diversities. The interested reader is referred 
to [7] for further details on the maximum diver- 
sity problem. In addition, it may be noted that 
alternative models of diversity, based on consider- 
ations that are somewhat different from those of 
the diversity problems addressed in [7], have been 
introduced by Glover [5]. 

In this communication, we restate the diversity 
problems as treated in [7] and show that maximiz- 
ing worst diversity is NP-hard as well. We present 
greedy randomized heuristics for solving two ver- 
sions of the maximum diversity problem. We also 
discuss how small instances can be solved exactly 
via 0 -1  quadratic programming, and report com- 
putational results to show that our heuristics have 
performed well. 

A couple of points should be made before we 
proceed. Kuo et al. [7] have mentioned several 
extensions to the basic diversity problems. One 
extension involves side constraints that may occa- 
sionally warrant consideration. In this regard, we 
note that our heuristics are quite flexible in their 
structures and should be able to accommodate 
such constraints easily. Another extension involves 
lexicographic maximization of the worst diversity 
where, in addition to the worst diversity, one wants 
to maximize the second worst diversity and so on. 
We note here that, using an approach such as those 
of Burkard and Rendl [1], our heuristics can be 
adapted to effectively address this situation as well. 
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2. Problem and complexity 

Let N be a population of n elements and define 
dlj to be the specified distance between any two 
elements i and j. We will assume (without loss of 
generality) that d~j = d~ >~ 0 for all i,j ~ N and 
dii = 0 for all i 6 N. 

In many practical applications, an element i will 
be characterized by a vector <all . . . . .  a~q ) of q at- 
tributes, and dgi will be measured by a metric such 
as the Lp norm: 

[ 1 dlj = ~, lals - ajshp 
1 <<_s<~q 

Now, let M be a subset of N, and assume that the 
diversity of M can be expressed as a function of 
d~ for all i,j ~ M. Suppose that the cardinality of 
M is restricted to be m. The MAXSUM diversity 
problem focuses on the overall diversity given by 
z(M)=r,i<~;i,j~Mdi~. The MAXMIN diversity 
problem, on the other hand, considers the worst 
diversity z ( M ) =  mini<j;i,je M {dij }. In both cases, 
the idea is to maximize z(M) subject to IM[ = m. 

MAXSUM has been studied at length [7]. With 
a reduction from the clique problem, it has in fact 
been proved that MAXSUM is strongly NP-hard. 
Thus, it is very unlikely that MAXSUM will ever be 
solved in polynomial (or even pseudo-polynomial) 
time. 

Using a reduction from the vertex cover problem 
[4], we now prove that MAXMIN too is strongly 
NP-hard. Consider an instance of vertex cover 
(which is known to be strongly NP-hard): given 
a graph G = ( V , E )  and a positive integer 
m',< I VI = n, is there a subset V' of V with 
IV'l -< m' such that for each edge ( i , j )~ E at least 
one of i and j belongs to V'? 

From the above, create an instance of MAXMIN 
as follows: let a vertex in V correspond to an 
element in N; for ( i , j )~E ,  let d~j= 1; and 
for (i,j)(iE, let dlj = 2. It is easy to see that 
this transformation is polynomial and that the 
largest number in the MAXMIN instance is ap- 
propriately bounded by a fixed polynomial func- 
tion of the largest number in the vertex cover 
instance. 

We now show that there is a vertex cover V' of 
size less than or equal to m' if and only if MAXMIN 

has a solution M with z ( M ) / > 2  and [MI = 
n - m ' = m .  

Suppose that MAXMIN has a solution M. Form 
V' = N - M; note that I V'l = m'. Since z(M) >1 2, 
M does not contain both i and ] if dlj = 1, that is, if 
(i,j) ~ E. Thus, V' is a legitimate vertex cover: it 
contains at least one of i and ] for all (i,j) ~ E. 

Conversely, suppose that MAXMIN does not 
have a solution: that is, for all M with tMI t> m, 
z(M) < 2. Thus, any legitimate M contains at least 
one pair o f / a n d ]  such that (i,j) ~ E; this implies the 
absence of a vertex cover V' of size less than or 
equal to m'.  

MAXMIN is clearly in NP. With the above, we 
have in effect proved that it is strongly NP-hard. 
Thus, like MAXSUM, it is also computationally 
difficult. 

We note at this point that the MAXMIN in- 
stance used in our proof obeys the triangle inequal- 
ity on the difs. Therefore, MAXMIN remains 
strongly NP-hard even in this restricted case. 

3. Greedy randomized heuristics 

Since MAXSUM and MAXMIN are both 
strongly NP-hard, we focus on their approximate 
solution. While several heuristic approaches exist 
for similar problems (see [9]), we turn to a greedy 
randomized approach. This has of late been used 
successfully on a number of difficult problems (see, 
for example, I-6, 2, 3]). 

Generically, a heuristic of this kind (often called 
a greedy randomized adaptive search procedure or 
GRASP) consists of two phases. In the first phase, 
a solution is iteratively constructed through con- 
trolled randomization. In the second, the solution 
is improved upon through steepest ascent neigh- 
borhood search. The process is carried out a num- 
ber of times and the best solution obtained is de- 
livered as the heuristic solution. 

The uniqueness of our particular heuristics de- 
rives from the construction and search strategies 
used in the two phases. We begin with a discussion 
of the construction phase. 

Let M k -  1 be a partial solution with k -  1 
(1 ~< k ~< m) elements. For  any i~  N -  Mk-1,  let 
Az(i) be the marginal contribution made by i toward 
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z(Mm). Since the final solution Mm is yet undeter- 
mined, we introduce AzL(i), Azu(i) and Az'(i) as, 
respectively, a lower bound, an upper bound and 
an estimate of Az(i). 

Having constructed MR-~ iteratively from Mo, 
we first compute AzL(i) and Azv(i) for all 
i ~ N - M k _ ~ .  Next, a random number u is 
sampled from a U(0, 1) distribution. This is used to 
compute Az'(i) = (1 - u)AzL(i) + uAzu(i) .  An ele- 
ment i* is then identified such that Az'( i*)= 
maxieN-M~_, {Az'(i)}; i* is included in M k _  1 to ob- 
tain MR. This is repeated until M m is finally de- 
livered. 

We now see how AzL(i) and Azu(i) are computed. 
Let d~(Qik) be the rth largest distance in {dij: 
j s Qik}, where Qik is given by Qik = N -- MR- I  -- 
{i}. For MAXSUM, the computations are as fol- 
lOWS: 

AzL(i) = ~ dij + ~ d[(Qi,); 
jeM~ 1 n - m + l  <<.r<~n-k 

Azv(i) = ~ d~j + 2 d'i(Qik). 
jeMk_ 1 1 <~r<~m-k 

Similarly, for MAXMIN, we have: 

= d "-kt'q ~ Z(Mk-x)], AZL(i) min~ min {dij}, i ~ik) ,  
( JeMk 1 J 

- Z ( M k -  1 ); 

Azv(i) = min ~ min {dii}, dm-k(Q,k), Z(Mk-~)~ 
( j eMk-  1 ) 

- Z(Mk-1) .  

The search phase begins at the conclusion of the 
construction phase and attempts to improve upon 
an incumbent solution through neighborhood 
search. In this study, we define the neighborhood of 
a solution to be the set of all solutions obtained by 
replacing an element in the incumbent solution by 
another that is not in it. Let M be the incumbent 
solution. We compute for each i e M  and 
j e N - M, the improvement due to the exchange 
o f / a n d  j, Az(i,j).  I fAz ( i , j )  <~ 0 for all i and j, then 
the search is terminated; otherwise, i and j from 
an i-j pair yielding the maximum Az(i , j )  are 
swapped to obtain a new incumbent solution. 

The computation of Az(i , j )  is rather straightfor- 
ward. For MAXSUM, we compute A z ( i , j ) =  

~u~M_Ii~(dju-diu). Similarly, for MAXMIN, we 
compute Az(i , j )  = min,<w; . . . .  M-~I+~j~ {d,w} -- 
z(M).  Note, however, that the computational effort 
to compute a single Az(i , j )  is O(m) for MAXSUM 
but O(m z) for MAXMIN. 

Each time the two phases are executed to termi- 
nation, we get a candidate solution. The best solu- 
tion in a predetermined number of replications (say 
t) is delivered as the heuristic solution, t is the only 
parameter in the heuristic that needs tuning. From 
past experience [3], it is known that a small value 
such as 10 is usually sufficient. We therefore use 
t = 10 in our computational study. 

4. E x a c t  s o l u t i o n s  

We test the quality of our heuristic solutions by 
comparing them against exact solutions for small 
problem instances (small n and/or m). To obtain 
exact solutions, we could use the mixed 0-1 linear 
programming formulations for MAXSUM and 
MAXMIN [7], and solve them using a commercial 
solver. We have, however, opted to solve 0-1 quad- 
ratic programming formulations using an algo- 
rithm due to Pardalos and Rodgers [8]. (A parallel 
implementation of this algorithm can actually solve 
quite large 0-1 quadratic programs; see Pardalos 
et al. [10].) We show below how to cast MAXSUM 
and MAXMIN as 0-1 quadratic programs. 

Let xi = 1 if i e N is also in M and 0 otherwise. 
MAXSUM can be modeled as follows: 

( )2 
min - ~ dijxixj + B ~ xi - m , 

{xi~ {0, 1}: ieN} i < j ; i , j eN ieN 

where B is a large number. Let dr(N) be the rth 
largest distance in the set {do: i < j ;  i , j  ~ N}; then 
B = ~1 < r < m~m-1)/2 dr(N) can be shown to be suffi- 
ciently large for m > 3. 

MAXM1N can be solved by repeatedly solving 
a vertex packing problem in a binary search 
scheme. For a given threshold z, the 0-1 quadratic 
program for the vertex packing problem is as fol- 
lows: 

min - ~', xi + C ~ xixj ,  
{xie{O, 1}: i~N} ieN (i,j)~F 
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where C is a large number and F = {(i,j): dlj < z; 
i < j ;  i, j e N } .  For obvious reasons, C =  n is 
deemed sufficiently large. Note that if the 0-1 
quadratic program returns a solution value less 
than - m ,  MAXMIN has a solution M with 
z ( M )  >1 z and IMI ~> m; otherwise, it does not have 
such a solution. Thus, selecting values of z from the 
set {d'(N): 1 <~ r <~ n(n - 1)/2} in a binary search 
scheme, we can find in O(logn) steps (each time 

solving a 0-1 quadratic program) the maximum 
value z* that a solution M with I MI ~> m can attain. 

5. Computational study 

In our basic experiments, five different problem 
sizes have been explored: n = 10, 15, 20, 25, 30. For  
the MAXMIN problem, additional cases with 

T a b l e  1 

C o m p u t a t i o n a l  resul ts  for  M A X S U M *  

P r o b l e m  M e a s u r e  Exac t  so lu t ion  Heur i s t i c  so lu t ion  O p t i m a l i t y  

size C P U  t ime  (s) C P U  t ime (s) g a p  (%)  

M i n i m u m  000.02 < 00.00 

n = 10 M e d i a n  000.02 < 00.00 

m = 2 M a x i m u m  000.02 < 00.00 

M i n i m u m  000.04 < 00.00 

n = 10 M e d i a n  000.04 000.01 00.00 

m = 4 M a x i m u m  000.05 000.02 00.00 

M i n i m u m  000.19 000.01 00.00 

n = 15 M e d i a n  000.19 000.01 00.00 

m = 3 M a x i m u m  000.20 000.02 00.00 

M i n i m u m  001.35 000.02 00.00 

n = 15 M e d i a n  001.35 000.03 00.00 

m = 6 M a x i m u m  001.36 000.03 00.00 

M i n i m u m  002.47 000.02 00.00 

n = 20 M e d i a n  002.47 000.02 00.00 

rn = 4 M a x i m u m  002.48 000.04 01.13 

M i n i m u m  041.80 000.05 00.00 

n = 20 M e d i a n  042.03 000.06 00.00 

m = 8 M a x i m u m  042.13 000.06 00.00 

M i n i m u m  032.07 000.04 00.00 

n = 25 M e d i a n  032.17 000.04 00.00 

m = 5 M a x i m u m  032.27 000.05 00.00 

M i n i m u m  > 000.10 

n = 25 M e d i a n  > 000.10 ? 

m = 10 M a x i m u m  > 000.10 ? 

M i n i m u m  413.41 000.06 00.00 

n = 30 M e d i a n  413.85 000.07 00.00 

m = 6 M a x i m u m  415.84 000.08 00.00 

M i n i m u m  > 000.16 ? 

n = 30 M e d i a n  > 000.16 ? 
m = 12 M a x i m u m  > 000.18 ? 

* T h e  s y m b o l s "  < " ,  " > "  a n d  "?" ,  respect ively,  i nd ica t e  "less t h a n  000.01 s", " m o r e  t h a n  

600.00 s" a n d  " u n a v a i l a b l e " .  
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n = 40 have also been considered. For  each size, 
5 problem instances have been generated. Note  that 
an instance is completely specified by n, {dij: i < j ;  
i , j~N} and m. The distances in the s e t  {dij: 
i<j; i,j e N} have been sampled from a discrete 

uniform distribution over I-0, 9999], and two different 
m's - m = 0.2n and m = 0.4n - have been used with 
each n. 

Both the exact algorithms (of which the Par- 
da los-Rodgers  0 -1  quadratic programming solver 

T a b l e  2 

C o m p u t a t i o n a l  resul ts  fo r  M A X M I N  

P r o b l e m  E x a c t  so lu t ion  Heur i s t i c  so lu t ion  O p t i m a l i t y  

size M e a s u r e  C P U  t ime (s) C P U  t ime (s) g a p  ( % )  

M i n i m u m  000.02 000.02 00.00 

n = 10 M e d i a n  000.02 000.02 00.00 

m = 2 M a x i m u m  000.03 000.03 00.00 

M i n i m u m  000.02 000.02 00.00 

n = 10 M e d i a n  000.03 000.03 00.00 

m = 4 M a x i m u m  000.04  000.04  00.00 

M i n i m u m  000.11 000.06 00.00 

n = 15 M e d i a n  000.11 000.07 00 .00  

m = 3 M a x i m u m  000.12  000.14 00.00 

M i n i m u m  000. I 1 000.11 00.00 

n = 15 M e d i a n  000.12 000.13 00.00 

m = 6 M a x i m u m  000.13 000.20 00.00 

M i n i m u m  000.26 000.18 00.00 

n = 20 M e d i a n  000.30  000.22 00.00 

rn = 4 M a x i m u m  000.36 000.28 11.85 

M i n i m u m  000.28 000.33 00.00 

n = 20 M e d i a n  000.31 000.37 00.00 

m = 8 M a x i m u m  000.36 000.46 01.31 

M i n i m u m  000.54  000.49 00.00 

n = 25 M e d i a n  000.55 000.62 00.00 

m = 5 M a x i m u m  000.60  000.68 03.13 

M i n i m u m  000.65 000.71 00.00 

n = 25 M e d i a n  000.77  000.88 01.29 

m = 10 M a x i m u m  000.91 001.30  15.94 

M i n i m u m  001.05 000.86 00.00 

n = 30 M e d i a n  001.25 001.09 00.00 

m = 6 M a x i m u m  001.50  001.35 07.50 

M i n i m u m  001.95 001.34 00 .00  

n = 30 M e d i a n  002.46  002.11 00.00 

m = 12 M a x i m u m  003.18 002.27 12.98 

M i n i m u m  003.29 002.38 00.00 

n = 40 M e d i a n  005.92 003.96 05.83 
m = 8 M a x i m u m  006.00  004.68 14.27 

M i n i m u m  010.87 006.38 00.00 

n = 40 M e d i a n  016.68 006.83 12.51 
m = 16 M a x i m u m  023.77  008.62 22.54 
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is a part) and the greedy randomized heuristics 
have been coded in Sun FORTRAN,  and all com- 
putational runs have been made on a SPARCsta- 
tion 2 machine operating under SunOS 4.1.1. 
A CPU time limit of 600 s has been imposed on 
each run. 

Table 1 presents the results of our basic experi- 
ments with MAXSUM. The minimum, median and 
maximum CPU time in seconds taken by the exact 
and heuristic approaches are shown for each n - m  

pair. For  each such pair, the table also shows the 
minimum, median and maximum optimality gaps 
(=100[z  . . . .  t - - 2 " h e u r i s t i c ] / Z  . . . .  t)- We see that we 
have been able to solve exactly all 25 instances of 
MAXSUM with the smaller m in less than 416 s; 
with the larger m, however, we have been able to 
solve exactly, within the time limit of 600 s, only the 
15 instances for which n ~< 20. We also see that the 
heuristic has been extremely effective for the test 
problems. It has demonstrably found the exact 
solutions in 39 of the 40 cases where such solutions 
have been available; in the one case where it has 
failed, the optimality gap has only been 1.13%. The 
heuristic has never taken more than 0.18 s. 

Table 2, which is organized similar to Table 1, 
presents our findings on M A X M I N  for both the 
basic and extended experiments. Even though 
MAXMIN requires the solution of several 0 -1  
quadratic programs, it has delivered the exact solu- 
tions to all 60 instances in less than 24 s. As for the 
heuristic, we see that it has been reasonably effec- 
tive. It has found the optimal solutions in 41 of the 
60 cases, never taking more than 9 seconds; in the 
19 cases where it has failed, the optimality gaps 
have been less than 23%. 

Several observations are in order. First, even 
though MAXSUM and M A X M I N  are both 
strongly NP-hard,  we see that the computational 
limit of the exact approach for MAXSUM is reach- 
ed at n/> 25 whereas that of the similar approach 
for M A X M I N  extends to n > 40. This may not be 
totatlly surprising since maxsum problems are usu- 
ally harder to solve than their maxmin counter- 
parts. Next, despite the fact that the heuristic 
approaches for MAXSUM and MAXMIN are 
identically structured, the heuristic for MAXMIN 
is considerably slower than that for MAXSUM. (In 
fact, the heuristic solution times for M A X M I N  are 

similar to the exact solution times through n = 25; 
the situation begins to change only at n/> 30.) The 
computation of the Az(i ,  j )  may be partially respon- 
sible for this. (Recall the computational  orders 
given in Section 3 !) An implementation that uses 
more sophisticated data structures should make the 
heuristic more efficient. Also, the quality of the 
heuristic solutions for M A X M I N  is noticeably 
poorer than that for MAXSUM. This may be at- 
tributed to the pairwise exchange scheme used in 
the neighborhood search phase: the MAXMIN 
heuristic appears to be more vulnerable to being 
trapped in a local maximum. 

Finally, we note that our computational  experi- 
ments have been performed with the most general 
instances of the maximum diversity problem. As 
indicated in Section 2, the dl/s in many cases will be 
distances in some metric space and will thus obey 
the triangle inequality. Even though the problem 
still remains strongly NP-hard  (see Section 2 for the 
proof in the M A X M I N  case), one may conjecture 
that the computational  results will improve over 
this subset of instances. It will be interesting to see if 
this is in fact true. 
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