
E L S E V I E R Operations Research Letters 19 (1996) 175-181

Computational aspects of the maximum diversity problem

J a y B. G h o s h

Faculty of Business Administration, Bilkent University, 06533 Bilkent, Ankara, Turkey

Received 1 November 1994; revised 1 March 1996

Abstract

We address two variations of the maximum diversity problem which arises when m elements are to be selected from an
n-element population based on inter-element distances. We study problem complexity and propose randomized greedy
heuristics. Performance of the heuristics is tested on a limited basis.

Keywords: Maximum diversity; Computational complexity; Heuristics

1. Introduction

The maximum diversity problem has been ad-
dressed off and on in the Operations Research
literature. It involves the selection of elements from
a population based on measures of overall or worst
diversity; the specified inter-element distances usu-
ally serve as a surrogate for diversity.

Recently, Kuo et al. [7] have discussed various
contexts in which the problem arises such as formu-
lation of immigration and admissions policies,
committee formation, curriculum design, market
planning and portfolio selection. They have shown
that maximizing overall diversity is NP-hard, and
have gone on to provide mixed 0-1 linear program-
ming formulations for maximizing both overall and
worst diversities. The interested reader is referred
to [7] for further details on the maximum diver-
sity problem. In addition, it may be noted that
alternative models of diversity, based on consider-
ations that are somewhat different from those of
the diversity problems addressed in [7], have been
introduced by Glover [5].

In this communication, we restate the diversity
problems as treated in [7] and show that maximiz-
ing worst diversity is NP-hard as well. We present
greedy randomized heuristics for solving two ver-
sions of the maximum diversity problem. We also
discuss how small instances can be solved exactly
via 0 -1 quadratic programming, and report com-
putational results to show that our heuristics have
performed well.

A couple of points should be made before we
proceed. Kuo et al. [7] have mentioned several
extensions to the basic diversity problems. One
extension involves side constraints that may occa-
sionally warrant consideration. In this regard, we
note that our heuristics are quite flexible in their
structures and should be able to accommodate
such constraints easily. Another extension involves
lexicographic maximization of the worst diversity
where, in addition to the worst diversity, one wants
to maximize the second worst diversity and so on.
We note here that, using an approach such as those
of Burkard and Rendl [1], our heuristics can be
adapted to effectively address this situation as well.

0167-6377/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved
PII S0 1 67-6377(96)00025-9

176 J.B. Ghosh / Operations Research Letters 19 (1996) 175-181

2. Problem and complexity

Let N be a population of n elements and define
dlj to be the specified distance between any two
elements i and j. We will assume (without loss of
generality) that d~j = d~ >~ 0 for all i,j ~ N and
dii = 0 for all i 6 N.

In many practical applications, an element i will
be characterized by a vector <all a~q) of q at-
tributes, and dgi will be measured by a metric such
as the Lp norm:

[1 dlj = ~, lals - ajshp
1 <<_s<~q

Now, let M be a subset of N, and assume that the
diversity of M can be expressed as a function of
d~ for all i,j ~ M. Suppose that the cardinality of
M is restricted to be m. The MAXSUM diversity
problem focuses on the overall diversity given by
z(M)=r,i<~;i,j~Mdi~. The MAXMIN diversity
problem, on the other hand, considers the worst
diversity z (M) = mini<j;i,je M {dij }. In both cases,
the idea is to maximize z(M) subject to IM[= m.

MAXSUM has been studied at length [7]. With
a reduction from the clique problem, it has in fact
been proved that MAXSUM is strongly NP-hard.
Thus, it is very unlikely that MAXSUM will ever be
solved in polynomial (or even pseudo-polynomial)
time.

Using a reduction from the vertex cover problem
[4], we now prove that MAXMIN too is strongly
NP-hard. Consider an instance of vertex cover
(which is known to be strongly NP-hard): given
a graph G = (V , E) and a positive integer
m',< I VI = n, is there a subset V' of V with
IV'l -< m' such that for each edge (i , j)~ E at least
one of i and j belongs to V'?

From the above, create an instance of MAXMIN
as follows: let a vertex in V correspond to an
element in N; for (i , j)~E , let d~j= 1; and
for (i,j)(iE, let dlj = 2. It is easy to see that
this transformation is polynomial and that the
largest number in the MAXMIN instance is ap-
propriately bounded by a fixed polynomial func-
tion of the largest number in the vertex cover
instance.

We now show that there is a vertex cover V' of
size less than or equal to m' if and only if MAXMIN

has a solution M with z (M) / > 2 and [MI =
n - m ' = m .

Suppose that MAXMIN has a solution M. Form
V' = N - M; note that I V'l = m'. Since z(M) >1 2,
M does not contain both i and] if dlj = 1, that is, if
(i,j) ~ E. Thus, V' is a legitimate vertex cover: it
contains at least one of i and] for all (i,j) ~ E.

Conversely, suppose that MAXMIN does not
have a solution: that is, for all M with tMI t> m,
z(M) < 2. Thus, any legitimate M contains at least
one pair o f / a n d] such that (i,j) ~ E; this implies the
absence of a vertex cover V' of size less than or
equal to m'.

MAXMIN is clearly in NP. With the above, we
have in effect proved that it is strongly NP-hard.
Thus, like MAXSUM, it is also computationally
difficult.

We note at this point that the MAXMIN in-
stance used in our proof obeys the triangle inequal-
ity on the difs. Therefore, MAXMIN remains
strongly NP-hard even in this restricted case.

3. Greedy randomized heuristics

Since MAXSUM and MAXMIN are both
strongly NP-hard, we focus on their approximate
solution. While several heuristic approaches exist
for similar problems (see [9]), we turn to a greedy
randomized approach. This has of late been used
successfully on a number of difficult problems (see,
for example, I-6, 2, 3]).

Generically, a heuristic of this kind (often called
a greedy randomized adaptive search procedure or
GRASP) consists of two phases. In the first phase,
a solution is iteratively constructed through con-
trolled randomization. In the second, the solution
is improved upon through steepest ascent neigh-
borhood search. The process is carried out a num-
ber of times and the best solution obtained is de-
livered as the heuristic solution.

The uniqueness of our particular heuristics de-
rives from the construction and search strategies
used in the two phases. We begin with a discussion
of the construction phase.

Let M k - 1 be a partial solution with k - 1
(1 ~< k ~< m) elements. For any i~ N - Mk-1, let
Az(i) be the marginal contribution made by i toward

J.B. Ghosh / Operations Research Letters 19 (1996) 175-181 177

z(Mm). Since the final solution Mm is yet undeter-
mined, we introduce AzL(i), Azu(i) and Az'(i) as,
respectively, a lower bound, an upper bound and
an estimate of Az(i).

Having constructed MR-~ iteratively from Mo,
we first compute AzL(i) and Azv(i) for all
i ~ N - M k _ ~ . Next, a random number u is
sampled from a U(0, 1) distribution. This is used to
compute Az'(i) = (1 - u)AzL(i) + uAzu(i) . An ele-
ment i* is then identified such that Az'(i*)=
maxieN-M~_, {Az'(i)}; i* is included in M k _ 1 to ob-
tain MR. This is repeated until M m is finally de-
livered.

We now see how AzL(i) and Azu(i) are computed.
Let d~(Qik) be the rth largest distance in {dij:
j s Qik}, where Qik is given by Qik = N -- MR- I --
{i}. For MAXSUM, the computations are as fol-
lOWS:

AzL(i) = ~ dij + ~ d[(Qi,);
jeM~ 1 n - m + l <<.r<~n-k

Azv(i) = ~ d~j + 2 d'i(Qik).
jeMk_ 1 1 <~r<~m-k

Similarly, for MAXMIN, we have:

= d "-kt'q ~ Z(Mk-x)], AZL(i) min~ min {dij}, i ~ik) ,
(JeMk 1 J

- Z (M k - 1);

Azv(i) = min ~ min {dii}, dm-k(Q,k), Z(Mk-~)~
(j eMk- 1)

- Z(Mk-1) .

The search phase begins at the conclusion of the
construction phase and attempts to improve upon
an incumbent solution through neighborhood
search. In this study, we define the neighborhood of
a solution to be the set of all solutions obtained by
replacing an element in the incumbent solution by
another that is not in it. Let M be the incumbent
solution. We compute for each i e M and
j e N - M, the improvement due to the exchange
o f / a n d j, Az(i,j). I fAz (i , j) <~ 0 for all i and j, then
the search is terminated; otherwise, i and j from
an i-j pair yielding the maximum Az(i , j) are
swapped to obtain a new incumbent solution.

The computation of Az(i , j) is rather straightfor-
ward. For MAXSUM, we compute A z (i , j) =

~u~M_Ii~(dju-diu). Similarly, for MAXMIN, we
compute Az(i , j) = min,<w; M-~I+~j~ {d,w} --
z(M). Note, however, that the computational effort
to compute a single Az(i , j) is O(m) for MAXSUM
but O(m z) for MAXMIN.

Each time the two phases are executed to termi-
nation, we get a candidate solution. The best solu-
tion in a predetermined number of replications (say
t) is delivered as the heuristic solution, t is the only
parameter in the heuristic that needs tuning. From
past experience [3], it is known that a small value
such as 10 is usually sufficient. We therefore use
t = 10 in our computational study.

4. E x a c t s o l u t i o n s

We test the quality of our heuristic solutions by
comparing them against exact solutions for small
problem instances (small n and/or m). To obtain
exact solutions, we could use the mixed 0-1 linear
programming formulations for MAXSUM and
MAXMIN [7], and solve them using a commercial
solver. We have, however, opted to solve 0-1 quad-
ratic programming formulations using an algo-
rithm due to Pardalos and Rodgers [8]. (A parallel
implementation of this algorithm can actually solve
quite large 0-1 quadratic programs; see Pardalos
et al. [10].) We show below how to cast MAXSUM
and MAXMIN as 0-1 quadratic programs.

Let xi = 1 if i e N is also in M and 0 otherwise.
MAXSUM can be modeled as follows:

()2
min - ~ dijxixj + B ~ xi - m ,

{xi~ {0, 1}: ieN} i < j ; i , j eN ieN

where B is a large number. Let dr(N) be the rth
largest distance in the set {do: i < j ; i , j ~ N}; then
B = ~1 < r < m~m-1)/2 dr(N) can be shown to be suffi-
ciently large for m > 3.

MAXM1N can be solved by repeatedly solving
a vertex packing problem in a binary search
scheme. For a given threshold z, the 0-1 quadratic
program for the vertex packing problem is as fol-
lows:

min - ~', xi + C ~ xixj ,
{xie{O, 1}: i~N} ieN (i,j)~F

178 J.B. Ghosh / Operations Research Letters 19 (1996) 175-181

where C is a large number and F = {(i,j): dlj < z;
i < j ; i, j e N } . For obvious reasons, C = n is
deemed sufficiently large. Note that if the 0-1
quadratic program returns a solution value less
than - m , MAXMIN has a solution M with
z (M) >1 z and IMI ~> m; otherwise, it does not have
such a solution. Thus, selecting values of z from the
set {d'(N): 1 <~ r <~ n(n - 1)/2} in a binary search
scheme, we can find in O(logn) steps (each time

solving a 0-1 quadratic program) the maximum
value z* that a solution M with I MI ~> m can attain.

5. Computational study

In our basic experiments, five different problem
sizes have been explored: n = 10, 15, 20, 25, 30. For
the MAXMIN problem, additional cases with

T a b l e 1

C o m p u t a t i o n a l resul ts for M A X S U M *

P r o b l e m M e a s u r e Exac t so lu t ion Heur i s t i c so lu t ion O p t i m a l i t y

size C P U t ime (s) C P U t ime (s) g a p (%)

M i n i m u m 000.02 < 00.00

n = 10 M e d i a n 000.02 < 00.00

m = 2 M a x i m u m 000.02 < 00.00

M i n i m u m 000.04 < 00.00

n = 10 M e d i a n 000.04 000.01 00.00

m = 4 M a x i m u m 000.05 000.02 00.00

M i n i m u m 000.19 000.01 00.00

n = 15 M e d i a n 000.19 000.01 00.00

m = 3 M a x i m u m 000.20 000.02 00.00

M i n i m u m 001.35 000.02 00.00

n = 15 M e d i a n 001.35 000.03 00.00

m = 6 M a x i m u m 001.36 000.03 00.00

M i n i m u m 002.47 000.02 00.00

n = 20 M e d i a n 002.47 000.02 00.00

rn = 4 M a x i m u m 002.48 000.04 01.13

M i n i m u m 041.80 000.05 00.00

n = 20 M e d i a n 042.03 000.06 00.00

m = 8 M a x i m u m 042.13 000.06 00.00

M i n i m u m 032.07 000.04 00.00

n = 25 M e d i a n 032.17 000.04 00.00

m = 5 M a x i m u m 032.27 000.05 00.00

M i n i m u m > 000.10

n = 25 M e d i a n > 000.10 ?

m = 10 M a x i m u m > 000.10 ?

M i n i m u m 413.41 000.06 00.00

n = 30 M e d i a n 413.85 000.07 00.00

m = 6 M a x i m u m 415.84 000.08 00.00

M i n i m u m > 000.16 ?

n = 30 M e d i a n > 000.16 ?
m = 12 M a x i m u m > 000.18 ?

* T h e s y m b o l s " < " , " > " a n d "?" , respect ively, i nd ica t e "less t h a n 000.01 s", " m o r e t h a n

600.00 s" a n d " u n a v a i l a b l e " .

J.B. Ghosh / Operations Research Letters 19 (1996) 175-181 179

n = 40 have also been considered. For each size,
5 problem instances have been generated. Note that
an instance is completely specified by n, {dij: i < j ;
i , j~N} and m. The distances in the s e t {dij:
i<j; i,j e N} have been sampled from a discrete

uniform distribution over I-0, 9999], and two different
m's - m = 0.2n and m = 0.4n - have been used with
each n.

Both the exact algorithms (of which the Par-
da los-Rodgers 0 -1 quadratic programming solver

T a b l e 2

C o m p u t a t i o n a l resul ts fo r M A X M I N

P r o b l e m E x a c t so lu t ion Heur i s t i c so lu t ion O p t i m a l i t y

size M e a s u r e C P U t ime (s) C P U t ime (s) g a p (%)

M i n i m u m 000.02 000.02 00.00

n = 10 M e d i a n 000.02 000.02 00.00

m = 2 M a x i m u m 000.03 000.03 00.00

M i n i m u m 000.02 000.02 00.00

n = 10 M e d i a n 000.03 000.03 00.00

m = 4 M a x i m u m 000.04 000.04 00.00

M i n i m u m 000.11 000.06 00.00

n = 15 M e d i a n 000.11 000.07 00 .00

m = 3 M a x i m u m 000.12 000.14 00.00

M i n i m u m 000. I 1 000.11 00.00

n = 15 M e d i a n 000.12 000.13 00.00

m = 6 M a x i m u m 000.13 000.20 00.00

M i n i m u m 000.26 000.18 00.00

n = 20 M e d i a n 000.30 000.22 00.00

rn = 4 M a x i m u m 000.36 000.28 11.85

M i n i m u m 000.28 000.33 00.00

n = 20 M e d i a n 000.31 000.37 00.00

m = 8 M a x i m u m 000.36 000.46 01.31

M i n i m u m 000.54 000.49 00.00

n = 25 M e d i a n 000.55 000.62 00.00

m = 5 M a x i m u m 000.60 000.68 03.13

M i n i m u m 000.65 000.71 00.00

n = 25 M e d i a n 000.77 000.88 01.29

m = 10 M a x i m u m 000.91 001.30 15.94

M i n i m u m 001.05 000.86 00.00

n = 30 M e d i a n 001.25 001.09 00.00

m = 6 M a x i m u m 001.50 001.35 07.50

M i n i m u m 001.95 001.34 00 .00

n = 30 M e d i a n 002.46 002.11 00.00

m = 12 M a x i m u m 003.18 002.27 12.98

M i n i m u m 003.29 002.38 00.00

n = 40 M e d i a n 005.92 003.96 05.83
m = 8 M a x i m u m 006.00 004.68 14.27

M i n i m u m 010.87 006.38 00.00

n = 40 M e d i a n 016.68 006.83 12.51
m = 16 M a x i m u m 023.77 008.62 22.54

180 J.B. Ghosh / Operations Research Letters 19 (1996) 175-181

is a part) and the greedy randomized heuristics
have been coded in Sun FORTRAN, and all com-
putational runs have been made on a SPARCsta-
tion 2 machine operating under SunOS 4.1.1.
A CPU time limit of 600 s has been imposed on
each run.

Table 1 presents the results of our basic experi-
ments with MAXSUM. The minimum, median and
maximum CPU time in seconds taken by the exact
and heuristic approaches are shown for each n - m

pair. For each such pair, the table also shows the
minimum, median and maximum optimality gaps
(=100[z t - - 2 " h e u r i s t i c] / Z t)- We see that we
have been able to solve exactly all 25 instances of
MAXSUM with the smaller m in less than 416 s;
with the larger m, however, we have been able to
solve exactly, within the time limit of 600 s, only the
15 instances for which n ~< 20. We also see that the
heuristic has been extremely effective for the test
problems. It has demonstrably found the exact
solutions in 39 of the 40 cases where such solutions
have been available; in the one case where it has
failed, the optimality gap has only been 1.13%. The
heuristic has never taken more than 0.18 s.

Table 2, which is organized similar to Table 1,
presents our findings on M A X M I N for both the
basic and extended experiments. Even though
MAXMIN requires the solution of several 0 -1
quadratic programs, it has delivered the exact solu-
tions to all 60 instances in less than 24 s. As for the
heuristic, we see that it has been reasonably effec-
tive. It has found the optimal solutions in 41 of the
60 cases, never taking more than 9 seconds; in the
19 cases where it has failed, the optimality gaps
have been less than 23%.

Several observations are in order. First, even
though MAXSUM and M A X M I N are both
strongly NP-hard, we see that the computational
limit of the exact approach for MAXSUM is reach-
ed at n/> 25 whereas that of the similar approach
for M A X M I N extends to n > 40. This may not be
totatlly surprising since maxsum problems are usu-
ally harder to solve than their maxmin counter-
parts. Next, despite the fact that the heuristic
approaches for MAXSUM and MAXMIN are
identically structured, the heuristic for MAXMIN
is considerably slower than that for MAXSUM. (In
fact, the heuristic solution times for M A X M I N are

similar to the exact solution times through n = 25;
the situation begins to change only at n/> 30.) The
computation of the Az(i , j) may be partially respon-
sible for this. (Recall the computational orders
given in Section 3 !) An implementation that uses
more sophisticated data structures should make the
heuristic more efficient. Also, the quality of the
heuristic solutions for M A X M I N is noticeably
poorer than that for MAXSUM. This may be at-
tributed to the pairwise exchange scheme used in
the neighborhood search phase: the MAXMIN
heuristic appears to be more vulnerable to being
trapped in a local maximum.

Finally, we note that our computational experi-
ments have been performed with the most general
instances of the maximum diversity problem. As
indicated in Section 2, the dl/s in many cases will be
distances in some metric space and will thus obey
the triangle inequality. Even though the problem
still remains strongly NP-hard (see Section 2 for the
proof in the M A X M I N case), one may conjecture
that the computational results will improve over
this subset of instances. It will be interesting to see if
this is in fact true.

Acknowledgements

Thanks are due to Panos Pardalos and Greg
Rodgers for letting us use their unconstrained
0 -1 quadratic programming code. Thanks are
also due to Jay Rajasekera for helping us with
the use of the SPARCstation. The current version
of the paper has benefited significantly from the
helpful comments of two referees and an associate
editor,

References

[1] R.E. Burkard and F. Rendl, "Lexicographic bottleneck
problems", Oper. Res. Lett. 10, 303 308 (1991).

[2] T.A. Feo, V. Krishnamurthy and J.F. Bard, "A GRASP for
a difficult single machine scheduling problem", Comput.
Oper. Res. 18, 635-643 (1991).

[-3] T.A. Feo and M.G.C. Resende, "Greedy randomized adap-
tive search procedures", J. Global Optim. 6, 109-133
(1995).

[-4] M.R. Garey and D.S. Johnson, Computers and Intractabil-
ity, W.H. Freeman and Company, New York, 1979.

J.B. Ghosh / Operations Research Letters 19 (1996) 175 181 181

[5] F. Glover, "Advanced netform models for the maximum
diversity problem", Working Paper, Graduate School of
Business Administration, University of Colorado at Boul-
der, Boulder, Colorado, 1991.

[-6] J.P. Hart and A.W. Shogan, "Semi-greedy heuristics: an
empirical study", Oper. Res. Lett. 6, 107 114 (1987).

[-7] C.-C. Kuo, F. Glover and K.S. Dhir, "Analyzing and
modeling the maximum diversity problem by zero-one
programming", Dec. Sci. 24, 1171-1185 (1993).

[8] P.M. Pardalos and G.P. Rodgers, "Computational aspects
of a branch and bound algorithm for quadratic zero-one
programming", Computing 45, 131-144 (1990).

[9] P.M. Pardalos and H. Wolkowicz (eds.), Quadratic Assign-
ment and Related Problems, DIMACS Series, Vol. 16,
American Mathematical Society, 1994.

[10] P.M. Pardalos, A.T. Phillips and J.B. Rosen, Topics in
Parallel Computing in Mathematical Programming, Science
Press, Moscow, 1993.

