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Abstract 

An approach to the quantum phase, taking into account the process of light generation and extending in this way the 
operational approach, is proposed. The cosine and sine operators of the phase difference of the two circularly polarized 
modes are determined with the aid of a polar decomposition of the angular momentum of radiative transition and 
conservation of the total angular momentum. Application of the approach to the Jaynes-Cummings model for an electric 
dipole transition shows consistency with the classical definition of the phase difference and with the results of standard 
operational approach as well. 
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The main idea of the operational approach to the 
quantum phase of light [l-3] is to define the phase opera- 
tor in terms of quantities that can be measured in real 
experiments. It should be stressed that the polarization 
measurements represent an important method of opera- 
tional definition of the phase difference between two circu- 
larly orthogonal polarized modes [2-51. The analysis of 
various schemes of measurement has shown that there is 
no unique phase operator at all [2]. Then, consideration of 
the so-called intrinsic and operational observables [6] has 
lead to the conclusion that there should be a unique 
intrinsic phase operator corresponding to the set of opera- 
tional quantities (see also discussion in Refs. [7-91). Fur- 
ther analysis of the relation between the operational ap- 
proach and the method, based on the phase distributions 
[IO,1 I] has shown that the moments of periodic functions 
of the measured phase difference are those calculated from 
the appropriate integrated Wigner or Q functions [ l2- 141. 

All these results are based on the consideration of a 
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photon counting measurement which includes interaction 
of light with a macroscopic detecting device. In this case, 
it is supposed that the light is prepared initially in some 
quantum state. Undoubtedly, this state is a result of some 
interactions. The process of generation of photons by a 
microscopic source such as an atom is the most important 
among them. Therefore, it seems to be quite natural to 
extend the operational approach and examine the phase 
problem in terms of what can be generated. 

The aim of this paper is to discuss the relation between 
the phase properties of an atomic transition responsible for 
the generation of photons and the phase difference of the 
two circularly orthogonal polarizations. The phase proper- 
ties of the atomic radiative transition can be easily defined 
by a polar decomposition of corresponding SU(2) algebra 
[15], describing the angular momentum of the transition. 
Any photon in the process of generation takes away the 
angular momentum of the radiative transition responsible 
for the creation of this photon, so that the total angular 
momentum is conserved 1161. Unfortunately, the polar 
decomposition of SU(2) algebra cannot be performed in 
the case of photons. The point is that there is no isotype 
[ 171 representation of a sub-algebra SU(2) in the Weyl- 
Heisenberg algebra describing the photons. In other words, 
the Casimir operator of an enveloping algebra cannot be 
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uniquely determined in the whole Hilbert space corre- 
sponding to the photons. 

Let us stress here, that although the recent attempt 
[5,18] to use the polar decomposition of the Stokes opera- 
tors first in an arbitrary subspace FE(“) and then to extend 
the definition of phase operators on the whole Hilbert 
space by summation over index n, describing the total 
number of photons, from n = 0 to z have led to some 
interesting physical results, it cannot be considered as a 
rigorous mathematical construction because the uniqueness 
of this decomposition is not proven. 

At the same time, the conservation of the total angular 

momentum can be used in order to define the quantum 
phase difference of light in the operational meaning. A 

simple example of some considerable interest, illustrating 
the above statement, is provided by an atom interacting 
with the cavity field. This system is described by the 
Jaynes-Cummings model, a convenient form of which is 

afforded by taking the basis of spherical photons [ 191. 
Suppose that a dipole transition is responsible for the 

creation of the cavity photons. Then, the angular momen- 

tum of the transition can be represented as follows 

J;=R++-Rm-, J+=~(R+,+R,_), 

J_= fi(R,++R_,). (1) 

where R,, = )) j = l;m>( j= l;m’]], (m = O,_+ 1) are the 
atomic operators. It is not difficult to see that the operators 
(I) obey the standard commutation relations for SU(2) 
algebra. By performing a similar analysis to that described 
in the Ref. [IS], we can construct the polar decomposition 
of (1) and determine the cosine and sine operators of the 
Hermitian atomic phase in the form 

e= --!-cJ++J_) + i(e’“R_++e-‘“R+_), 
245 

s^= &cJ+- J_) + A(e’@R_+- e-‘“R+_), (2) 

where $ is an arbitrary real parameter (the reference 

phase). It is clear that r? + s^* = 1 and [C,s^] = 0, and the 
constructions (2) are Hermitian operators. 

In turn, the angular momentum of the cavity field is 
represented by the following generators 

M;=? + ma, a,, M+=fi(a~a,+a,+a_), 
tn= -I 

M_= &( ao+a+ + a+a,), (3) 

where a,‘, a, are the operators of spherical photons with 
angular momentum 1 and projection m. Since the total 
angular momentum of the system described by the stan- 

dard Hamiltonian 

is conserved [ 161, one can expect that the operators chosen 
to represent cosine and sine of the phase of the angular 
momentum of the dipole radiation are of the form 

K, M++M_ 
b1 

( E 
+ e’*a+a++ e-‘*aza_ , 

1 

+ e’“a+a+- e-‘+aia_ (4) 

n ,. ,. A 

such that C + B= const, S +.Y’= const. Here K,, K, are 
constants. One can see that [&,9] = 0 so that the cosine 
and sine (4) can be measured at once. 

Let us stress here some likeness between the operators 

(4) and the operational cosine and sine which have been 
determined in Ref. [2] for the measurement scheme I and 
which we denote here as 6, and s^, respectively. In fact, 
the operators (4) can be formally represented as 

if we choose I)= A + 7r/2 where A is the classical phase 
difference considered in Ref. [2] for the scheme 1. Then, it 

can be seen that the additional terms (M++_M_)/fi 
correct, in some sense, the commutation relations for t?,, 
s^, which are originally similar to the Susskind-Glogower 
relations 1201 (see also Ref. [21]). It should be also men- 
tioned that the numerical coefficients K,, K, are deter- 
mined here in a standard way [2,21] to keep the expecta- 
tion values of the operators (4) lying between - 1 and + 1 
and to have the unit value for the sum of squared averages. 

In order to illustrate the above approach and clarify the 
physical meaning of the operators (4), let us specify the 
transition under consideration as an electric dipole transi- 
tion and suppose that the cavity photons propagate along 
the Z-axis. Then, due to the selection rules the transition 
( j = 1; m = 0) c) ( j' = 0; ti = 0) is forbidden [ 191. Under 
this condition, an effective Hamiltonian of the Jaynes- 

m--l m=O m=+l 

m=D 

Fig. 1. Two-level atom with the electric dipole transition interact- 
ing with two circularly polarized modes of the cavity field. 
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Cummings model is equivalent to a degenerated V-type 
two-level and two-mode system [22] (Fig. I). With the 
assumption that the initial state of the system is a coherent 
mixture of two excited sub-levels of the atom and a 
vacuum state of the cavity field, the time-dependent wave 
function can be chosen as 

IT(f)) = C .4,e m’EJ’ 
I= I 

X [ A,( plil;+ 1) +qli1;- ~))lW,o) 

+ B,llO;O)( Pll,O.O> + ql~.W>)], 
where p, q are complex numbers such that I pi2 + lql* = I. 
Here 11 I, f I) denotes the atomic state with the angular 

momentum I and projections + I while In+,n,,n_> 

= nln,,,) is the p ro d uct of the number states for the 

cavi:y photons with given projection of the angular mo- 

mentum. Assuming for simplicity exact resonance, we 

obtain E, = w f g, il,=A,= t_ l/e, B,= I/6 where 
w is the transition frequency and g is the coupling con- 
stant. Then, the vacuum-field induced Rabi oscillations of 

cosine and sine (4) are described as follows 

(Q),= ~((e”~u’a++e-‘“aIa_)), 

= ?(I -cos2gr)cos(6+4?), 

(2),= ~((e’li~~~+-e-“~~~~~)), 

= !!$(I -cos2gt)sin(S+ @), (5) 

where 6 = arg p - argq. 
Thus, the evolution of the cosine and sine (4) is com- 

pletely determined by the parameters of the atomic system. 
Taking into account that the operators a,, a_ correspond 
to the photons with negative and positive helicity respec- 
tively, it is not difficult to see that the expectation values 

(5) coincide with the Stokes parameters s, and s2 deter- 
mined as the averages of the Stokes operators in the 
circularly polarized basis [23]. Therefore. the expressions 
(5) determine the classical cosine and sine of the phase 
difference between two circularly polarized modes of the 

cavity field in terms of the atomic parameter 6. We now 
note that due to the specification of the system, the (M, + 

M_ l/ fi terms do not contribute to the expectation values 
(5) so that these expectation values formally coincide with 

the averages of the operational cosine and sine C, and s^, 
[2]. However, unlike the case of the operational scheme I. 
both the cosine and sine (4) can be measured at once. 

In conclusion, let us briefly summarize the results. The 
description of the quantum phase properties of light in 

terms of the polar decomposition of the angular momen- 

tum using the conservation of the total angular momentum 

in the system “atom + radiation”. is proposed. Within 

the framework of this approach, the cosine and sine of the 
phase difference of the two circularly orthogonal polariza- 
tions are determined in terms of the angular momentum of 
the field. Investigation of the electric dipole transition 
shows that the above approach is consistent both with the 
classical definition of the phase difference in terms of the 
Stokes parameters and with the operational definition of 
the phase in the standard form. This consideration can be 
extended to an atom with transitions of different type and 

to multi-atom systems. Let us emphasize that in the spirit 
of the philosophy of Ref. [6], one can expect that the 
quantum phase of the angular momentum may play the 
role of an intrinsic observable corresponding to the mea- 
sured operational phase. Detailed investigation of this as- 

pect as well as the relation among the above approach, the 

operational approach, and the method derives the phase 
distribution via appropriate phase-space functions [IO, 141 

needs further discussion. 

The author wishes to thank Dr. A. Miranowicz for 

helpful discussions. 
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